AST 112 Spring 2021

Total Page:16

File Type:pdf, Size:1020Kb

AST 112 Spring 2021 AST 112 - Spring 2019 Tue - Thu 10:30 - 11:45 STUDY GUIDE FOR EXAM 3 1. YOU MUST NOT USE YOUR LAPTOP, TABLET, CELLPHONE, or TEXTBOOK!!! Bring a calculator –(NOT the one on your cellphone) Do Not cheat off your neighbor! You must use only a #2 pencil – do not use a pen! 2. HINTS ON TAKING "OPEN NOTES" TESTS: a. Study as if it were a closed book test. You do not have time to look up each answer. b. Carefully read the Chapter Summary, try to do the Review Questions, and the Discussion Questions. Work as many problems as you can. Feel free to ask me if you are having problems doing them. c. Don't forget the index or the glossary in the book. d. Read the test questions carefully! e. Go through the test once and answer all the questions that you can. Then go back and do the other questions. f. You may mark on the test booklet: cross off obviously wrong answers, work the problems, and show your work. Circle the answer on the test booklet - this is the last resort if you have made a mistake on the answer sheet. g. Carefully darken in the answer on the answer sheet, do not rip, mutilate, fold, or spindle it. h. Check your answer sheet. Make sure you have answered all 50 questions. i. MAKE SURE THAT YOUR NAME IS ON THE ANSWER SHEET AND YOU HAVE PUT IN YOUR FULL UNIVERSITY ID NUMBER-LEFT JUSTIFIED. I will subtract points if this is not done. J. BRING A PICTURE ID. I may go around checking them. Make sure that you know your ID number. Chapter 13: Star deaths. 1. What is a red dwarf? How massive is a red dwarf? How long do red dwarf stars live? 2. Do we expect to find red dwarfs that formed when the galaxy was just forming and are still on the main sequence? (yes) 3. After the sun is a giant, it evolves to the horizontal branch and then up the asymptotic giant branch and gets very bright. It will probably engulf and devour the Earth. 4. Light pressure drives off the remaining hydrogen surface layers and the hot underlying star ionizes the gas and forms a planetary nebula. 5. Look at the pictures on pages 266-267 6. What happens to the star after it has ejected a planetary nebulae? What is that object called? (White Dwarf - Figure 4 on Page 267) 7. The central part of a white dwarf is crystallized carbon. We know that by another name. (diamond) 8. What happens to the size of a white dwarf as its mass gets larger? (it gets smaller in size see: Fig 13-4) 9. The sun will probably eject a planetary nebulae in about 5 billion years.(Figure 13-5) 10. Binary stars lose mass that eventually flows onto the other star. When one star is a white dwarf - it can become a nova explosion. 11. Massive stars, much more massive than the sun, will fuse hydrogen to helium, helium to carbon and oxygen, carbon to neon and magnesium, and neon to silicon and finally silicon to iron. Look at Figures 12-11, 12-12, 13-11 and Tables 13-1 and 12-3. 12. The iron core then splits into helium and it implodes -- this produces a Supernova Type II explosion also called a core-collapse supernova (Page 276 and Figure 13-3) 13. The most studied supernova remnant is the Crab Nebula which comes from a supernova that exploded on July 4, 1054. (We still celebrate that date with fireworks) (Figure 13-17) 14. When did Supernova 1987A occur? What is its importance? (Figure 13-19) 14a. I was part of the team that used SOFIA to study SN 2014j (Figure 13-21) 15. A local SN could be devastating to life on the earth. 16. Which bright star did I suggest could go SN in the near future - like tonight (check and see if it is still there)? 17. A Supernova of Type Ia (not just I) comes from the evolution of binary systems in which matter flows onto a white dwarf until its mass reaches the Chandrasekhar mass and it explodes. 18. A Supernova can become as bright as an entire galaxy (Figures 13-11, 13-12, 13-14, 13-21) Chapter 14. Neutron Stars and Black Holes 1. What are the masses and sizes of neutron stars? (About 10 km - the size of Tempe) 2. What is a pulsar? Who discovered pulsars? And when? I showed the actual tracing in class. (Figure 14-2) 3. There is a pulsar in the center of the Crab Nebulae. It is losing energy that is heating the gas that forms the nebula. Read pages 289 and 292. 