Astronomy Astrophysics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Constructing a Galactic Coordinate System Based on Near-Infrared and Radio Catalogs
A&A 536, A102 (2011) Astronomy DOI: 10.1051/0004-6361/201116947 & c ESO 2011 Astrophysics Constructing a Galactic coordinate system based on near-infrared and radio catalogs J.-C. Liu1,2,Z.Zhu1,2, and B. Hu3,4 1 Department of astronomy, Nanjing University, Nanjing 210093, PR China e-mail: [jcliu;zhuzi]@nju.edu.cn 2 key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, PR China 3 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, PR China 4 Graduate School of Chinese Academy of Sciences, Beijing 100049, PR China e-mail: [email protected] Received 24 March 2011 / Accepted 13 October 2011 ABSTRACT Context. The definition of the Galactic coordinate system was announced by the IAU Sub-Commission 33b on behalf of the IAU in 1958. An unrigorous transformation was adopted by the Hipparcos group to transform the Galactic coordinate system from the FK4-based B1950.0 system to the FK5-based J2000.0 system or to the International Celestial Reference System (ICRS). For more than 50 years, the definition of the Galactic coordinate system has remained unchanged from this IAU1958 version. On the basis of deep and all-sky catalogs, the position of the Galactic plane can be revised and updated definitions of the Galactic coordinate systems can be proposed. Aims. We re-determine the position of the Galactic plane based on modern large catalogs, such as the Two-Micron All-Sky Survey (2MASS) and the SPECFIND v2.0. This paper also aims to propose a possible definition of the optimal Galactic coordinate system by adopting the ICRS position of the Sgr A* at the Galactic center. -
Eclipse Newsletter
ECLIPSE NEWSLETTER The Eclipse Newsletter is dedicated to increasing the knowledge of Astronomy, Astrophysics, Cosmology and related subjects. VOLUMN 2 NUMBER 1 JANUARY – FEBRUARY 2018 PLEASE SEND ALL PHOTOS, QUESTIONS AND REQUST FOR ARTICLES TO [email protected] 1 MCAO PUBLIC NIGHTS AND FAMILY NIGHTS. The general public and MCAO members are invited to visit the Observatory on select Monday evenings at 8PM for Public Night programs. These programs include discussions and illustrated talks on astronomy, planetarium programs and offer the opportunity to view the planets, moon and other objects through the telescope, weather permitting. Due to limited parking and seating at the observatory, admission is by reservation only. Public Night attendance is limited to adults and students 5th grade and above. If you are interested in making reservations for a public night, you can contact us by calling 302-654- 6407 between the hours of 9 am and 1 pm Monday through Friday. Or you can email us any time at [email protected] or [email protected]. The public nights will be presented even if the weather does not permit observation through the telescope. The admission fees are $3 for adults and $2 for children. There is no admission cost for MCAO members, but reservations are still required. If you are interested in becoming a MCAO member, please see the link for membership. We also offer family memberships. Family Nights are scheduled from late spring to early fall on Friday nights at 8:30PM. These programs are opportunities for families with younger children to see and learn about astronomy by looking at and enjoying the sky and its wonders. -
The Gould Belt
Astrophysics, Vol. 57, No. 4, pp. 583-604, December, 2014. REVIEWS THE GOULD BELT V.V. Bobylev1,2 1Pulkovo Astronomical Observatory, St. Petersburg, Russia 2Sobolev Astronomical Institute, St. Petersburg State University, Russia AbstractThis review is devoted to studies of the Gould belt and the Local system. Since the Gould belt is the giant stellar-gas complex closest to the sun, its stellar component is characterized, along with the stellar associations and diffuse clusters, cold atomic and molecular gas, high-temperature coronal gas, and dust contained in it. Questions relating to the kinematic features of the Gould belt are discussed and the most interesting scenarios for its origin and evolution are examined. 