Substantivalist and Relationalist Approaches to Spacetime
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Renewable Energy Partnerships in Development Cooperation: Towards a Relational Theory of Technical Assistance
Sustainability Research Institute SCHOOL OF EARTH AND ENVIRONMENT Renewable energy partnerships in development cooperation: Towards a relational theory of technical assistance Lena J. Kruckenberg January 2015 Sustainability Research Institute Paper No. 77 Centre for Climate Change Economics and Policy Working Paper No. 200 SRI PAPERS SRI Papers (Online) ISSN 1753-1330 A later version of this paper is forthcoming in Energy Policy: Kruckenberg, L.J., 2015. Renewable energy partnerships in development cooperation: Towards a relational understanding of technical assistance. Energy Policy, 77, 11–20. Doi: 10.1016/j.enpol.2014.11.004 First published in 2015 by the Sustainability Research Institute (SRI) Sustainability Research Institute (SRI), School of Earth and Environment, The University of Leeds, Leeds, LS2 9JT, United Kingdom Tel: +44 (0)113 3436461 Fax: +44 (0)113 3436716 Email: [email protected] Web-site: http://www.see.leeds.ac.uk/sri About the Sustainability Research Institute The Sustainability Research Institute conducts internationally recognised, academically excellent and problem-oriented interdisciplinary research and teaching on environmental, social and economic aspects of sustainability. We draw on various social and natural science disciplines, including ecological economics, environmental economics, political science, policy studies, development studies, business and management, geography, sociology, science and technology studies, ecology, environmental science and soil science in our work. The Centre for Climate Change Economics and Policy (CCCEP) brings together some of the world's leading researchers on climate change economics and policy, from many different disciplines. It was established in 2008 and its first phase ended on 30 September 2013. Its second phase commenced on 1 October 2013. -
Group Theory
Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk. -
On the Ontology of Spacetime: Substantivalism, Relationism, Eternalism, and Emergence
Found Sci DOI 10.1007/s10699-015-9476-1 On the Ontology of Spacetime: Substantivalism, Relationism, Eternalism, and Emergence Gustavo E. Romero1 Ó Springer Science+Business Media Dordrecht 2015 Abstract I present a discussion of some issues in the ontology of spacetime. After a characterisation of the controversies among relationists, substantivalists, eternalists, and presentists, I offer a new argument for rejecting presentism, the doctrine that only present objects exist. Then, I outline and defend a form of spacetime realism that I call event substantivalism. I propose an ontological theory for the emergence of spacetime from more basic entities (timeless and spaceless ‘events’). Finally, I argue that a relational theory of pre-geometric entities can give rise to substantival spacetime in such a way that relationism and substantivalism are not necessarily opposed positions, but rather complementary. In an appendix I give axiomatic formulations of my ontological views. Keywords Ontology Á Physics Á Spacetime For there neither is nor will be anything else besides what is, since Fate has fettered it to be whole and changeless. Parmenides (Fragment 8. From the translation in Kirk et al.1983). 1 Introduction Discussions and controversies about the nature of space and time in Western thought can be traced to the early Pre-Socratic philosophers (Graham 2006; Jammer 2012; Romero 2012). The position of Aristotle, who understood time as a measure of motion, and its contrast with the Platonic view, shaped the ontological controversy of the Hellenistic period, the Late Antiquity, and even the Middle Ages (see Sorabji 1983). It was not, however, until the development of Newtonian physics and the Leibniz–Clarke corre- spondence (Leibniz and Clarke 2000), that what is now called relationism-substantivalism & Gustavo E. -
Council for Innovative Research Peer Review Research Publishing System
ISSN 2347-3487 Einstein's gravitation is Einstein-Grossmann's equations Alfonso Leon Guillen Gomez Independent scientific researcher, Bogota, Colombia E-mail: [email protected] Abstract While the philosophers of science discuss the General Relativity, the mathematical physicists do not question it. Therefore, there is a conflict. From the theoretical point view “the question of precisely what Einstein discovered remains unanswered, for we have no consensus over the exact nature of the theory's foundations. Is this the theory that extends the relativity of motion from inertial motion to accelerated motion, as Einstein contended? Or is it just a theory that treats gravitation geometrically in the spacetime setting?”