Topology and the Four Color Theorem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Brief History of Edge-Colorings — with Personal Reminiscences
Discrete Mathematics Letters Discrete Math. Lett. 6 (2021) 38–46 www.dmlett.com DOI: 10.47443/dml.2021.s105 Review Article A brief history of edge-colorings – with personal reminiscences∗ Bjarne Toft1;y, Robin Wilson2;3 1Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark 2Department of Mathematics and Statistics, Open University, Walton Hall, Milton Keynes, UK 3Department of Mathematics, London School of Economics and Political Science, London, UK (Received: 9 June 2020. Accepted: 27 June 2020. Published online: 11 March 2021.) c 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/). Abstract In this article we survey some important milestones in the history of edge-colorings of graphs, from the earliest contributions of Peter Guthrie Tait and Denes´ Konig¨ to very recent work. Keywords: edge-coloring; graph theory history; Frank Harary. 2020 Mathematics Subject Classification: 01A60, 05-03, 05C15. 1. Introduction We begin with some basic remarks. If G is a graph, then its chromatic index or edge-chromatic number χ0(G) is the smallest number of colors needed to color its edges so that adjacent edges (those with a vertex in common) are colored differently; for 0 0 0 example, if G is an even cycle then χ (G) = 2, and if G is an odd cycle then χ (G) = 3. For complete graphs, χ (Kn) = n−1 if 0 0 n is even and χ (Kn) = n if n is odd, and for complete bipartite graphs, χ (Kr;s) = max(r; s). -
Additive Non-Approximability of Chromatic Number in Proper Minor
Additive non-approximability of chromatic number in proper minor-closed classes Zdenˇek Dvoˇr´ak∗ Ken-ichi Kawarabayashi† Abstract Robin Thomas asked whether for every proper minor-closed class , there exists a polynomial-time algorithm approximating the chro- G matic number of graphs from up to a constant additive error inde- G pendent on the class . We show this is not the case: unless P = NP, G for every integer k 1, there is no polynomial-time algorithm to color ≥ a K -minor-free graph G using at most χ(G)+ k 1 colors. More 4k+1 − generally, for every k 1 and 1 β 4/3, there is no polynomial- ≥ ≤ ≤ time algorithm to color a K4k+1-minor-free graph G using less than βχ(G)+(4 3β)k colors. As far as we know, this is the first non-trivial − non-approximability result regarding the chromatic number in proper minor-closed classes. We also give somewhat weaker non-approximability bound for K4k+1- minor-free graphs with no cliques of size 4. On the positive side, we present additive approximation algorithm whose error depends on the apex number of the forbidden minor, and an algorithm with addi- tive error 6 under the additional assumption that the graph has no 4-cycles. arXiv:1707.03888v1 [cs.DM] 12 Jul 2017 The problem of determining the chromatic number, or even of just de- ciding whether a graph is colorable using a fixed number c 3 of colors, is NP-complete [7], and thus it cannot be solved in polynomial≥ time un- less P = NP. -
Interval Edge-Colorings of Graphs
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2016 Interval Edge-Colorings of Graphs Austin Foster University of Central Florida Part of the Mathematics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Foster, Austin, "Interval Edge-Colorings of Graphs" (2016). Electronic Theses and Dissertations, 2004-2019. 5133. https://stars.library.ucf.edu/etd/5133 INTERVAL EDGE-COLORINGS OF GRAPHS by AUSTIN JAMES FOSTER B.S. University of Central Florida, 2015 A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in the Department of Mathematics in the College of Sciences at the University of Central Florida Orlando, Florida Summer Term 2016 Major Professor: Zixia Song ABSTRACT A proper edge-coloring of a graph G by positive integers is called an interval edge-coloring if the colors assigned to the edges incident to any vertex in G are consecutive (i.e., those colors form an interval of integers). The notion of interval edge-colorings was first introduced by Asratian and Kamalian in 1987, motivated by the problem of finding compact school timetables. In 1992, Hansen described another scenario using interval edge-colorings to schedule parent-teacher con- ferences so that every person’s conferences occur in consecutive slots. -
An Update on the Four-Color Theorem Robin Thomas