1 Historical information Stars of spectral classes O and B that are visible to the naked eye define two large circles in the celestial sphere. One of them passes near the plane of the Milky Way, while the second is slightly inclined to it and is known as the Gould belt. The minimum galactic latitude of the Gould belt is in the region of the constellation Orion, and the maximum, in the region of Scorpio-Centaurus. Herschel noted [1] that some of the bright stars in the southern sky appear to be part of a separate structure from the Milky Way with an inclination to the galactic equator of about 20◦. Commenting on the features of the distribution of stars in the Milky Way, Struve [2] independently noted that the stars that form the largest densifications on the celestial sphere can lie in two planes with a mutual inclination of about 10◦. -
Radio Astronomers Peer Deep Into the Stellar Nursery of the Orion Nebula 15 June 2017
Radio astronomers peer deep into the stellar nursery of the Orion Nebula 15 June 2017 stars," says Rachel Friesen, one of the collaboration's co-Principal Investigators and, until 31 May 2017, a Dunlap Fellow at the Dunlap Institute for Astronomy & Astrophysics, University of Toronto. "But ammonia is an excellent tracer of dense, star- forming gas," says Friesen, "and these large ammonia maps will allow us to track the motions and temperature of the densest gas. This is critical to assessing whether gas clouds and filaments are stable, or are undergoing collapse on their way to forming new stars." The image accompanies the first release of results from the collaboration's Green Bank Ammonia Survey (GAS), published in the Astrophysical Journal. The collaboration's other co-Principal Investigator is Jaime Pineda, from the Max Planck Institute for Extraterrestrial Physics; the team also includes astronomers from the University of In this composite image combining GBT radio and WISE Toronto's Department of Astronomy & Astrophysics infrared observations, the filament of ammonia and Canadian Institute for Theoretical Astrophysics. molecules appears red and Orion Nebula gas appears blue. Credit: R. Friesen, Dunlap Institute; J. Pineda, The goal of GAS is to survey all the major, nearby MPIP; GBO/AUI/NSF star-forming regions in the northern half of the Gould Belt—a ring of young stars and gas clouds that circles the entire sky and runs through the Astronomers have released an image of a vast constellation Orion. The survey will eventually filament of star-forming gas, 1200 light-years away, provide a clearer picture over a larger portion of the in the stellar nursery of the Orion Nebula. -
Upon Reconstructing the Origin of the Local Bubble and Loop I Via Radioisotopic Signatures on Earth
galaxies Conference Report A Way Out of the Bubble Trouble?—Upon Reconstructing the Origin of the Local Bubble and Loop I via Radioisotopic Signatures on Earth Michael Mathias Schulreich 1,* ID , Dieter Breitschwerdt 1, Jenny Feige 1 and Christian Dettbarn 2 1 Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; [email protected] (D.B.); [email protected] (J.F.) 2 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12–14, 69120 Heidelberg, Germany; [email protected] * Correspondence: [email protected] Received: 31 January 2018; Accepted: 22 February 2018; Published: 25 February 2018 Abstract: Deep-sea archives all over the world show an enhanced concentration of the radionuclide 60Fe, isolated in layers dating from about 2.2 Myr ago. Since this comparatively long-lived isotope is not naturally produced on Earth, such an enhancement can only be attributed to extraterrestrial sources, particularly one or several nearby supernovae in the recent past. It has been speculated that these supernovae might have been involved in the formation of the Local Superbubble, our Galactic habitat. Here, we summarize our efforts in giving a quantitative evidence for this scenario. Besides analytical calculations, we present results from high-resolution hydrodynamical simulations of the Local Superbubble and its presumptive neighbor Loop I in different environments, including a self-consistently evolved supernova-driven interstellar medium. For the superbubble modeling, the time sequence and locations of the generating core-collapse supernova explosions are taken into account, which are derived from the mass spectrum of the perished members of certain, carefully preselected stellar moving groups. -