4. What does a light house have to do with the observed emission from a pulsar? (see pages 290-291 5. Look at Figure 14-3 about the light curve of the Crab in the optical. 6. Hulse and Taylor were awarded the Nobel Prize for their discovery of Binary Pulsars. 7. What might it be like to live on a planet orbiting a pulsar? (Figure 14-10) 8. The escape velocity is that speed required to actually escape from the planet or star or neutron star or black hole. What is the escape velocity from the Earth? (980 cm/s2) 9. If we are sufficiently close to a black hole -- inside the event horizon -- we cannot escape no matter how fast we move. So don’t try it at home. I talked about escape velocities from the Sun, a White Dwarf, a Neutron Star and Black Hole. 10. I gave a formula in class for the size of the event horizon of a black hole. Know how to use it. (Table 14-1) 11. How big (radius) would the black hole be if the mass of the Earth were squeezed to the size where no light could escape? (About 1 cm) 12. How does the size of the event horizon increase as the mass increases? 13. We could approach to within a few 100,000 kilometers of a black hole and not be affected. 14. Skip section 14-3a I talked about the material in Section 14-3b. 15. Black Holes exist. Not only are there stellar mass black holes, there are multi-million solar mass black holes in the centers of galaxies. 16. Look at table 14-2. I was part of the team that discovered and studied V404 Cyg in 1989. I have also worked on A0620-00. These systems contain stellar mass black holes. 17. The mass of the Black Hole in M67 is 6 x 109 Solar masses. How big is its Schwarzschild Radius? (Done in class) Chapters ?: We will need a number of ideas from previous chapters: 1) Cepheid Variable stars in section 12-4b (pages 256-258) 2) Doppler Shift / Effect in section 7-3b and 7-3c (pages 138-140) 3) Introduction of the idea of Dark Matter in section 15-2b. That also requires the idea of Kepler’s “Law” as derived by Newton in section 5-2e Chapter 17: Active Galactic Nuclei: Seyferts and Quasars 1. Galaxies with central Black Holes do strange and wonderful things and Black Holes are messy eaters. This is what he means by Active. 2. Seyfert galaxies are spiral galaxies with bright nuclei. That is where a central black hole is accreting material from stars and gas that is passing by. 3. Double lobed radio sources are galaxies with central black holes that are ejecting a lot of gas in jets. 4. One “nearby” one was just imaged by the Event Horizon Telescope - M87. 5. Section 17-1c introduces Quasars (Quasi-Stellar Radio Sources) and also reintroduces the doppler shift. 3C-273 was the first Quasar discovered by Maarten Schmidt (he is Dutch) in 1963. 6. Look at pages 366-367. 7. We really don’t know how supermassive Black Holes are formed and why they are at the centers of Galaxies. 8. Note the definition of “z” = redshift =on Page 365. “z” is used throughout Chapter 18. It is just a way to use the Doppler shift and not worry when the shift is larger than one. 9. A Tidal Disruption Event is when a star passes close to a central black hole and is torn apart. We have observed a number of these with the Swift X-ray satellite. 10. Quasars seemed to have formed when galaxies were forming during an active period in the evolution of the universe about 10 billion years ago. Chapter 18: Cosmology 1. Read about Olber’s Paradox: Why is the sky dark at night? It is a question that has only recently been answered. (Figure 18-3) 2. We assume that the Universe is Isotropic and Homogeneous: It will look the same from wherever we view it and on the largest scales matter is spread uniformly through out the Universe. 3. We also have evidence that the same physical laws hold throughout the universe. 4. The Cosmological Principal means that the Universe looks the same from wherever we are standing in the Universe. 5. The Universe is expanding and carrying the Galaxies along with it. Neither the Galaxies nor clusters of Galaxies are expanding - local gravity overcomes the expansion of the Universe. 6. Read and try to understand the usefulness of the Raisin Bread Analogy. How old is the Universe? (Figure 18-4 and 18-5) 7. Read about an Open, Flat, and Closed universe.