thomas.qxp 6/11/98 4:10 PM Page 848 An Update on the Four-Color Theorem Robin Thomas very planar map of connected countries the five-color theorem (Theorem 2 below) and can be colored using four colors in such discovered what became known as Kempe chains, a way that countries with a common and Tait found an equivalent formulation of the boundary segment (not just a point) re- Four-Color Theorem in terms of edge 3-coloring, ceive different colors. It is amazing that stated here as Theorem 3. Esuch a simply stated result resisted proof for one The next major contribution came in 1913 from and a quarter centuries, and even today it is not G. D. Birkhoff, whose work allowed Franklin to yet fully understood. In this article I concentrate prove in 1922 that the four-color conjecture is on recent developments: equivalent formulations, true for maps with at most twenty-five regions. The a new proof, and progress on some generalizations. same method was used by other mathematicians to make progress on the four-color problem. Im- Brief History portant here is the work by Heesch, who developed The Four-Color Problem dates back to 1852 when the two main ingredients needed for the ultimate Francis Guthrie, while trying to color the map of proof—“reducibility” and “discharging”. While the the counties of England, noticed that four colors concept of reducibility was studied by other re- sufficed. He asked his brother Frederick if it was searchers as well, the idea of discharging, crucial true that any map can be colored using four col- for the unavoidability part of the proof, is due to ors in such a way that adjacent regions (i.e., those Heesch, and he also conjectured that a suitable de- sharing a common boundary segment, not just a velopment of this method would solve the Four- point) receive different colors. -
David Gries, 2018 Graph Coloring A
Graph coloring A coloring of an undirected graph is an assignment of a color to each node so that adja- cent nodes have different colors. The graph to the right, taken from Wikipedia, is known as the Petersen graph, after Julius Petersen, who discussed some of its properties in 1898. It has been colored with 3 colors. It can’t be colored with one or two. The Petersen graph has both K5 and bipartite graph K3,3, so it is not planar. That’s all you have to know about the Petersen graph. But if you are at all interested in what mathemati- cians and computer scientists do, visit the Wikipedia page for Petersen graph. This discussion on graph coloring is important not so much for what it says about the four-color theorem but what it says about proofs by computers, for the proof of the four-color theorem was just about the first one to use a computer and sparked a lot of controversy. Kempe’s flawed proof that four colors suffice to color a planar graph Thoughts about graph coloring appear to have sprung up in England around 1850 when people attempted to color maps, which can be represented by planar graphs in which the nodes are countries and adjacent countries have a directed edge between them. Francis Guthrie conjectured that four colors would suffice. In 1879, Alfred Kemp, a barrister in London, published a proof in the American Journal of Mathematics that only four colors were needed to color a planar graph. Eleven years later, P.J. -
Effective and Efficient Dynamic Graph Coloring
Effective and Efficient Dynamic Graph Coloring Long Yuanx, Lu Qinz, Xuemin Linx, Lijun Changy, and Wenjie Zhangx x The University of New South Wales, Australia zCentre for Quantum Computation & Intelligent Systems, University of Technology, Sydney, Australia y The University of Sydney, Australia x{longyuan,lxue,zhangw}@cse.unsw.edu.au; [email protected]; [email protected] ABSTRACT (1) Nucleic Acid Sequence Design in Biochemical Networks. Given Graph coloring is a fundamental graph problem that is widely ap- a set of nucleic acids, a dependency graph is a graph in which each plied in a variety of applications. The aim of graph coloring is to vertex is a nucleotide and two vertices are connected if the two minimize the number of colors used to color the vertices in a graph nucleotides form a base pair in at least one of the nucleic acids. such that no two incident vertices have the same color. Existing The problem of finding a nucleic acid sequence that is compatible solutions for graph coloring mainly focus on computing a good col- with the set of nucleic acids can be modelled as a graph coloring oring for a static graph. However, since many real-world graphs are problem on a dependency graph [57]. highly dynamic, in this paper, we aim to incrementally maintain the (2) Air Traffic Flow Management. In air traffic flow management, graph coloring when the graph is dynamically updated. We target the air traffic flow can be considered as a graph in which each vertex on two goals: high effectiveness and high efficiency. -