The System of Molecular Clouds in the Gould Belt in Details
Astronomy Letters, 2016, Vol. 42, No. 8, pp. 544–554. The System of Molecular Clouds in the Gould Belt V.V. Bobylev Pulkovo Astronomical Observatory, St. Petersburg, Russia Abstract—Based on high-latitude molecular clouds with highly accurate distance estimates taken from the literature, we have redetermined the parameters of their spatial orientation. This system can be approximated by a 350 235 140 pc ellipsoid inclined by the angle i = 17 2◦ to the Galactic plane with× the longitude× of the ascending ◦ ± node lΩ = 337 1 . Based on the radial velocities of the clouds, we have found their ± group velocity relative to the Sun to be (u0, v0,w0) = (10.6, 18.2, 6.8) (0.9, 1.7, 1.5) km s−1. The trajectory of the center of the molecular cloud system in± the past in a time interval of 60 Myr has been constructed. Using data on masers associated with low- mass protostars,∼ we have calculated the space velocities of the molecular complexes in Orion, Taurus, Perseus, and Ophiuchus. Their motion in the past is shown to be not random. INTRODUCTION A giant stellar-gas complex known as the Gould Belt is located near the Sun (Frogel and Stothers 1977; Efremov 1989; P¨oppel 1997, 2001; Torra et al. 2000; Olano 2001). A giant cloud of neutral hydrogen called the Lindblad ring (Lindblad 1967, 2000) is associated with it; the system of nearby OB associations (de Zeeuw et al. 1999), open star clusters (Piskunov et al. 2006; Bobylev 2006), and complexes of nearby molecular clouds (Dame et al. -
Science Fiction Stories with Good Astronomy & Physics
Science Fiction Stories with Good Astronomy & Physics: A Topical Index Compiled by Andrew Fraknoi (U. of San Francisco, Fromm Institute) Version 7 (2019) © copyright 2019 by Andrew Fraknoi. All rights reserved. Permission to use for any non-profit educational purpose, such as distribution in a classroom, is hereby granted. For any other use, please contact the author. (e-mail: fraknoi {at} fhda {dot} edu) This is a selective list of some short stories and novels that use reasonably accurate science and can be used for teaching or reinforcing astronomy or physics concepts. The titles of short stories are given in quotation marks; only short stories that have been published in book form or are available free on the Web are included. While one book source is given for each short story, note that some of the stories can be found in other collections as well. (See the Internet Speculative Fiction Database, cited at the end, for an easy way to find all the places a particular story has been published.) The author welcomes suggestions for additions to this list, especially if your favorite story with good science is left out. Gregory Benford Octavia Butler Geoff Landis J. Craig Wheeler TOPICS COVERED: Anti-matter Light & Radiation Solar System Archaeoastronomy Mars Space Flight Asteroids Mercury Space Travel Astronomers Meteorites Star Clusters Black Holes Moon Stars Comets Neptune Sun Cosmology Neutrinos Supernovae Dark Matter Neutron Stars Telescopes Exoplanets Physics, Particle Thermodynamics Galaxies Pluto Time Galaxy, The Quantum Mechanics Uranus Gravitational Lenses Quasars Venus Impacts Relativity, Special Interstellar Matter Saturn (and its Moons) Story Collections Jupiter (and its Moons) Science (in general) Life Elsewhere SETI Useful Websites 1 Anti-matter Davies, Paul Fireball. -
Solar System
