Quality Improvements Towards Zero Defects

Total Page:16

File Type:pdf, Size:1020Kb

Quality Improvements Towards Zero Defects Quality Improvements Towards Zero Defects Addressing the Implementation Gap Between Industry and Literature PAPER WITHIN Production Systems AUTHOR: Gabriella Gustafsson & Wiktoria Rydin JÖNKÖPING June 2020 This exam work has been carried out at the School of Engineering in Jönköping in the subject area Production System with a specialization in production development and management. The work is a part of the Master of Science program. The authors take full responsibility for opinions, conclusions and findings presented. Examiner: Carin Rösiö Supervisor: Gary Linnéusson Scope: 30 credits (second cycle) Date: 2020-06-03 Abstract Abstract Customers today demand products of high quality, and industries must cope with issues related to that to stay competitive. Therefore, an endeavor to achieve zero defects and to work with zero defect manufacturing (ZDM) is common in industries today. ZDM aims to reduce the number of failures within a manufacturing process and thus only producing faultless products. Since defected items result in unexpected work, extra costs, claims and unsatisfied customers, it is important to avoid that in order to secure the company’s market share. Even though it implies challenges, companies must work with ZDM and quality tools to stay competitive. However, there is a gap between the literature of ZDM and how to accomplish ZDM in practice, which makes it hard for companies to apply the method. Hence, this thesis aims to address this gap and present how the human factors and quality contribute to the goal of zero defects. When working with a manually driven manufacturing setting, human factors must be considered as an important aspect. Mistakes will occur as long as humans work with the products, but the prerequisites for doing right must be as good as possible to be able to decrease the number of mistakes. Another factor to consider is the internal quality of different processes to ensure that customer demands are achieved through all stages. This study focused on finding suggestions for improvements towards zero defects in manual assembly and to present general improvement actions. The thesis is based on three main fields: ZDM, quality and human factors. The findings are connected both to literature searches made within these fields, but also through a case study at the focal company. In the analysis chapter, the reader is provided with information about how the specified problem areas are linked together and to the three main fields. By combining the literature search with a case study at a focal company, findings could be detected, collected and analyzed. Four areas could be identified in the analysis and highlighted in the discussion of the research questions. The highlighted areas were further used as a foundation to establish suggestion within the important areas. These acts as practical guidelines for how to reach zero defects in an existing production with the goal of minimizing the implementation gap of ZDM. Keywords Zero defect manufacturing, Quality, Human factors I Acknowledgment Acknowledgment We would like to start by expressing our gratitude to the people who have helped us along the way. First, we would like to thank our supervisor Gary Linnéusson at School of Engineering in Jönköping, for guidance and support throughout the project. Moreover, we would like to thank the focal company for the opportunity to belong to their project and be provided with information and inestimable inputs. A special thanks to Nina Ström, our supervisor at the focal company, for all help and support. II Contents Contents 1 Introduction ............................................................................. 1 1.1 BACKGROUND ................................................................................................. 1 1.2 PROBLEM DESCRIPTION .................................................................................. 2 1.3 PURPOSE AND RESEARCH QUESTIONS ............................................................. 3 1.4 DELIMITATIONS .............................................................................................. 3 1.5 OUTLINE ......................................................................................................... 3 2 Theoretical Background ........................................................ 5 2.1 ZERO DEFECTS ................................................................................................ 5 2.2 QUALITY ......................................................................................................... 6 2.2.1 Total Quality Management .................................................................... 7 2.2.2 Supplier Quality ..................................................................................... 7 2.2.3 Internal Quality Assurance ..................................................................... 8 2.2.4 FMEA ..................................................................................................... 8 2.3 HUMAN FACTORS ENGINEERING ................................................................... 11 2.3.1 Human Error ........................................................................................ 12 2.3.2 Situation Awareness ............................................................................. 14 2.3.3 Acknowledgment and Responsibility .................................................. 16 2.3.4 Factors Affecting Human Performance ............................................... 16 3 Method and Implementation ................................................ 