Patterns of Follicular Growth During the Four-Day Estrous Cycle of the Rat1

Total Page:16

File Type:pdf, Size:1020Kb

Patterns of Follicular Growth During the Four-Day Estrous Cycle of the Rat1 BIOLOGY OF REPRODUCTION 31, 280-286 (1984) Patterns of Follicular Growth During the Four-Day Estrous Cycle of the Rat1 ROY L. BUTCH ER2 and DIANA KIRKPATRICK-KELLER Department of Obstetrics and Gynecology West Virginia University Medical Center Morgantown, West Virginia 26506 -6302 Downloaded from https://academic.oup.com/biolreprod/article/31/2/280/2766498 by guest on 24 September 2021 ABSTRACT Female Sprague-Dawley rats underwent laporatomy during metestrus at 70 to 75 days of age or remained untreated to study the effects of surgical stress on follicular growth. Groups of rats were killed on each day of a 4-day estrous cycle, serial sections of the ovaries were prepared histologically and the number and size of follicles with one or more complete layers of cuboidal granulosa cells were determined. Since no differences due to surgery were found, the data were pooled by day of the estrous cycle (17 or 18 rats/day of cycle) for characterization and comparison of size distribu- tion of follicles on different days of the estrous cycle. Follicles were classified as atretic or healthy and divided into groups by increments of 20 pm of diameter for graphing. Data were analyzed by analysis of variance and least squares means. Significant differences were found in the distribution of both healthy and atretic follicles among days of the estrous cycle. At least 2b follicles/ovary were recruited from <260 pm into >260 pm in diameter between proestrus and estrus, and the follicles for ovulation were selected by diestrus. A greater number of growing follicles of 70 to 100 pm in diameter were present at diestrus. From the disappearance of follicles >260 pm between estrus and proestrus, it appears that arresia is a very rapid process. INTRODUCTION 1978a,b; Hirshfield and DePao!a, 1981; Wels For more than 40 years, attempts to deter- chen and Dul!aart, 1976; Hoak and Schwartz, mine the changes in patterns of follicular growth 1980) have shown recruitment of follicles into during the estrous cycle have been made with a the size group 350 pm in diameter at estrus number of species using counts and measure- and that this recruitment is in response to the ments of follicles in histological sections, radio- increase in plasma follicle-stimulating hormone isotope labeling and mitotic activities. Lane and (FSH) on the afternoon of proestrus and the Davis (1939), using mitotic activity in follicles morning of estrus. The dependence of follicular of rats, determined that large follicles grow at a recruitment on FSH also had been demonstrated faster rate, that follicles of a given size grow at in the hamster (Greenwald and Siegel, 1982). a different rate on different days of the estrous Studies using the mouse have shown an increase cycle, that follicles <250 pm in diameter do in mitotic activity in large follicles, more small not undergo atresia and that more small follicles follicles at diestrus and no atresia in small (30 to bOO pm) are present at diestrus. Mandl follicles (Pederson, 1970a,b). and Zuckerman (1952) reported a homogeneous Unilateral ovariectomy has long been known distribution of follicles <350 pm through- to result in a doubling of the number of ovula- out the estrous cycle, but a different distribution tions in the remaining ovary (Hunter, 1787; with stage of cycle for follicles > 350 pm in Arai, 1920; Mand! and Zuckerman, 1952) and diameter. However, in both of the above studies has been used in studies into the mechanism of the rats that were used had variable lengths of follicular growth and recruitment (Greenwald, estrous cycles, were variable in age and some 1961; Peppler and Greenwald, 1970; Hirshfield, of those classified as estrous had not ovulated. 1982, 1983a). During a study of follicular A number of studies (Hirshfield and Midgley, distribution after unilateral ovariectomy (Zoldak and Bowyer, 1977), it was concluded that surgical stress could alter follicular growth. The present study examined the effect of surgical Accepted May bl, 1984. stress on distribution of follicles. Since no Received December 9, 1983. effect of stress was found, experimental groups ‘This investigation was supported in part by Nih were pooled by day of cycle to provide a larger Research Grant AG-O23bb from the National Institute of Aging. number of observations for characterization of Reprint requests. follicular growth patterns of all follicles in the 280 FOLLICULAR GROWTH IN RATS 281 proliferative pool on each day of the estrous cycle. o., en men en MATERIALS AND METHODS General Female Sprague-Dawley rats at 70 to 75 days of age were housed under controlled conditions of temperature and lighting (lights on 0600-1800 h). Downloaded from https://academic.oup.com/biolreprod/article/31/2/280/2766498 by guest on 24 September 2021 Estrous cycles were monitored by daily vaginal smears . +1 +i +1 and only those rats exhibiting consistent 4-day cycles were used. Surgical procedures using ether anesthesia ‘- ‘.