Solar System From Wikipedia, the free encyclopedia This article is about the Sun and its planetary system. For other systems, see planetary system and star system. Solar System The Sun and planets of the Solar System. Sizes are to scale, distances and illumination are not. Age 4.568 billion years Location Local Interstellar Cloud, Local Bubble, Orion–Cygnus Arm, Milky Way System mass 1.0014 solar masses Nearest star Proxima Centauri (4.22 ly), Alpha Centauri system (4.37 ly) Nearest Alpha Centauri system (4.37 ly) knownplanetary system Planetary system Semi-major axis 30.10 AU (4.503 billion km) of outer planet (Neptune) Distance 50 AU to Kuiper cliff No. of stars 1 Sun No. of planets 8 Mercury, Venus, Earth, Mars,Jupiter, Saturn, Uranus, Neptune No. of Possibly several hundred.[1] known dwarf 5 (Ceres, Pluto, Haumea,Makemake, Eris) are currently planets recognized by the IAU No. of 422 (173 of planets[2] and 249 of minor planets[3]) known natural satellites No. of 628,057 (as of 2013-12-12)[4] known minor planets No. of 3,244 (as of 2013-12-12)[4] known comets No. of 19 identified round satellites Orbit about the Galactic Center Inclination 60.19° (ecliptic) ofinvariable plane to thegalactic plane Distance to 27,000±1,000 ly Galactic Center Orbital speed 220 km/s Orbital period 225–250 Myr Star-related properties Spectral type G2V [5] Frost line ≈5 AU Distance ≈120 AU toheliopause Hill ≈1–2 ly sphere radius The Solar System[a] is the Sun and the objects that orbit the Sun. -
Astrophysics in 2006 3
ASTROPHYSICS IN 2006 Virginia Trimble1, Markus J. Aschwanden2, and Carl J. Hansen3 1 Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, Las Cumbres Observatory, Santa Barbara, CA: ([email protected]) 2 Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Organization ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304: ([email protected]) 3 JILA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder CO 80309: ([email protected]) Received ... : accepted ... Abstract. The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords: cosmology: general, galaxies: general, ISM: general, stars: general, Sun: gen- eral, planets and satellites: general, astrobiology CONTENTS 1. Introduction 6 1.1 Up 6 1.2 Down 9 1.3 Around 10 2. Solar Physics 12 2.1 The solar interior 12 2.1.1 From neutrinos to neutralinos 12 2.1.2 Global helioseismology 12 2.1.3 Local helioseismology 12 2.1.4 Tachocline structure 13 arXiv:0705.1730v1 [astro-ph] 11 May 2007 2.1.5 Dynamo models 14 2.2 Photosphere 15 2.2.1 Solar radius and rotation 15 2.2.2 Distribution of magnetic fields 15 2.2.3 Magnetic flux emergence rate 15 2.2.4 Photospheric motion of magnetic fields 16 2.2.5 Faculae production 16 2.2.6 The photospheric boundary of magnetic fields 17 2.2.7 Flare prediction from photospheric fields 17 c 2008 Springer Science + Business Media. -
Solar Wind Charge Exchange Contributions to the Diffuse X-Ray Emission
Solar Wind Charge Exchange Contributions to the Diffuse X-Ray Emission T. E. Cravensa, I. P. Robertsona, S. Snowdenb, K. Kuntzc, M. Collierb and M. Medvedeva aDept. of Physics and Astronomy, Malott Hall, 1251 Wescoe Hall Dr., University of Kansas, Lawrence, KS 66045 USA bNASA Goddard Space Flight Center, Greenbelt, MD, 20771 USA cDept. of Physics and Astronomy, Johns Hopkins University, 366 Bloomberg Center, 3400 N. Charles St., Baltimore, MD 21218 USA Abstract: Astrophysical x-ray emission is typically associated with hot collisional plasmas, such as the million degree gas residing in the solar corona or in supernova remnants. However, x-rays can also be produced in cooler gas by charge exchange collisions between highly-charged ions and neutral atoms or molecules. This mechanism produces soft x-ray emission plasma when the solar wind interacts with neutral gas in the solar system. Examples of such x-ray sources include comets, the terrestrial magnetosheath, and the heliosphere (where the solar wind interacts with incoming interstellar neutral gas). Heliospheric emission is thought to make a significant contribution to the observed soft x-ray background (SXRB). This emission needs to be better understood so that it can be distinguished from the SXRB emission associated with hot interstellar gas and the galactic halo. Keywords: x-rays, charge exchange, local bubble, heliosphere, solar wind PACS: 95.85 Nv; 96.60 Vg; 96.50 Ci; 96.50 Zc INTRODUCTION A key diagnostic tool for hot astrophysical plasmas is x-ray emission [e.g., 1]. Hot plasmas produce x-rays collisionally, both in the continuum from free-free and bound- free (e.g., electron-ion recombination) transitions and as line emission from highly ionized species (bound-bound transitions). -