18 3.1 RESEARCH APPROACH .................................................................................. 18 3.1.1 Link Between Methods and Research Questions ................................. 18 3.2 LITERATURE REVIEW .................................................................................... 19 3.3 CASE STUDY ................................................................................................. 21 3.3.1 Case Company ..................................................................................... 22 3.4 DATA COLLECTION ....................................................................................... 22 3.4.1 Disruption Poll ..................................................................................... 23 3.4.2 Instruction Failure Poll ......................................................................... 23 III Contents 3.4.3 Survey Assembly Instruction ............................................................... 23 3.4.4 Documentation of Observation Data .................................................... 24 3.4.5 Documentation of Claim Data ............................................................. 24 3.4.6 Competence Assessment ...................................................................... 24 3.5 IMPLEMENTATION ......................................................................................... 25 3.5.1 Fishbone Diagram ................................................................................ 25 3.5.2 5 Why Analysis .................................................................................... 25 3.5.3 FMEA ................................................................................................... 26 3.6 ETHICAL CONSIDERATION ............................................................................. 26 3.7 VALIDITY AND RELIABILITY ......................................................................... 27 4 Findings and Analysis ......................................................... 28 4.1 LITERATURE REVIEW .................................................................................... 28 4.2 CASE STUDY ................................................................................................. 29 4.2.1 Introduction for new employees .......................................................... 29 4.2.2 Disruption Poll ..................................................................................... 29 4.2.3 Instruction Failure Poll ......................................................................... 30 4.2.4 Survey Assembly Instruction ............................................................... 30 4.2.5 Documentation of Observation Data .................................................... 31 4.2.6 Documentation of Claim Data ............................................................. 31 4.2.7 Competence Assessment ...................................................................... 32 4.2.8 Summary of Case Study Findings ........................................................ 32 4.3 IMPLEMENTATION ......................................................................................... 33 4.3.1 Fishbone Diagrams .............................................................................. 33 4.3.2 5 Why Analysis .................................................................................... 34 4.3.3 FMEA ................................................................................................... 35 4.3.4 Summary of Implementation ............................................................... 35 4.4 ANALYSIS ..................................................................................................... 36 5 Discussion and Conclusion ................................................ 39 5.1 DISCUSSION OF METHOD .............................................................................. 39 5.2 DISCUSSION OF GENERAL ASPECTS .............................................................. 40 IV Contents 5.3 DISCUSSION
Recommended publications
  • Application of Wcm Methodologies for First Time Quality Improvement
    POLITECNICO DI TORINO COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING MASTER OF SCIENCE IN AUTOMOTIVE ENGINEERING Final Project APPLICATION OF WCM METHODOLOGIES FOR FIRST TIME QUALITY IMPROVEMENT University Supervisor: Company Supervisor: Prof. Marco Gobetto Ing. Matteo D’Antino Prof. Paolo De Blasi Gerardo Rosa Candidate: Luca Gironda S241491 academic year: 2017 – 2018 2 Table of Contents Chapter 1 Introduction ............................................................................................................... 8 Chapter 2 WCM ........................................................................................................................ 10 2.1 Origins ................................................................................................................................ 10 2.2 Mission ............................................................................................................................... 11 2.3 Structure ............................................................................................................................. 12 2.3.1 Technical Pillars ....................................................................................................................... 13 2.3.2 Managerial Pillars .................................................................................................................... 25 Chapter 3 QC Quality Control ............................................................................................... 28 3.1 QC Indicators