Recommended publications
  • Formation of Dust and Molecules in Supernovae
    2019/02/06 Formation of dust and molecules in supernovae Takaya Nozawa (National Astronomical Observatory of Japan) SN 1987A Cassiopeia A SNR 0509-67.5 1-1. Introduction Question : Can supernovae (SNe) produce molecules and dust grains? Nozawa 2014, Astronomical Herald 2-1. Thermal emission from dust in SN 1987A light curve 60day 200day (optical luminosity) 415day 615day Whitelock+89 - dust starts to form in the 755day ejecta at ~400 days - dust mass ay 775 day: > ~10-4 Msun (optically thin assumed) Wooden+93 2-2. CO and SiO detection in SN 1987A CO first overtone: 2.29-2.5 μm 97 day CO fundamental: 4.65-6.0 μm SiO fundamental: 7.6-9.5 μm 200day SN Ic 2000ew, Gerardy+2002 415day 615day 58 day 755day SN II-pec 1987A, Wooden+1993 SN II-P 2016adj, Banerjee+2018 2-3. CO and SiO masses in SN 1987A CO Gerardy+2002, see also Banerjee+2018 Liu+95 ‐CO emission is seen in various SiO types of CCSNe from ~50 day ‐CO/SiO masses in SN 1987A Mco > ~4x10-3 Msun MSiO > ~7x10-4 Msun Liu & Dalgarno 1996 2-4. Dust mass in Cassiopeia A (Cas A) SNR ○ Estimated mass of dust in Cas A ・ warm/hot dust (80-300K) (3-7)x10-3 Msun (IRAS, Dwek et al. 1987) ~7.7x10-5 Msun (ISO, Arendt et al. 1999) 0.02-0.054 Msun (Spitzer, Rho+2008) ➜ Mdust = 10-4-10-2 Msun consistent with >10-4 Msun in SN 1987A Dwek+1987, IRAS Rho+2008 Spitzer Arendt+1999, ISO 3-1.
    [Show full text]
  • Elliptical Galaxies Where Star Formation Is Thought to Have Ceased Long Ago → the Star That Explodes Is Old, Billions of Years
    Monday, February 3, 2014 First Exam, Skywatch, Friday February 7. Review sheet posted today. Review session Thursday, 5 – 6 PM, RLM 7.104 Reading: Section 5.1 (white dwarfs), 1.2.4 (quantum theory), Section 2.3 (quantum deregulation), Section 6.1 (supernovae; not Type Ib, Type Ic, next exam). Astronomy in the news? Update on new “nearby” supernova SN 2014J in M82 Our second attempt to measure the shape of the explosion with a telescope at Calar Alto, Spain, was messed up by weather. We are attempting to schedule time on MONET, a newly-robotocized telescope at McDonald Observatory, operated by collaborators in Germany. First spectrum Sulfur from Hubble Space Telescope Intensity Silicon Calcium Magnesium Wavelength Goal: To understand the observed nature of supernovae and determine whether they came from white dwarfs or massive stars that undergo core collapse. Categories of Supernovae 1st category discovered Type Ia – near peak light, no detectable Hydrogen or Helium in the spectrum, rather “intermediate mass elements” such as oxygen, magnesium, silicon, sulfur, calcium. Iron appears later as the light fades. Type Ia occur in all galaxy types: In spiral galaxies they tend to avoid the spiral arms, they have had time to drift away from the birth site → the star that explodes is old In elliptical galaxies where star formation is thought to have ceased long ago → the star that explodes is old, billions of years" the progenitor that explodes must be long-lived, not very massive, suggesting a white dwarf. Sun is long-lived, but won’t explode weeks Type Ia - no hydrogen or helium, Luminosity intermediate mass elements early, iron later SN 2014J about here Light Curve - brightness vs.
    [Show full text]
  • Science from the Mev Gamma Ray Sky
    Science from the MeV Gamma Ray Sky Reshmi Mukherjee Barnard College, Columbia University, NY Reshmi Mukherjee The need …. - A sensitive survey of the γ-ray sky between 100 keV and 100 MeV 10-9 10-10 10-12 10-14 10-16 10-18 10-20 m 100 keV 0.5 MeV 100 TeV Reshmi Mukherjee Energy range & challenges . Energy range 300 keV to ~100 MeV . “Compton regime” -- notoriously difficult & challenging . Requires an efficient instrument with an excellent background subtraction . Last instrument to operate in this range: COMPTEL . Neither Fermi-LAT nor AGILE are optimized for observations below ~200 MeV or for polarization sensitivity. Freytag, Handbook of Accel. Phys. & Eng. (1971) Reshmi Mukherjee Compton Imaging McConnell, AAS 225th Reshmi Mukherjee Sensitivities - The MeV “Gap” / VERITAS From Takahashi 2012 Reshmi Mukherjee Talk Outline . Science motivation . Review highlights from “MeV” missions . Synergy with VHE and keV regime . Wish list for a future medium-energy instrument Reshmi Mukherjee Science goals for the “medium energy” . Explosive nucleosynthesis : a close look at core-collapse and thermonuclear supernovae . γ-ray lines (e.g. 511 keV, 70 MeV, + + + ) . Large number of soft γ-ray sources in the Galactic plane, yet to be discovered . Contribution of soft γ-ray sources to the medium-energy Galactic diffuse emission . The laws of physics around neutron stars and black holes . Measurements of transient phenomena . Spatially resolve variation between electron dominated and hadron dominated processes in the 70-200 MeV range.. Origin of cosmic rays? Reshmi Mukherjee from AstroMeV Origin of the highest energy cosmic rays? . >100 year old mystery ! . Enormous E range .