. “The voices of dissent proclaim that Einstein was mistaken over the fundamental ideas of his own theory and that their basic principles are simply incompatible with this theory. Many newer texts make no mention of the principles Einstein listed as fundamental to his theory; they appear as neither axiom nor theorem. At best, they are recalled as ideas of purely historical importance in the theory's formation. The very name General Relativity is now routinely condemned as a misnomer and its use often zealously avoided in favour of, say, Einstein's theory of gravitation What has complicated an easy resolution of the debate are the alterations of Einstein's own position on the foundations of his theory”, (Norton, 1993) [1]. Of other hand from the mathematical point view the “General Relativity had been formulated as a messy set of partial differential equations in a single coordinate system. People were so pleased when they found a solution that they didn't care that it probably had no physical significance” (Hawking and Penrose, 1996) [2]. -
[Physics.Hist-Ph] 14 Dec 2011 Poincaré and Special Relativity
Poincar´eand Special Relativity Emily Adlam Department of Philosophy, The University of Oxford Abstract Henri Poincar´e’s work on mathematical features of the Lorentz transfor- mations was an important precursor to the development of special relativity. In this paper I compare the approaches taken by Poincar´eand Einstein, aim- ing to come to an understanding of the philosophical ideas underlying their methods. In section (1) I assess Poincar´e’s contribution, concluding that al- though he inspired much of the mathematical formalism of special relativity, he cannot be credited with an overall conceptual grasp of the theory. In section (2) I investigate the origins of the two approaches, tracing differences to a disagreement about the appropriate direction for explanation in physics; I also discuss implications for modern controversies regarding explanation in the philosophy of special relativity. Finally, in section (3) I consider the links between Poincar´e’s philosophy and his science, arguing that apparent inconsistencies in his attitude to special relativity can be traced back to his acceptance of a ‘convenience thesis’ regarding conventions. Keywords Poincare; Einstein; special relativity; explanation; conventionalism; Lorentz transformations arXiv:1112.3175v1 [physics.hist-ph] 14 Dec 2011 1 1 Did Poincar´eDiscover Special Relativity? Poincar´e’s work introduced many ideas that subsequently became impor- tant in special relativity, and on a cursory inspection it may seem that his 1905 and 1906 papers (written before Einstein’s landmark paper was pub- lished) already contain most of the major features of the theory: he had the correct equations for the Lorentz transformations, articulated the relativity principle, derived the correct relativistic transformations for force and charge density, and found the rule for relativistic composition of velocities. -
Einstein's Equations for Spin 2 Mass 0 from Noether's Converse Hilbertian
Einstein’s Equations for Spin 2 Mass 0 from Noether’s Converse Hilbertian Assertion October 4, 2016 J. Brian Pitts Faculty of Philosophy, University of Cambridge [email protected] forthcoming in Studies in History and Philosophy of Modern Physics Abstract An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether’s 1918 paper developed Hilbert’s and Klein’s reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a “curl” term with identically zero divergence. Noether proved a converse “Hilbertian assertion”: such “improper” conservation laws imply a generally covariant action. Later and independently, particle physicists derived the nonlinear Einstein equations as- suming the absence of negative-energy degrees of freedom (“ghosts”) for stability, along with universal coupling: all energy-momentum including gravity’s serves as a source for gravity. Those assumptions (all but) imply (for 0 graviton mass) that the energy-momentum is only a term proportional to the field equations and a symmetric curl, which implies the coalescence of the flat background geometry and the gravitational potential into an effective curved geometry. The flat metric, though useful in Rosenfeld’s stress-energy definition, disappears from the field equations. Thus the particle physics derivation uses a reinvented Noetherian converse Hilbertian assertion in Rosenfeld-tinged form. The Rosenfeld stress-energy is identically the canonical stress-energy plus a Belinfante curl and terms proportional to the field equations, so the flat metric is only a convenient mathematical trick without ontological commitment. Neither generalized relativity of motion, nor the identity of gravity and inertia, nor substantive general covariance is assumed. -
Exploring the Social Processes of Leadership and Organizing
