A Heavy AWS User's Firstlook at Azure
Total Page:16
File Type:pdf, Size:1020Kb
A Heavy AWS User’s Firstlook at Azure I’ve used too many tools: • AWS, Azure • GCP, Alibaba, Tencent • Algolia, Stripe, Auth0, Vercel, Netlify… Work: • I help IoT folks leverage the cloud Lead Cloud Architect linkedin.com/in/fmc-sea Software independence Device Cloud Cloud integration Desktop & Cloud smartphone | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w connectivity Web, desktop OS, communication, connectivity & mobile application Specific IP M2M W I T E K I O Integration Connectivity BSP, Driver, Firmware Hardware Other Understanding devices 3 | | 4 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re Summary 1. Introduction 2. Compute 3. Storage 4. IoT 5. Cloud Cost Optimization 6. Questions 1. Introduction What’s the Big Deal about Picking a Cloud? • Huge commitment for new companies • Infrastructure cost and feature set can be | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w critical for software businesses W I T E K I O 7 | Mythbusting use the cloud. the use : We need to | 8 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re Do you? We’re not Dropbox though…We’re not Dropbox | 9 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re Building without “A Big Cloud” Big “A without Building | 10 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re Mythbusting use the cloud. the use : We can’t | 11 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re Azure Compliances: | 12 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re AWS Compliances: | 13 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re Mythbusting: Moving to the cloud will save money. | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w W I T E K I O 14 | Cloud resources be spun can People need to eat. need People up down. and | 15 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re Mythbusting: We need to be | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w multi-cloud! W I T E K I O 16 | What does “Multi-cloud” mean? “We run some apps in Azure and some in AWS” vs. | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w W I T E K I O “We can move our business between AWS and Azure at any time” 17 | “We can move our business between AWS and Azure time” any at | 18 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re When CloudA has an outage we’ll be ready Ooops. DNS was only in CloudA | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w W I T E K I O Using two clouds means we can hire folks Our team now needs to learn with either CloudA or CloudB experience! two clouds exceptionally well 19 | Mythbusting: We need to worry | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w about lock-in. W I T E K I O 20 | If we invest too heavily in one cloud we Writing your applications for will end up paying way more two clouds will be more costly | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w W I T E K I O We need to only use VMs and containers so Never leveraging managed we can switch to any cloud at a moments services will make developing notice applications much harder 21 | Why AWS and Azure? Top Two Public Clouds Other Options o 2018 ZDnet - #1: AWS, #2: Azure o Google Cloud (frequently in third) | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w o 2019 Gartner - #1: AWS, #2: Azure o Other Cloud Providers o 2020 ZDnet - #1: AWS, #2: Azure W I T E K I O 22 | Why AWS and Azure? Azure IoT | 23 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re 2. Compute | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w W I T E K I O 25 | https://specify.io/concepts/serverless-baas-faas The Compute Infrastructure Spectrum IaaS PaaS Serverless • Azure Virtual Machines • AWS Elastic Beanstalk • Compute: • AWS Lambda | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w • Amazon EC2 • Azure App Services • Azure Functions • Networking services W I T E K I O 26 | IaaS Head to Head: General Purpose Linux Virtual Machines Cloud Instance Type vCPUs RAM Hourly Price Azure A2 v2 2 4 GiB $0.076 | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w Azure B2S 2 4 GiB $0.0416 W I T E K I O AWS a1.large 2 4 GiB $0.051 AWS t3a.medium 2 4 GiB $0.0376 27 | *This is a tiny subset of all the instance types either cloud offers What thisdoesn’t address? instance types differences in differences Detailed Detailed | 28 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re What thisdoesn’t address? Windows licensing Windows with Azure with | 29 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re PaaS Comparison: Azure App Service | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w W I T E K I O Elastic Beanstalk “Where did all these resources come from and why is my bill $200?” 30 | Bonus! CaaS (Containers as a Service) Elastic Container Azure Container Service Service | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w Elastic Kubernetes Azure Kubernetes W I T E K I O Service Service 31 | AWS Lambda AWS FaaS Growth Azure Functions | 32 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re FaaS Development Frameworks AWS Lambda Azure Functions | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w W I T E K I O AWS SAM 33 | HTTP APIs FaaS Capabilities: | 34 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re FaaS Capabilities – Data Processing | 35 W I T E K I O | W e h e l p h i g h t e c h m a k e r s b u i l d g r e a t s o f t w a re Compute Takeaways • Comparable Compute Costs • Pass on AWS PaaS | e W h e l p h i h g t e h c k a e r m s u ib l d r g e t a s o f re a t w • Azure Functions still need some W I T E K I O gumption(s?) 36 | 3.