‘I consisted of only flank incisions during the morning of metestrus. A 3 X 4 factorial design with 6 rats per subgroup was used to examine the effects of surgical stress on alterations in distribution of growing follicles. The 3 main groups consisted of: 1) controls killed at 1600 h on each day of the estrous cycle, 2) left flank incisions done between 0830 to 0930 h of metestrus with groups of 6 rats killed at b600 h of each of the next 4 n’ ‘‘ days, 3) identical to Group 2, but groups of rats were + +: +: +1 killed on each day of the third subsequent cycle. The right ovary was recovered, fixed in Bouin’s solution and stored in 70% ethanol. The ovary was subsequently embedded in paraffin, sectioned at bO pm and stained with hematoxylin and eosin. All follicles with ) 1 complete layer of cuboidal granulosa cells surrounding the oocyte were counted, classified as hea4thy or atretic, and 2 perpendicular measurements of the diameter to the basement membrane were made only in the section which contained the nucleolus of the “ T en * en * oocyte. Follicles were considered atretic if two or +1 + +1 +1 v more pyknotic granulosa cells were found in a single section or if the oocyte was degenerating. The ovaries ‘ ‘ were randomized before the follicles were counted and ‘ measured. The person who did the counts and measure- ments was not aware of the treatments or stages of the estrous cycle from which the ovaries were obtained. 2 . Follicles were divided into 4 groups according to dianieter (<70, 70 to 110, 110 to 150 and ‘150 pm), 3 E which gave approximately equal numbers of follicles ,, a a .c per group. Data were analyzed for effects of surgical - stress within day of the estrous cycle by one-way -: analysis of variance (ANOVA). Since no differences N N N Q due to surgical stress were found, groups were pooled within day of the estrous cycle (n=b7 or 18 rats/day) . to examine for changes in follicular distribution. ‘ Data on number of healthy and atretic follicles were analyzed by ANOVA, and when differences were found the least squares means were used to assess differences o_ between days. Since in several studies, differences had . been reported in distribution of large follicles, the “i’ “t en ‘C group 150 pm in diameter was further subdivided into three groups of approximately equal numbers of V W ‘0’0 follicles ( b 50 to 200, 200 to 280, 280 pm in diameter) . ci. E and analyzed by ANOVA and least squares means. Follicular distribution between days of the estrous -5 u cycle was further examined by graphing numbers of follicles within 20-pm size groups. RESULTS 2; No differences were found in follicular “ distribution due to surgical stress when the data were analyzed statistically or plotted graphically. I- 282 BUTCHER AND KIRKPATRICK-KELLER TABLE 2. Number of healthy follicles per ovary in subclasses of the group >150 pm in diameter during the 4-day estrous cycle. Diameter in pm ( ± SEM) 150-200 200-280 >280 Proestrus* 23 ± 2 21 ± 2 15 ± Estrus 26 ± 2 20 ± 2 29 ± Metestrus 25 ± 2 b8 ± b 26 ± Downloaded from https://academic.oup.com/biolreprod/article/31/2/280/2766498 by guest on 24 September 2021 Diestrus 25 ± 2 22 ± I b8 ± N=17 or 18 rats/group. a.baiues in each column without a superscript letter in common are different (P<O.05). Pooling the data by day of the estrous cycle previously reported studies with few rats per provided 17 or 18 rats/day of the cycle (2 rats group. were eliminated from the study due to change Total numbers of healthy and atretic follicles, in the length of cycle). The substantial numbers or their sums, were not different due to the day of rats in the pooled groups allowed a character- of the estrous cycle. However, distribution of ization of follicular distribution within small healthy follicles did differ (P<O.05) in the 70- increments of size, which was not possible in to 110-pm and >150-pm diameter groups 7 #{149} U Proestrus (I) 6 w #{149} S Estrus -J C) tJ---D Metestrus -J 5 -J 0---0 Diestrus 0 n 17 or 18 rats/day >- I 4 I- -J L1J I 3 Lj 0 2 LJ fn z 2 200 240 280 320 360 400 440 480 520 560 600 640 680 DIAMETER (pm) FIG. b. Distribution of number ( ± SEM) of healthy follicles >200 pm in diameter by increments of 20 pm for each day of the 4-day estrous cycle. Each diameter shown includes follicles of that size and the following 19.9 pm eg., 40 pm=40.0 to 59.9 pm).