    [Show full text]
  • Asymmetries in Sn 2014J Near Maximum Light Revealed Through Spectropolarimetry
    ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY Item Type Article Authors Porter, Amber; Leising, Mark D.; Williams, G. Grant; Milne, P. A.; Smith, Paul; Smith, Nathan; Bilinski, Christopher; Hoffman, Jennifer L.; Huk, Leah; Leonard, Douglas C. Citation ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY 2016, 828 (1):24 The Astrophysical Journal DOI 10.3847/0004-637X/828/1/24 Publisher IOP PUBLISHING LTD Journal The Astrophysical Journal Rights © 2016. The American Astronomical Society. All rights reserved. Download date 27/09/2021 22:28:24 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/622057 The Astrophysical Journal, 828:24 (12pp), 2016 September 1 doi:10.3847/0004-637X/828/1/24 © 2016. The American Astronomical Society. All rights reserved. ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY Amber L. Porter1, Mark D. Leising1, G. Grant Williams2,3, Peter Milne2, Paul Smith2, Nathan Smith2, Christopher Bilinski2, Jennifer L. Hoffman4, Leah Huk4, and Douglas C. Leonard5 1 Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA; [email protected] 2 Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA 3 MMT Observatory, P.O. Box 210065, University of Arizona, Tucson, AZ 85721-0065, USA 4 Department of Physics and Astronomy, University of Denver, 2112 East Wesley Avenue, Denver, CO 80208, USA 5 Department of Astronomy, San Diego State University, PA-210, 5500 Campanile Drive, San Diego, CA 92182-1221, USA Received 2016 February 14; revised 2016 May 11; accepted 2016 May 12; published 2016 August 24 ABSTRACT We present spectropolarimetric observations of the nearby Type Ia supernova SN 2014J in M82 over six epochs: +0, +7, +23, +51, +77, +109, and +111 days with respect to B-band maximum.
    [Show full text]
  • Posters for Presentation at Gamma2016 (As of 01.07.2016) 1
    Posters for presentation at Gamma2016 (as of 01.07.2016) 1. Adamczyk, Katarzyna: Cloud transmission and its impact on the Cherenkov light density! 2. Ambrogi, Lucia: On the potential of atmospheric Cherenkov telescope arrays to perform spectral studies of TeV gamma-ray sources! 3. Angioni, Roberto: VLBI and gamma-ray studies of TANAMI radio galaxies! 4. Anguner, Ekrem Oguzhan: HESS J1826-130: a very hard-spectrum gamma-ray source in the Galactic plane! 5. Anjos, Rita: Gamma rays and magnetic fields as a probe for UHECR luminosity! 6. Araya, Miguel: The GeV counterpart of VER J2019+407 in the shell of the SNR G78.2+2.1! 7. Armstrong, Thomas: Detection of VHE AGN in Fermi-LAT Pass 8 Data Using DBSCAN! 8. Baghmanyan, Vardan: Gamma-ray variability of NGC 1275! 9. Banasinski, Piotr: Dynamical Inhomogeneous Model for High Energy Emission from blazars! 10. Barkov, Maxim: Ultrafast VHE gamma-ray flares of AGN: Challenges and Implications! 11. Becerril, Ana: Triggered Searches of GRBs with HAWC! 12. Bernhard, Sabrina: Sensitivity and performance studies by simulating transient phenomena within the H.E.S.S. analysis framework! 13. Bonnoli, Giacomo: Perspectives on observations of extra-galactic sources and fundamental physics studies with the ASTRI mini-array on the path towards the Cherenkov Telescope Array! 14. Braiding, Catherine: The Mopra Southern Galactic Plane CO Survey! 15. Bretz, Thomas: Design study of air-Cherenkov telescopes for harsh environments with efficient air-shower detection at 100 TeV! 16. Bryan, Mark: RX J1713 with H.E.S.S.II! 17. Burtovoi, Aleksandr: Prospects for PWNe and SNRs science with the ASTRI mini-array of pre-production small-sized telescopes of the Cherenkov Telescope Array! 18.