Vol. 38, No. 3 September 2009 Journal of the International
Vol. 38, No. 3 September 2009 Journal of the International Planetarium Society Darkness at Dawn in India Page 18 September 2009 Vol. 38 No. 3 Executive Editor Articles Sharon Shanks Ward Beecher Planetarium 6 Greenwich’s Public Astronomer SteveTidey Youngstown State University 10 Russia’s Only High School Planetarium One University Plaza Dr. Larry Krumenaker Youngstown, Ohio 44555 USA 18 Darkness at Dawn in India Piyush Pandey +1 330-941-3619 20 IPS 2012: Baton Rouge Jon Elvert [email protected] 22 Eugenides Script Contest Revisions Advertising Coordinator Thomas Kraupe Dr. Dale Smith, Interim Coordinator (See Publications Committee on page 3) Columns Membership 63 25 Years Ago. Thomas Wm. Hamilton Individual: $50 one year; $90 two years 60 Book Reviews. April S. Whitt Institutional: $200 first year; $100 annual renewal 67 Calendar of Events. .Loris Ramponi Library Subscriptions: $36 one year 28 Educational Horizons . Jack L. Northrup Direct membership requests and changes of 30 General Counsel . Christopher S. Reed address to the Treasurer/Membership Chairman 32 IMERSA NEWS . .Judith Rubin 4 In Front of the Console . .Sharon Shanks Back Issues of the Planetarian 38 International News. Lars Broman IPS Back Publications Repository 68 Last Light . April S. Whitt maintained by the Treasurer/Membership Chair; 48 Mobile News. .Susan Reynolds Button contact information is on next page 51 NASA Space Science News. Anita Sohus 53 Past President’s Message . Susan Reynolds Button Index 56 Planetarium Show Reviews. Steve Case A cumulative index of major articles that have 24 President’s Message . Tom Mason appeared in the Planetarian from the first issue 64 What’s New. -
Physical Properties of the Local Interstellar Medium
Space Sci Rev (2009) 143: 323–331 DOI 10.1007/s11214-008-9422-4 Physical Properties of the Local Interstellar Medium Seth Redfield Received: 3 April 2008 / Accepted: 23 July 2008 / Published online: 12 September 2008 © Springer Science+Business Media B.V. 2008 Abstract The observed properties of the local interstellar medium (LISM) have been facil- itated by a growing ultraviolet and optical database of high spectral resolution observations of interstellar absorption toward nearby stars. Such observations provide insight into the physical properties (e.g., temperature, turbulent velocity, and depletion onto dust grains) of the population of warm clouds (e.g., 7000 K) that reside within the Local Bubble. In particu- lar, I will focus on the dynamical properties of clouds within ∼15 pc of the Sun. This simple dynamical model addresses a wide range of issues, including, the location of the Sun as it pertains to the relationship between local interstellar clouds and the circumheliospheric in- terstellar medium (CHISM), the creation of small cold clouds inside the Local Bubble, and the association of interacting warm clouds and small-scale density fluctuations that cause interstellar scintillation. Local interstellar clouds that can be easily distinguished based on their dynamical properties also differentiate themselves by other physical properties. For example, the two nearest local clouds, the Local Interstellar Cloud (LIC) and the Galactic (G) Cloud, show distinct properties in temperature and depletion of iron and magnesium. The availability of large-scale observational surveys allows for studies of the global charac- teristics of our local interstellar environment, which will ultimately be necessary to address fundamental questions regarding the origins and evolution of the local interstellar medium.