Recommended publications
  • Conceptive Estrus Behavior in Three Bottlenose Dolphins (Tursiops Truncatus)
    Sciknow Publications Ltd. ABC 2015, 2(1):30-48 Animal Behavior and Cognition DOI: 10.12966/abc.02.03.2015 ©Attribution 3.0 Unported (CC BY 3.0) Conceptive Estrus Behavior in Three Bottlenose Dolphins (Tursiops truncatus) Holley Muraco1* and Stan A. Kuczaj II2 1Mississippi State University 2University of Southern Mississippi *Corresponding author (Email: [email protected]) Citation – Muraco, H., & Kuczaj, S. A. II. (2015). Conceptive estrus behavior in three bottlenose dolphins (Tursiops truncatus). Animal Behavior and Cognition, 2(1), 30-48. doi: 10.12966/abc.02.03.2015 Abstract - Bottlenose dolphins (Tursiops truncatus) are a highly promiscuous species that routinely engage in socio-sexual interactions, yet relatively little has been reported about actual estrus behavior. For this study of three female dolphins located at two aquarium facilities, 20 reproductive behaviors were investigated during three conceptive estrous cycles with known endocrinology. Reproductive behaviors increased with estradiol levels and peak occurrences of behaviors were observed during the luteinizing hormone (LH) surge. Two novel behaviors were observed: (1) genital tracking, an investigatory-type behavior, and (2) immobility, a novel form of standing heat estrus. These behaviors appeared to communicate reproductive readiness and increased copulation success. A total of 314 occurrences of estrus behavior were recorded in 10 hours of footage from the three focal females, and copulation spanned from day -9 to day 0 in one dominant female. Sexual interactions during estrus included female- to-female, immature male-to-female, mature male-to-immature male and masturbation with toys. During estrus, focal females received more behavioral attention than they initiated, and passive and active dorsal fin mounting between females was the most frequent behavior.
    [Show full text]
  • Understanding Reproductive Events in the Mare for Successful Breeding Programs
    Understanding Reproductive Events in the Mare for Successful Breeding Programs By Jillian Fain Bohlen, Department of Animal and Dairy Science Mare Cyclicity A solid understanding of mare cyclicity is the foundation on which to build or evaluate an equine breeding program. Horses differ from other species both in timing of cyclicity as well as endocrine patterns within a cycle. Basic principles can aid horse breeders in more effectively timing and breeding with or without hormone manipulation. Seasonally Polyestrus Mares are classified as seasonally polyestrous animals and are more generally termed “long day breeders.” This classification means mares cycle multiple times in the year but that these times are limited to when days are long. For the mare, this means conception prior to the hot days of summer and optimizing nutritional value for offspring by foaling early spring. This seasonality of the mare’s breeding cycle is mostly dictated by photoperiod; however, available food resources and temperature may also play minor roles. Lighting signals, associated with the photoperiod, are interpreted by the pineal gland and ultimately converted into endocrine signals. At the center of this pathway is melatonin. Melatonin secretion increases during the night phase and quickly decreases at the beginning of the day phase. In seasonal breeders such as sheep (short day) and horses (long day), melatonin has a large impact on when cyclicity will end and ultimately resume. This pattern for long day breeders is evident in Figure 1. In horses, low melatonin levels, which are associated with longer days, stimulate a cascade of hormones that ultimately control the ability of the mare to properly cycle.