    [Show full text]
  • What Is the Progenitor of the Type Ia SN 2014J?
    Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society held on September 8–12, 2014, in Teruel, Spain. A. J. Cenarro, F. Figueras, C. Hernández-Monteagudo, J. Trujillo Bueno, and L. Valdivielso (eds.) What is the progenitor of the Type Ia SN 2014J? M. A. P´erez-Torres1;2, P. Lundqvist3;4, R. J. Beswick5, C. I. Bj¨ornsson3, T.W.B. Muxlow5, Z. Paragi6, S. Ryder7, A. Alberdi1, C. Fransson3;4, J. M. Marcaide8, I. Mart´ı-Vidal9, E. Ros8;10, M. K. Argo5 and J. C. Guirado10;11 1 Instituto de Astrof´ısica de Andaluc´ıa,Glorieta de la Astronom´ıa,s/n, E-18008 Granada, Spain. 2 Centro de Estudios de la F´ı´ısicadel Cosmos de Arag´on,E-44001 Teruel, Spain. 3Department of Astronomy, Stockholm University, SE-10691, Sweden. 4The Oskar Klein Centre, AlbaNova, SE-10691 Stockholm, Sweden. 5Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester. 6Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo, NL. 7Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670, Australia. 8Depto. de Astronom´ıai Astrof´ısica,Universidad de Valencia, E-46100 Burjassot, Valencia, Spain. 9Onsala Space Observatory, Chalmers University of Technology, SE-43992 Onsala, Sweden. 10Max-Planck-Institut f¨urRadioastronomie, D-53121 Bonn, Germany. 11Observatorio Astron´omico,Universidad de Valencia, E-46980 Paterna, Valencia, Spain. Abstract We report the deepest radio interferometric observations of the closest Type Ia supernova in decades, SN 2014J, which exploded in the nearby galaxy M 82. These observations represent, together with radio observations of SNe 2011fe, the most sensitive radio studies of a Type Ia SN ever.
    [Show full text]
  • Supernovae and Supernova Remnants
    Supernovae and supernova remnants Mikako Matsuura (Cardiff University) Why are SNe & SNRs important? Path to the first dust in the Universe • Synthase heavy elements Condensation to dust O • dust formation Fe Si • Source of kinetic energy into the ISM C • dust destruction Injection of elements Supernovae – death of massive stars Formation of the first generation of stars Big Bang Why are SNe & SNRs important? • Synthase heavy elements • dust formation • Source of kinetic energy into the ISM • dust destruction Supernova remnant NGC 6960 (Veil Nebula) 100-1000 km s-1 Shocks M82 Galactic outflow Key questions • Are supernovae & supernova remnants dust producer or destroyer? • If dust producer: • What is the net dust mass? • What types of dust grains are formed? • If destroyer: • How efficient? • How does affect grain size distributions? It is getting clear that SNe form substantial mass of dust using newly synthesized elements Cassiopeia A (AD 1681?) Crab Nebula (AD 1054 ) Supernova 1987A SNe in nearby galaxies 0.1-0.5 M¤ 0.03-0.05 M¤ ~0.5 M¤ 0.0001–0.02 M¤? IR dust observations: only ~10 SNe + SNRs e.g. Sugerman et al. (2006), Matsuura et al. (2015), De Looze et al. (2017; 2019) Target opportunity – extra-galactic SNe SN 2014J 2MASS pre-explosion SOFIA/FLITECAM SOFIA observations of SN 2014J in M82 – unfortunately no dust Template for extragalactic SNe – Time evolution of SN 1987A SOFIA SN 1987A (50kpc) • The peak of SED shifted to longer wavelength in tiMe • The inferred mass increases in tiMe? • 0.001 M¤ at day 615 Harvey et al. (1989), Wooden et al.