    [Show full text]
  • View & Download
    The Institution of Engineers (India) All India Seminar on BEST PRACTICES AND APPLICTIONS OF TQM IN INDUSTRY AND ACADEMIA 16-17 November 2019 Organized by The Institution of Engineers (India) Karnataka State Centre Under the Aegis of Production Engineering Division Board, IEI In association with IEI, Belagavi Local Centre & Department of Mechanical Engineering S. G. BALEKUNDRI INSTITUTE OF TECHNOLOGY, BELAGAVI Venue Seminar Hall-1 Department of Mechanical Engineering S. G. BALEKUNDRI INSTITUTE OF TECHNOLOGY, BELAGAVI Shivabasavanagar, Belagavi 590010 All India Seminar on BEST PRACTICES AND APPLICTIONS OF TQM IN INDUSTRY AND ACADEMIA, Karnataka State Centre, 16-17 November 2019 PAPERS PRESENTED IN THE ALL INDIA SEMINAR A STRUCTURED APPROACH FOR IMPLEMENTATION OF INTEGRATED MANAGEMENT SYSTEMS Dr CKB Nair Member, Production Engineering Division Board, IEI Email: [email protected], Mobile +919482048324 Website : www.bravee.net Some of the generic ISO standards currently used in the industrial units across the globe are the ISO 9001:2015 for Quality Management Systems, ISO 14001:2015 for Environmental Management systems, ISO 27001:2013 for Information security management systems, ISO 45001:2018 for Occupational Health and Safety Management Systems and ISO 50001:2018 Energy Management Systems. Leadership, Involvement of personnel, Process approach, Systematic approach to management, Factual approach to decision making and Continual improvement are some the main basic principles for these standards. These standards help the organisations to have a common mode of communication for dealing with all stakeholders and merge with the global economy. Instead of implementing all these five standards individually, an integrated approach for implementation can save time and efforts. For this a standard methodology using flow charts and a simple software is developed to help facilities get certified by checking whether the management systems comply with the required standards.
    [Show full text]
  • A Framework for Applying Total Quality Management Standards in Higher Education Institutions of King Khalid Universities
    A Framework for Applying Total Quality Management Standards in Higher Education Institutions of King Khalid Universities By Dr. Abeer Mahfouz Muhammed Al Mdawy Assistant Professor of Educational Planning and Administration Saudi Arabia – Abha King Khalid University Faculty of Education for Girls Department of Basics of Education Journal of Faculty of Education No (113) January, Part (1), 2018 A Framework for Applying Total Quality Management Standards in Higher Education Institutions of King Khalid Universities By Dr. Abeer Mahfouz Muhammed Al Mdawy Assistant Professor of Educational Planning and Administration Saudi Arabia – Abha King Khalid University Faculty of Education for Girls Department of Basics of Education Introduction: In this era, most countries of the world are interested in quality in educational institutions, especially developed ones as they have succeeded in applying quality in their industrial institutions. This is through improving production and goods for the customers' satisfaction. This affects directly the institution profits and its ability to compete with other industrial institutions. Therefore, there is a need to reform and develop educational institutions in light of quality as it is a global transformation from financial to intellectual investment accompanied with big changes in the demands of communities and their competition to obtain better kind of education with graduates who are able to effectively serve their community. (Al Hariri, 2010: 223) Quality in education is one of the vital issues in the current educational system. Higher education institutions, in most countries of the world, are concerned with adopting quality as an approach. The previous programs showed limited improvement in the academic performance in schools and universities.
    [Show full text]
  • Ewellix Zero Defect for Suppliers
    Authorised for external communication Valid from 2018 | Updated 2018-12-01 Ewellix Zero Defect For Suppliers "Somewhere in this world there is a company who can get SMT products and services with no problems in them. We sure would like that company to be yours …” Philip B. Crosby Compiled by: Chris Knight, Stephane Moriniere, Eric Deffarge, Pietro Maurizio Fino. Copyright: 2018 Ewellix Introduction Foreword To grow or even sustain the business in today’s extremely competitive market is to continuously produce and deliver fault free products, i.e. those containing Zero Defects (ZD). To achieve ZD in manufacturing, you must have: • the right sourcing interfaces • the right process and technology • the right service and support systems • the right organisation and methods • the right people The continuous strive to achieve ZD in production is based on the following assumption: That by fulfilling the requirements in these five areas, no defect is produced and as a result no Non-Conformance Complaints (NCC) are received or generated. In theory, this is the description of an ideal state. In reality, we are constantly confronted with different kinds of disturbances that dramatically increase the risk of creating a defect (or a defect escaping) in manufactured products. The Zero Defect handbook This handbook is divided into seven chapters and all these contribute to explain how a journey into ZD should look like. The five pillars of the house each deserve a special mention as they are the cornerstones to building a system whereby quality becomes the fabric of the organisation, rather than a part of the fabric.