    [Show full text]
  • How to Study Male and Female Rodents
    How to Study Female and Male Rodents Jill B. Becker, PhD Molecular and Behavioral Neuroscience Institute Department of Psychology University of Michigan Ann Arbor, Michigan © 2018 Becker How to Study Female and Male Rodents 7 Introduction Becker, 2016). When a sex difference is found, some NOTES This chapter discusses how to think about and investigators will want to determine more about the determine the appropriate manipulations and neurobiological processes that are responsible for the procedures for investigating sex differences in, and differences. the effects of gonadal hormones on, experimental outcomes in adult rats and mice. I will also discuss Effect of Gonadal Hormones on estrous cycles, surgical procedures, and hormone a Trait treatments. I will conclude with a discussion of One of the next questions that will arise is whether variability and statistical methods that can be used gonadal hormones have an effect on the trait. Two to minimize animal numbers when adding sex as a approaches can help determine whether this is biological variable to your research. the case. One can examine whether the female’s behavior varies with the estrous cycle. Alternatively, What Is a Sex Difference? one can remove the gonads by ovariectomy (OVX) The first question researchers usually ask is whether or castration (CAST) and then selectively replace there is a sex difference in a trait. The answer to this hormones. We will address the estrous cycle first. question is not a simple “yes” or “no”; it turns out to be more complicated. As illustrated in Figure 1A, Determining Estrous Cycle Stages males and females can exhibit different traits, as is The estrous cycle is the product of the hypothalamic- true for reproduction.
    [Show full text]
  • (RODENTIA: CRICETIDAE) in COLOMBIA Mastozoología Neotropical, Vol
    Mastozoología Neotropical ISSN: 0327-9383 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Villamizar-Ramírez, Ángela M.; Serrano-Cardozo, Víctor H.; Ramírez-Pinilla, Martha P. REPRODUCTIVE ACTIVITY OF A POPULATION OF Nephelomys meridensis (RODENTIA: CRICETIDAE) IN COLOMBIA Mastozoología Neotropical, vol. 24, núm. 1, julio, 2017, pp. 177-189 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Available in: http://www.redalyc.org/articulo.oa?id=45753369015 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Mastozoología Neotropical, 24(1):177-189, Mendoza, 2017 Copyright ©SAREM, 2017 http://www.sarem.org.ar Versión impresa ISSN 0327-9383 http://www.sbmz.com.br Versión on-line ISSN 1666-0536 Artículo REPRODUCTIVE ACTIVITY OF A POPULATION OF Nephelomys meridensis (RODENTIA: CRICETIDAE) IN COLOMBIA Ángela M. Villamizar-Ramírez1, Víctor H. Serrano-Cardozo1, 3, and Martha P. Ramírez-Pinilla2, 3 1 Laboratorio de Ecología, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia. [Correspondence: Víctor H. Serrano-Cardozo <[email protected]>] 2 Laboratorio de Biología Reproductiva de Vertebrados, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia. 3 Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia. ABSTRACT. We studied the annual reproductive activity of a population of Nephelomys meridensis in an Andean oak forest in the Cordillera Oriental of Colombia. Monthly during a year, Sherman live traps were established in 5 fixed stations (20 traps per station) during 4 nights per month, along an altitudinal range of 2530-2657 m.
    [Show full text]
  • Estrous Cycle
    1 ESTROUS CYCLE (Proestrus) The estrous cycle or oestrus cycle (derived from Latin oestrus 'frenzy',) is the recurring physiological changes that are induced by reproductive hormones in most mammalian therian females. Estrous cycles start after sexual maturity in females and are interrupted by anestrous phases or by pregnancies. Typically, estrous cycles continue until death. The majority of mammals become sexually-receptive (express estrus) and ovulates spontaneously at defined intervals. The female will only allow the male to mate during a restricted time coinciding with ovulation. Stages- The estrous cycle can be divided into four stages: 1)Proestrus, 2)Estrus, 3)Metestrus, and 4)Diestrus based on behaviour changes or structural changes in internal and external genitalia. Fore Phase 2 Fig- Hormonal and Ovarian Changes during the Estrous Cycle PROESTRUS o follicle enlarges o estrogen increases o vasularity of the female reproductive tract increases o endometrial glands begin to grow o estrogen levels peak It is the first phase of the estrous cycle and is the building-up phase During this phase the ovarian follicle (under the influence of FSH and LH) enlarges and begins to secrete estrogens 3 One or several follicles of the ovary start to grow. Their number is species specific. Typically this phase can last for one day to three weeks, depending on the species. Under the influence of estrogen the lining in the uterus (endometrium) starts to develop. The female is not yet sexually receptive; The old corpus luteum gets degenerated; The vaginal epithelium proliferates and the vaginal smear shows a large number of non-cornified nucleated epithelial cells.