    [Show full text]
  • Pos(GOLDEN2019)046 Model 6 Model May Be Inconsistent 6 Model Can Be Also Progenitors of Peculiar Sne Ia
    Progenitor and explosion models of type Ia supernovae PoS(GOLDEN2019)046 Ataru Tanikawa∗ Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan E-mail: [email protected] Type Ia supernovae (SNe Ia) are important objects in astronomy and astrophysics. They are one of the brightest and common transients in the universe, a standard candle for a cosmic distance, and a dominant origin of iron group elements. It is widely accepted that SNe Ia are thermodynamical explosions of carbon-oxygen (CO) white dwarfs (WDs) in binary systems. Nevertheless, it is yet unclear what the companion stars are, and what the masses of the exploding CO WDs are. Recently, many sub-Chandrasekhar mass explosions in the double-degenerate scenario have been suggested. We have assessed the violent merger and Dynamically-Driven Double-Degenerate Double-Detonation (D6) models by numerical simulations. We have concluded that the violent merger model may not explain normal SNe Ia, since their circum-binary matter is much larger than the size of SN 2011fe, and their event rate is much smaller than the SN Ia rate in our Galaxy by an order of magnitude. However, it can be progenitors of peculiar SNe Ia. The D6 model has roughly consistent features with normal SNe Ia. However, the model has supernova ejecta with an asymmetric shape and low-velocity carbon-oxygen component due to the presence of the surviving companion CO. If these features can be observed, the D6 model may be inconsistent with normal SNe Ia.
    [Show full text]
  • Strong Near-Infrared Carbon in the Type Ia Supernova Iptf13ebh⋆⋆⋆
    A&A 578, A9 (2015) Astronomy DOI: 10.1051/0004-6361/201425297 & c ESO 2015 Astrophysics Strong near-infrared carbon in the Type Ia supernova iPTF13ebh?;?? E. Y. Hsiao1;2, C. R. Burns3, C. Contreras2;1, P. Höflich4, D. Sand5, G. H. Marion6;7, M. M. Phillips2, M. Stritzinger1, S. González-Gaitán8;9, R. E. Mason10, G. Folatelli11;12, E. Parent13, C. Gall1;14, R. Amanullah15, G. C. Anupama16, I. Arcavi17;18, D. P. K. Banerjee19, Y. Beletsky2, G. A. Blanc3;9, J. S. Bloom20, P. J. Brown21, A. Campillay2, Y. Cao22, A. De Cia26, T. Diamond4, W. L. Freedman3, C. Gonzalez2, A. Goobar15, S. Holmbo1, D. A. Howell17;18, J. Johansson15, M. M. Kasliwal3, R. P. Kirshner7, K. Krisciunas21, S. R. Kulkarni22, K. Maguire24, P. A. Milne25, N. Morrell2, P. E. Nugent23;20, E. O. Ofek26, D. Osip2, P. Palunas2, D. A. Perley22, S. E. Persson3, A. L. Piro3, M. Rabus27, M. Roth2, J. M. Schiefelbein21, S. Srivastav16, M. Sullivan28, N. B. Suntzeff21, J. Surace29, P. R. Wo´zniak30, and O. Yaron26 (Affiliations can be found after the references) Received 7 November 2014 / Accepted 7 March 2015 ABSTRACT We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia su- pernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2:3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C i lines, and the C i λ1.0693 µm line is the strongest ever observed in a SN Ia.
    [Show full text]
  • Brentwood Science Olympiads Astronomy Exam 2019: *The Following Exam Was Produced by Coaches and Students at Brentwood HS
    Brentwood Science Olympiads Astronomy Exam 2019: *The following exam was produced by coaches and students at Brentwood HS. Contributors: Josiah Sarceno, Alyssa Crespo, Bahvig Pointe, and Conrad Schnakenberg. *The Math Section is used primarily to BREAK TIES. ASTRONOMY QUESTIONS IN STELLAR EVOLUTION IN NORMAL AND STARBURST GALAXIES Short Response Section Part I: All Questions worth 1pt: 1) What is the name of this galaxy? a. IC 10 b. NGC 5128 (Centaurus A) c. Messier 82 d. SN 2014 J 2) What do the light curves for “Line A” and “Line B” represent? a. Line A is a RR Lyre Variable Star, but Line B is a Classical Cepheid Variable Star. b. Line A is a Type I Supernova, and Line B is a Type II Supernova. c. Line A is a Type II Supernova, and Line B is a Type I Supernova. d. Both are Type Ia Supernova, but Line A is between a White Dwarf and a Red Giant. Line B is a collision between two White Dwarf stars. 3) What is the Chandrasekhar limit? What is its significance? a. 9.4607 × 1012;Maximum solar mass of a white dwarf before it collapses b. 1.4; Light years between the Milky Way Galaxy and Andromeda Galaxy c. 9.4607 × 1012;Light years between the Milky Way Galaxy and Andromeda Galaxy d. 1.4; Maximum solar mass of a white dwarf before it collapses 4) What is the Tully-Fisher relation? a. Cyclic pattern of luminosity for a Type II Cepheid Variable b. Relationship of size of type 2 supernovae to luminosity c.