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Leadership Institute Faculty Publications Leadership Institute 12-2006 Relational Leadership Theory: Exploring the social processes of leadership and organizing Mary Uhl-Bien University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/leadershipfacpub Part of the Management Sciences and Quantitative Methods Commons Uhl-Bien, Mary, "Relational Leadership Theory: Exploring the social processes of leadership and organizing" (2006). Leadership Institute Faculty Publications. 19. https://digitalcommons.unl.edu/leadershipfacpub/19 This Article is brought to you for free and open access by the Leadership Institute at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Leadership Institute Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in The Leadership Quarterly 17:6 (December 2006), pp. 654-676: The Leadership Quarterly Yearly Review of Leadership; doi 10.1016/j.leaqua.2006.10.007 Copyright © 2006 Elsevier Inc. Used by permission. http://www.sciencedirect.com/science/journal/10489843 Published online November 16, 2006. Relational Leadership Theory: Exploring the social processes of leadership and organizing Mary Uhl-Bien Department of Management University of Nebraska–Lincoln Lincoln, NE 68588 USA Abstract Relational leadership is a relatively new term in the leadership literature, and because of this, its meaning is open to interpretation. In the present article I describe two perspectives of relational leadership: an entity perspective that fo- cuses on identifying attributes of individuals as they engage in interpersonal relationships, and a relational perspec- tive that views leadership as a process of social construction through which certain understandings of leadership come about and are given privileged ontology. -
Biology Assessment
Master thesis Biology Assessment on the feasibility of anticipating Synthetic Biology Wietse Hage Under the supervision of dr. Y. Saghai and dr. M.A.J. MacLeod January 21, 2021 ”It is not down on any map; true places never are.” Moby-Dick, or, the Whale Herman Melville MSc Philosophy of Science, Technology and Society - PSTS Faculty of Behavioural, Management, and Social Sciences, University of Twente, Enschede, the Netherlands Acknowledgements Arnhem, January 21, 2021 What a fascinating journey we’ve had. First and foremost, I would like to thank Yashar Saghai. During the one and a half year this thesis took to write, Yashar and I met almost every two weeks! This adds up to 40 plus meet- ings, not including our trip to the Anticipation conference in Oslo. It is hard for me to find words that convey my gratitude towards you Yashar: I hope that my future work shows the influence you had on me, both as a philosopher and a writer. The second person who played a crucial part lifting this thesis up to the level it standstoday is Miles MacLeod. Having someone with your background take a critical look at my work is a true gift: thank you for the insightful comments and the time you took to discuss Robert Rosen’s controversial ideas with me. Another individual who deserves mentioning is Virgil Rerimassie, who took the time to sit down over coffee to explain his work in his own words. I would like to thank my girlfriend Iris, who during all of these months remained patient, caring and loving; thank you for sticking by my side piertje, definitely during my grumpier phases. -
Putting Space in Place: Philosophical Topography and Relational
Putting Space in Place: Philosophical Topography and Relational Geography 1. Introduction: Space and Geography Although a discipline often characterized as essentially spatial in its orientation, geography seems only very seldom to have devoted significant attention to exploring the concept of space itself. Indeed, the shift in geographical thinking over the last fifty years or so towards a mode of thinking that takes space as bound up with social and political process actually serves to reinforce, rather than rectify, the neglect of space itself within geographical theorizing. A similar point could also be made with respect to many of the theorists on whom geography draws. Both Foucault and Lefebvre, for instance, while they emphasize the inextricability of the spatial and the socio-political, nevertheless rely upon a notion of space that remains essentially unarticulated and largely unexplored. Just what the phenomenon of space might be that is at issue in the various spatialities and spatializations that appear in their work thus remains obscure (in spite of Lefebvre’s own claims) – and it is no less so in most of the other thinkers who have been taken up within recent geographic discourse or in the geographical appropriations of their thought. Thus from Deleuze through to Sloterdijk spatial ideas and images are constantly in play, and yet what is at issue in the very idea of space and the spatial is almost never directly addressed. In this latter respect, any criticism of geographical theory for its relative neglect of space cannot be restricted to geography alone – with some notable exceptions, very few thinkers, no matter what the discipline, have given serious attention to the phenomenon of space, any more than to the phenomena of time and of place, but have tended instead to deal with various forms or modes of space – to spatialities rather than to space as such. -
Ngit `500&2-256