    [Show full text]
  • The Bovine Estrous Cycle
    livestock SOUTH DAKOTA STATE UNIVERSITY® MAY 2020 ANIMAL SCIENCE DEPARTMENT The Bovine Estrous Cycle Review and Revision: Robin Salverson | SDSU Extension Cow/Calf Field Specialist Original Publication: 2004 - George Perry | former Professor & SDSU Extension Beef Reproductive Management Specialist The percentage of cows that become pregnant during a breeding season has a direct effect on ranch profitability. Consequently, a basic understanding of the bovine estrous cycle can increase the effectiveness of reproductive management. After heifers reach puberty (first ovulation) or following the postpartum anestrous period (a period of no estrous cycles) in cows, a period of estrous cycling begins. Estrous cycles give a heifer or cow a chance to become pregnant about every 21 days. Figure 1: Standing to be mounted by a bull or another cow During each estrous cycle, follicles develop in wavelike is the only conclusive sign that a cow is in standing estrus and ready to be bred. patterns, which are controlled by changes in hormone concentrations. In addition, the corpus luteum (CL) A female enters standing estrus gradually. Prior to develops following ovulation of a follicle. While it is standing estrus she may appear nervous and restless present, this CL inhibits other follicles from ovulating. (for example, walking a fence line in search of a bull The length of each estrous cycle is measured by the or bawling more than usual). Prior to standing to be number of days between each standing estrus. mounted by a bull or other cows, she will usually try to mount other animals. These signs will progress until The Anestrous Period standing estrus occurs.
    [Show full text]
  • Chronic Stress Detrimentally Affects in Vivo Maturation in Rat Oocytes and Oocyte Viability at All Phases of the Estrous Cycle
    animals Article Chronic Stress Detrimentally Affects In Vivo Maturation in Rat Oocytes and Oocyte Viability at All Phases of the Estrous Cycle Fahiel Casillas 1 , Miguel Betancourt 2, Lizbeth Juárez-Rojas 1, Yvonne Ducolomb 2,†, Alma López 2, Alejandra Ávila-Quintero 1, Jimena Zamora 1, Mohammad Mehdi Ommati 3 and Socorro Retana-Márquez 1,* 1 Department of Biology of Reproduction, Iztapalapa Campus, Metropolitan Autonomous University, Mexico City 09340, Mexico; [email protected] (F.C.); [email protected] (L.J.-R.); [email protected] (A.Á.-Q.); [email protected] (J.Z.) 2 Department of Health Sciences, Iztapalapa Campus, Metropolitan Autonomous University, Mexico City 09340, Mexico; [email protected] (M.B.); [email protected] (Y.D.); [email protected] (A.L.) 3 Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; [email protected] * Correspondence: [email protected]; Tel.: +52-55-4050-5395 † Deceased. Simple Summary: Recently, a significant relationship between stress and reproductive failure in women was reported; being one of the possible causes of infertility. The World Health Organization recognizes infertility as a global public health issue; therefore, the interest in understanding the main causes of this issue has increased over the last few decades. Thus, many studies have reported that Citation: Casillas, F.; Betancourt, M.; stress can adversely alter the functionality of the hypothalamic-pituitary-gonadal axis; as well as Juárez-Rojas, L.; Ducolomb, Y.; being one of the reasons of subfertility in patients undergoing in vitro fertilization. Therefore, it can López, A.; Ávila-Quintero, A.; be assumed that stress is closely related to poor in vitro fertilization outcomes.