Coloring Problems in Graph Theory Kacy Messerschmidt Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Coloring problems in graph theory Kacy Messerschmidt Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Messerschmidt, Kacy, "Coloring problems in graph theory" (2018). Graduate Theses and Dissertations. 16639. https://lib.dr.iastate.edu/etd/16639 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Coloring problems in graph theory by Kacy Messerschmidt A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Bernard Lidick´y,Major Professor Steve Butler Ryan Martin James Rossmanith Michael Young The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright c Kacy Messerschmidt, 2018. All rights reserved. TABLE OF CONTENTS LIST OF FIGURES iv ACKNOWLEDGEMENTS vi ABSTRACT vii 1. INTRODUCTION1 2. DEFINITIONS3 2.1 Basics . .3 2.2 Graph theory . .3 2.3 Graph coloring . .5 2.3.1 Packing coloring . .6 2.3.2 Improper coloring . -
Contemporary Mathematics 78
CONTEMPORARY MATHEMATICS 78 Braids Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Artin's Braid Group held July 13-26. 1986 at the University of California, Santa Cruz, California Joan S. Birman Anatoly Libgober Editors http://dx.doi.org/10.1090/conm/078 Recent Titles in This Series 120 Robert S. Doran, Editor, Selfadjoint and nonselfadjoint operator algebras and operator theory, 1991 119 Robert A. Melter, Azriel Rosenfeld, and Prabir Bhattacharya, Editors, Vision geometry, 1991 118 Yan Shi-Jian, Wang Jiagang, and Yang Chung-chun, Editors, Probability theory and its applications in China, 1991 117 Morton Brown, Editor, Continuum theory and dynamical systems, 1991 116 Brian Harboume and Robert Speiser, Editors, Algebraic geometry: Sundance 1988, 1991 115 Nancy Flournoy an'il Robert K. Tsutakawa, Editors, Statistical multiple integration, 1991 114 Jeffrey C. Lagarias and Michael J. Todd, Editors, Mathematical developments arising from linear programming, 1990 113 Eric Grinberg and Eric Todd Quinto, Editors, Integral geometry and tomography, 1990 112 Philip J. Brown and Wayne A. Fuller, Editors, Statistical analysis of measurement error models and applications, 1990 Ill Earl S. Kramer and Spyros S. Magliveras, Editors, Finite geometries and combinatorial designs, I 990 II 0 Georgia Benkart and J. Marshall Osborn, Editors, Lie algebras and related topics, 1990 109 Benjamin Fine, Anthony Gaglione, and Francis C. Y. Tang, Editors, Combinatorial group theory, 1990 108 Melvyn S. Berger, Editor, Mathematics of nonlinear science, 1990 107 Mario Milman and Tomas Schonbek, Editors, Harmonic analysis and partial differential equations, 1990 I 06 Wilfried Sieg, Editor, Logic and computation, 1990 I 05 Jerome Kaminker, Editor, Geometric and topological invariants of elliptic operators, 1990 I 04 Michael Makkai and Robert Pare, Accessible categories: The foundations of categorical model theory, 1989 I 03 Steve Fisk, Coloring theories, 1989 I 02 Stephen McAdam, Primes associated to an ideal, 1989 101 S.-Y. -
Structural Parameterizations of Clique Coloring
Structural Parameterizations of Clique Coloring Lars Jaffke University of Bergen, Norway lars.jaff[email protected] Paloma T. Lima University of Bergen, Norway [email protected] Geevarghese Philip Chennai Mathematical Institute, India UMI ReLaX, Chennai, India [email protected] Abstract A clique coloring of a graph is an assignment of colors to its vertices such that no maximal clique is monochromatic. We initiate the study of structural parameterizations of the Clique Coloring problem which asks whether a given graph has a clique coloring with q colors. For fixed q ≥ 2, we give an O?(qtw)-time algorithm when the input graph is given together with one of its tree decompositions of width tw. We complement this result with a matching lower bound under the Strong Exponential Time Hypothesis. We furthermore show that (when the number of colors is unbounded) Clique Coloring is XP parameterized by clique-width. 2012 ACM Subject Classification Mathematics of computing → Graph coloring Keywords and phrases clique coloring, treewidth, clique-width, structural parameterization, Strong Exponential Time Hypothesis Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.49 Related Version A full version of this paper is available at https://arxiv.org/abs/2005.04733. Funding Lars Jaffke: Supported by the Trond Mohn Foundation (TMS). Acknowledgements The work was partially done while L. J. and P. T. L. were visiting Chennai Mathematical Institute. 1 Introduction Vertex coloring problems are central in algorithmic graph theory, and appear in many variants. One of these is Clique Coloring, which given a graph G and an integer k asks whether G has a clique coloring with k colors, i.e. -
Mathematical Concepts Within the Artwork of Lewitt and Escher