NGiT `500&2-256 Foundations for a Theory of Gravitation Theories* 9 KIP S. THORNE, DAVID L. LEE,t and ALAN P. LIGHTMAN$ California Institute of Technology, Pasadena, California 91109 ABSTRACT A foundation is laid for future analyses of gravitation theories. This foundation is applicable to any theory formulated in terms of geometric objects defined on a 4-dimensional spacetime manifold. The foundation consists of (i) a glossary of fundamental concepts; (ii) a theorem that delineates the overlap between Lagrangian-based theories and metric theories; (iii) a conjecture (due to Schiff) that the Weak Equivalence Principle implies the Einstein Equivalence Principle; and (iv) a plausibility argument supporting this conjecture for the special case of relativistic, Lagrangian-based theories. Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151 Supported in part by the National Aeronautics and Space Administration [NGR 05-002-256] and the National Science Foundation [GP-27304, GP-28027]. t Imperial Oil Predoctoral Fellow. NSF Predoctoral Fellow during part of the period of this research. , (NASA-CR-130753) FOUNDATIONS FOR A N73-17499 I THEORY OF GRAVITATION THEORIES (California Inst. of Tech.) 45 p HC. $4.25 CSCL 08N Unclas V_._ __ _ ~ ___ __ _-G3/13 172 52 -' / I. INTRODUCTION Several years ago our group initiatedl a project of constructing theo- retical foundations for experimental tests of gravitation theories. The results of that project to date (largely due to Clifford M. Will and Wei-Tou Ni), and the results of a similar project being carried out by the group of Kenneth Nordtvedt at Montana State University, are summarized in several 2-4 recent review articles. -
Relationalism and (General) Relativistic Physics Relationalism and (General) Relativistic Physics
Relationalism and (General) Relativistic Physics Relationalism and (General) Relativistic Physics Two distinct issues: To what extent is GR a relationalist theory? Can we construct a Leibnizian relational theory with a particle ontology, which is as empirically adequate as GR? General Relativity Einstein’s field equations: G[g] = κT[g; Φ]: G[g] is the Einstein’s tensor. It encodes information about the 4-dimensional spacetime geometry. T[g; Φ] is the stress-energy tensor. It encodes information about the distribution of a matter field Φ in spacetime. A model of GR is a solution of Einstein’s field equation. It is a triple < M; g; T >. General Relativity Einstein’s field equations: G[g] = κT[g; Φ]: Space acts on matter, telling it how to move. In turn, matter reacts back on space, telling it how to curve. (C.W. Misner, K.S. Thorne, J.A. Wheeler - Gravitation. Freeman & Co., 1973, p.5) General Relativity It is commonly said that GR unifies gravity and physical geometry. GR describes gravitational forces as curvature effects of spacetime geometry. In this (weak) sense, GR succeeds in “geometrizing away” gravity. However, there is no straightforward reduction here: “spacetime” and “gravitational field” are two ways to refer to the same entity. Two Senses of “Relationalism” in General Relativity 1 Spatiotemporal facts fully reducible to material facts (eliminative relationalism). 2 Spatiotemporal facts fully reducible to facts about spatiotemporal relations instantiated by material relata (non-eliminative relationalism). Against Relationalism in GR GR admits cosmological models of the form < M; g; 0 >, which means that it makes physical sense in GR to think about a universe totally deprived of matter, where still there is spacetime. -
The Relational Account of Meaning in Life: a Critique
Journal of Philosophy of Life Vol.10, No.1 (July 2020):58-77 The Relational Account of Meaning in Life A Critique Joshua Chang and Michelle Pitassi* Abstract The relational account by Robert Nozick (1981; 1989) posits meaning as engaged, external connection to an array of value, and it has been widely influential in debates concerning life’s meaning. Thaddeus Metz (2001; 2013; 2016) proffers several counterexamples to the view, arguing that it does not best account for what is conceptually important to meaning in life. We evaluate these criticisms, determining that while some objections are less persuasive, others are more compelling, particularly Metz’s subjectivist critique which we go on to expand in developing a novel counterexample to the relational view. We conclude with positing another final counterexample—a being who accrues meaning in life solely through internal relations. 1. Introduction In recent decades, the relational theory has been one of the most prominent accounts in the philosophical literature on life’s meaning. The basic notion is simple: meaning in life requires that one intensely connects with an array of value beyond oneself. It was first made popular by Robert Nozick in his two works Philosophical Explanations (1981) and Examined Life (1989); many have subsequently adopted his approach, or at least prominent features of it, as a viable framework for grasping meaning in life (Cooper 2003: 29-30, 132; Bennett- Hunter 2014; Bennett-Hunter 2016: 1277; Benatar 2017: 18, 54). One of the most notable critics of this view is Thaddeus Metz (2001: 145-147; 2013: 29-31; 2016).