    [Show full text]
  • Strategies and Methods for Research on Sex Differences in Brain and Behavior
    0013-7227/05/$15.00/0 Endocrinology 146(4):1650–1673 Printed in U.S.A. Copyright © 2005 by The Endocrine Society doi: 10.1210/en.2004-1142 Strategies and Methods for Research on Sex Differences in Brain and Behavior Jill B. Becker, Arthur P. Arnold, Karen J. Berkley, Jeffrey D. Blaustein, Lisa A. Eckel, Elizabeth Hampson, James P. Herman, Sherry Marts, Wolfgang Sadee, Meir Steiner, Jane Taylor, and Elizabeth Young Department of Psychology (J.B.B.), University of Michigan, and Department of Psychiatry (E.Y.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Physiological Science (A.P.A.), University of California at Los Angeles, Los Angeles, California 90095; Program in Neuroscience (K.J.B.) and Department of Psychology (L.A.E.), Florida State University, Tallahassee, Florida 32306; Center for Neuroendocrine Studies (J.D.B.), University of Massachusetts, Amherst, Massachusetts 01003; Department of Psychology (E.H.), University of Western Ontario, London, Ontario, Canada N6A SC2; Department of Psychiatry (J.P.H.), University of Cincinnati, Cincinnati, Ohio 45237; Society for Women’s Health Research (S.M.), Washington, D.C. 20036; Department of Pharmacology (W.S.), Ohio State University, Columbus, Ohio 43210; Department of Psychiatry and Behavioral Neurosciences (M.S.), McMaster University, Hamilton, Ontario, Canada L8N 4A6 and Department of Psychiatry (J.T.), Yale University School of Medicine, New Haven, Connecticut 06520 Female and male brains differ. Differences begin early during in the trait in intact males and females, taking into consider- development due to a combination of genetic and hormonal ation the reproductive cycle of the female. Then, one must events and continue throughout the lifespan of an individual.
    [Show full text]
  • Physiological Effects of Estradiol in the Mouse Hippocampal Formation Joanna L
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2009 Physiological Effects of Estradiol in the Mouse Hippocampal Formation Joanna L. Spencer Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Spencer, Joanna L., "Physiological Effects of Estradiol in the Mouse Hippocampal Formation" (2009). Student Theses and Dissertations. Paper 142. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. PHYSIOLOGICAL EFFECTS OF ESTRADIOL IN THE MOUSE HIPPOCAMPAL FORMATION A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Joanna L. Spencer June 2009 © Copyright by Joanna L. Spencer 2009 PHYSIOLOGICAL EFFECTS OF ESTRADIOL IN THE MOUSE HIPPOCAMPAL FORMATION Joanna L. Spencer, Ph.D. The Rockefeller University 2009 At several points in a woman’s life, changes in circulating estradiol are associated with disturbances in mood and cognitive function. To determine the biological basis of these behavioral changes, researchers have concentrated on the hippocampal formation, a medial temporal lobe structure involved in the regulation of mood and cognition in humans. It is now clear that estradiol increases the substrates of hippocampal synaptic plasticity, including dendritic spine density, synapse density, and synaptic protein expression. In some cases, these changes are associated with alterations in mood and hippocampal-dependent learning and memory. The upstream mediators of these estradiol effects remain unknown, but likely candidates may be inferred from known regulators of hippocampal synaptic plasticity and estradiol effects in other tissues.
    [Show full text]
  • Mare Reproductive Cycle
    ABANICO VETERINARIO ISSN 2448-6132 Publisher Sergio Martínez González abanicoacademico.mx/revistasabanico Literature review. December 2018; 8(3): 14-41. Received: 02/01/2018 Accepted: 22/05/2018 http://dx.doi.org/10.21929/abavet2018.83.1 Mare Reproductive Cycle: A Review Revisión: El Ciclo Reproductivo de la Yegua Zimri Corté[email protected], Carlos Aréchiga-Flores1 *[email protected], Melba Rincó[email protected], Fabiola Rochí[email protected], Marco López- [email protected], Gilberto [email protected] 1Academic Unit of Veterinary Medicine and Zootechnics, Autonomous University of Zacatecas, Zacatecas, Mexico. *Responsible and correspondence author: Aréchiga-Flores Carlos. Academic Unit of Veterinary Medicine and Zootechnics, Autonomous University of Zacatecas, Jardín Juárez No. 147, Col. Centro, Zacatecas, Zac. Mexico. C.P. 98000. ABSTRACT The estrous cycle or interovulatory interval in the mare allows monitoring and selection of the most appropriate time for copulation or artificial insemination (AI). Estrous cycle is an interaction of hormones of the pineal gland, hypothalamus, pituitary, gonad and endometrium lasting 21 days. The pineal gland secretes melatonin during dark hours. In spring and summer, there is less melatonin secretion, and the hypothalamus secretes gonadotropin-releasing hormone (GnRH) to induce gonadotropins secretion: (FSH, follicle-stimulating hormone, and LH, luteinizing hormone) in the anterior pituitary and stimulates the ovulatory function. FSH promotes follicular growth and LH, follicular maturation and ovulation. Both stimulate the production of estradiol in the ovarian follicles. Estradiol causes estrus signs. After ovulation, the corpus luteum is formed and produces progesterone (P4) for gestation. P4 blocks the hypothalamus and reduces the secretion of GnRH, interrupting the estrous cycle.