A Thesis Presented to The Faculty of Alfred University More than Visual: Mathematical Concepts Within the Artwork of LeWitt and Escher by Kelsey Bennett In Partial Fulfillment of the requirements for the Alfred University Honors Program May 9, 2019 Under the Supervision of: Chair: Dr. Amanda Taylor Committee Members: Barbara Lattanzi John Hosford 1 Abstract The goal of this thesis is to demonstrate the relationship between mathematics and art. To do so, I have explored the work of two artists, M.C. Escher and Sol LeWitt. Though these artists approached the role of mathematics in their art in different ways, I have observed that each has employed mathematical concepts in order to create their rule-based artworks. The mathematical ideas which serve as the backbone of this thesis are illustrated by the artists' works and strengthen the bond be- tween the two subjects of art and math. My intention is to make these concepts accessible to all readers, regardless of their mathematical or artis- tic background, so that they may in turn gain a deeper understanding of the relationship between mathematics and art. To do so, we begin with a philosophical discussion of art and mathematics. Next, we will dissect and analyze various pieces of work by Sol LeWitt and M.C. Escher. As part of that process, we will also redesign or re-imagine some artistic pieces to further highlight mathematical concepts at play within the work of these artists. 1 Introduction What is art? The Merriam-Webster dictionary provides one definition of art as being \the conscious use of skill and creative imagination especially in the production of aesthetic object" ([1]). -
Mite Beometrles Ana Corn Binatorial Designs
AMERICAN MATHEMATICAL SOCIETY mite beometrles ana Corn binatorial Designs Proceedings of the AMS Special Session in Finite Geometries and Combinatorial Designs held October 29-November 1, 1987 http://dx.doi.org/10.1090/conm/111 Titles in This Series Volume 1 Markov random fields and their 19 Proceedings of the Northwestern applications, Ross Kindermann and homotopy theory conference, Haynes J. Laurie Snell R. Miller and Stewart B. Priddy, Editors 2 Proceedings of the conference on 20 Low dimensional topology, Samuel J. integration, topology, and geometry in Lomonaco, Jr., Editor linear spaces, William H. Graves, Editor 21 Topological methods in nonlinear 3 The closed graph and P-closed functional analysis, S. P. Singh, graph properties in general topology, S. Thomaier, and B. Watson, Editors T. R. Hamlett and L. L. Herrington 22 Factorizations of b" ± 1, b = 2, 4 Problems of elastic stability and 3, 5, 6, 7, 10, 11, 12 up to high vibrations, Vadim Komkov, Editor powers, John Brillhart, D. H. Lehmer, 5 Rational constructions of modules J. L. Selfridge, Bryant Tuckerman, and for simple Lie algebras, George B. S. S. Wagstaff, Jr. Seligman 23 Chapter 9 of Ramanujan's second 6 Umbral calculus and Hopf algebras, notebook-Infinite series identities, Robert Morris, Editor transformations, and evaluations, Bruce C. Berndt and Padmini T. Joshi 7 Complex contour integral representation of cardinal spline 24 Central extensions, Galois groups, and functions, Walter Schempp ideal class groups of number fields, A. Frohlich 8 Ordered fields and real algebraic geometry, D. W. Dubois and T. Recio, 25 Value distribution theory and its Editors applications, Chung-Chun Yang, Editor 9 Papers in algebra, analysis and 26 Conference in modern analysis statistics, R. -
The 150 Year Journey of the Four Color Theorem
The 150 Year Journey of the Four Color Theorem A Senior Thesis in Mathematics by Ruth Davidson Advised by Sara Billey University of Washington, Seattle Figure 1: Coloring a Planar Graph; A Dual Superimposed I. Introduction The Four Color Theorem (4CT) was stated as a conjecture by Francis Guthrie in 1852, who was then a student of Augustus De Morgan [3]. Originally the question was posed in terms of coloring the regions of a map: the conjecture stated that if a map was divided into regions, then four colors were sufficient to color all the regions of the map such that no two regions that shared a boundary were given the same color. For example, in Figure 1, the adjacent regions of the shape are colored in different shades of gray. The search for a proof of the 4CT was a primary driving force in the development of a branch of mathematics we now know as graph theory. Not until 1977 was a correct proof of the Four Color Theorem (4CT) published by Kenneth Appel and Wolfgang Haken [1]. Moreover, this proof was made possible by the incremental efforts of many mathematicians that built on the work of those who came before. This paper presents an overview of the history of the search for this proof, and examines in detail another beautiful proof of the 4CT published in 1997 by Neil Robertson, Daniel 1 Figure 2: The Planar Graph K4 Sanders, Paul Seymour, and Robin Thomas [18] that refined the techniques used in the original proof. In order to understand the form in which the 4CT was finally proved, it is necessary to under- stand proper vertex colorings of a graph and the idea of a planar graph.