    [Show full text]
  • Arxiv:1405.4702V2 [Astro-Ph.SR] 9 Jul 2014 10 Departamento De Astronomía I Astrofísica, Universidad De Valencia, Maoz Et Al
    DRAFT VERSION SEPTEMBER 27, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 CONSTRAINTS ON THE PROGENITOR SYSTEM AND THE ENVIRONS OF SN 2014J FROM DEEP RADIO OBSERVATIONS M. A. PÉREZ-TORRES 1,2,3 , P. LUNDQVIST4,5 , R. J. BESWICK 6,7 , C. I. BJÖRNSSON4 , T.W.B. MUXLOW 6,7 , Z. PARAGI 8 , S. RYDER 9 , A. ALBERDI 1 , C. FRANSSON 4,5 , J. M. MARCAIDE 10,11 , I. MARTÍ-VIDAL 12 , E. ROS 13,10,14 , M. K. ARGO 6,7 , J. C. GUIRADO 10,14 Draft version September 27, 2018 ABSTRACT We report deep EVN and eMERLIN observations of the Type Ia SN 2014J in the nearby galaxy M 82. Our observations represent, together with JVLA observations of SNe 2011fe and 2014J, the most sensitive radio studies of Type Ia SNe ever. By combining data and a proper modeling of the radio emission, we constrain _ -10 -1 the mass-loss rate from the progenitor system of SN 2014J to M . 7:0 × 10 M yr (for a wind speed -1 -3 of 100 km s ). If the medium around the supernova is uniform, then nISM . 1:3 cm , which is the most stringent limit for the (uniform) density around a Type Ia SN. Our deep upper limits favor a double-degenerate (DD) scenario–involving two WD stars–for the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. By contrast, most single-degenerate (SD) scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to a exploding WD, are ruled out by our observationsa.
    [Show full text]
  • An Ultraluminous X-Ray Source Powered by an Accreting Neutron Star
    LETTER doi:10.1038/nature13791 An ultraluminous X-ray source powered by an accreting neutron star M. Bachetti1,2, F. A. Harrison3, D. J. Walton3, B. W. Grefenstette3, D. Chakrabarty4,F.Fu¨rst3, D. Barret1,2, A. Beloborodov5, S. E. Boggs6, F. E. Christensen7,W.W.Craig8, A. C. Fabian9, C. J. Hailey10, A. Hornschemeier11, V. Kaspi12, S. R. Kulkarni3, T. Maccarone13, J. M. Miller14, V. Rana3, D. Stern15, S. P. Tendulkar3, J. Tomsick6, N. A. Webb1,2 & W. W. Zhang11 12 The majority of ultraluminous X-ray sources are point sources that ULXs, the most luminous being M82 X-1 , which can reach LX(0.3– are spatially offset from the nuclei of nearby galaxies and whose X-ray 10 keV) < 1041 erg s21, and the second brightest being a transient, M82 luminosities exceed the theoretical maximum for spherical infall (the X-2 (also referred to as X42.315913), which has been observed to reach4,14 1,2 40 21 Eddington limit) onto stellar-mass black holes . Their X-ray lumi- LX(0.3–10 keV) < 1.8 3 10 erg s . The two sources are separated by nosities in the 0.5–10 kiloelectronvolt energy band range from 1039 50, and so can only be clearly resolved by the Chandra X-ray telescope. to 1041 ergs per second3. Because higher masses imply less extreme During the M82 monitoring campaign, NuSTAR observed bright emis- ratios of the luminosity to the isotropic Eddington limit, theoretical sion fromthe nuclear region containing the two ULXs. Theregion shows models have focused on black hole rather than neutron star systems1,2.
    [Show full text]