    [Show full text]
  • Circadian Organization of the Estrous Cycle of the Golden Hamster (Circadian Rhythms/Sexual Differentiation/Gonadotrophins/Locomotor Activity) KATHLEEN M
    Proc. Natl. Acad. Sci. USA Vol. 73, No. 8, pp. 2923-2927, August 1976 Physiology Circadian organization of the estrous cycle of the golden hamster (circadian rhythms/sexual differentiation/gonadotrophins/locomotor activity) KATHLEEN M. FITZGERALD AND IRVING ZUCKER Department of Psychology, University of California, Berkeley, Calif. 94720 Communicated by Frank A. Beach, May 17,1976 ABSTRACT In constant dim illumination the hamster es- neous or experimentally induced changes in the estrous cycle trous cycle free-runs with a period that is a quadruple multiple most commonly extend it by a single day and seldom by an of the concurrently recorded rhythm of wheel-running activity; integral multiple of 4 days (7-9). Subsequently a circadian both activity and estrous cycles are generated by biological clocks. Maintenance of stable phase angle differences between mechanism was also implied by daily luteinizing hormone (LH) heat onset and running onset before and after treatment with surges recorded in estrogen-primed ovariectomized hamsters deuterium oxide suggests that a common circadian system (10) and in acyclic female hamsters maintained in nonstimu- generates periodicities in estrus and activity. An organization latory photoperiods as well as in lactating hamsters (11, 12). of the estrous cycle is proposed in which the stimulus for the The circadian organization of the hamster estrous cycle may ovulatory surge of luteinizing hormone is generated by a cir- cadian system that includes the suprachiasmatic nuclei of the be assessed more directly by comparing the circaquadridian hypothalamus. Various possible interactions of estradiol and estrous cycle with a known circadian rhythm (e.g., wheel photoperiod with the neurogenic stimulus for the luteinizing running).
    [Show full text]
  • Mammalian Reproduction 2: Short-Term (Hormonal) Cycles and General Patterns
    Mammalian reproduction 2: short-term (hormonal) cycles and general patterns 1. Estrus cycles 2. Flexible kangaroos 3. Semelparity and iteroparity 4. Examples of iteroparity 5. Income and capital breeders Eutherian estrous cycle Proestrus: beginning stage, transition from anestrus to estrus Estrus: peak estrogen production and ovulation Metestrus: estrogen declines, progesterone increases, implantation occurs. If successful, gestation follows. Diestrus: if no implantation, progesterone declines, corpus luteum regresses (still metestrus), then short period (diestrus) occurs before start of next cycle *FSH = follicle stimulating hormone, LH = luteinizing hormone Stuff you don’t need to memorize, but I’ll review quickly… see Ch 20! Pituitary secretes FSH, ovarian follicle in turn produces estrogen. Peak estrogen = ovulation (“heat”). Ovulation can be induced (rabbits, many carnivores, some rodents) or spontaneous (most mammals). Ruptured follicle forms corpus luteum, glandular structure that contributes progesterone, which sensitizes uterus for implantation. Placenta later takes over as major producer of progesterone. Abrupt drop in progesterone and switch to production of prolactin (stimulates mammary development), plus spike in oxytocin leads to parturition. Metatherian estrous cycle Differences: Implantation occurs later, near peak progesterone (remember, first 2/3 w/shell membrane). Lactation stops cycle (parturition occurs before next cycle would start in most species). If gestation > estrous cycle (some kangaroos), new ovulation can occur, followed by mating. Fertilized egg goes dormant = diapause. Record for longest gestation: 22 months (shortest is a bandicoot, 12 days) 1st cycle: kangaroo Assembly line production in kangaroos! Milk composition also varies over time. Different mammary glands can be producing different kinds of milk for different young! Even in placentals Lengths of various events can (e.g., lab rat) vary with energy demands Menstrual cycle Final variation: old world monkeys, apes, humans, similar pattern in tree shrews and elephant shrews.
    [Show full text]