    [Show full text]
  • Statistical Process Control for Monitoring Nonlinear Profiles: a Six Sigma Project on Curing Process
    This is the author’s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher’s web site or your institution’s library. Statistical process control for monitoring nonlinear profiles: a six sigma project on curing process Shing I. Chang, Tzong-Ru Tsai, Dennis K. J. Lin, Shih-Hsiung Chou, & Yu-Siang Lin How to cite this manuscript If you make reference to this version of the manuscript, use the following information: Chang, S. I., Tsai, T., Lin, D. K. J., Chou, S., & Lin, Y. (2012). Statistical process control for monitoring nonlinear profiles: A six sigma project on curing process. Retrieved from http://krex.ksu.edu Published Version Information Citation: Chang, S. I., Tsai, T., Lin, D. K. J., Chou, S., & Lin, Y. (2012). Statistical process control for monitoring nonlinear profiles: A six sigma project on curing process. Quality Engineering, 24(2), 251-263. Copyright: Copyright © Taylor & Francis Group, LLC. Digital Object Identifier (DOI): doi:10.1080/08982112.2012.641149 Publisher’s Link: http://www.tandfonline.com/doi/abs/10.1080/08982112.2012.641149 This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at http://krex.ksu.edu Statistical Process Control for Monitoring Nonlinear Profiles: A Six Sigma Project on Curing Process Shing I Chang1, Tzong‐Ru Tsai2, Dennis K.J. Lin3, Shih‐Hsiung Chou1 & Yu‐Siang Lin4 1Quality Engineering Laboratory, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, USA 2Department of Statistics, Tamkang University, Danshui District, New Taipei City 25137 Taiwan 3Department of Statistics, Pennsylvania State University, USA 4Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan ABSTRACT Curing duration and target temperature are the most critical process parameters for high- pressure hose products.
    [Show full text]
  • Quality Control
    Topic Gateway Series Quality control Quality Control Topic Gateway Series No. 37 1 Prepared by Bill Haskins and Technical Information Service July 2007 Topic Gateway Series Quality control About Topic Gateways Topic Gateways are intended as a refresher or introduction to topics of interest to CIMA members. They include a basic definition, a brief overview and a fuller explanation of practical application. Finally they signpost some further resources for detailed understanding and research. Topic Gateways are available electronically to CIMA members only in the CPD Centre on the CIMA website, along with a number of electronic resources. About the Technical Information Service CIMA supports its members and students with its Technical Information Service (TIS) for their work and CPD needs. Our information specialists and accounting specialists work closely together to identify or create authoritative resources to help members resolve their work related information needs. Additionally, our accounting specialists can help CIMA members and students with the interpretation of guidance on financial reporting, financial management and performance management, as defined in the CIMA Official Terminology 2005 edition. CIMA members and students should sign into My CIMA to access these services and resources. The Chartered Institute of Management Accountants 26 Chapter Street London SW1P 4NP United Kingdom T. +44 (0)20 8849 2259 F. +44 (0)20 8849 2468 E. [email protected] www.cimaglobal.com 2 Topic Gateway Series Quality control Definition Definitions
    [Show full text]
  • Chapter-4 SYSTEM of TOTAL QUALITY MANAGEMENT
    84 Chapter-4 SYSTEM OF TOTAL QUALITY MANAGEMENT After having discussed the Services of quality circle, this chapter shall discuss System of total quality management. The chapter is presented under the following heads. 4.1 Total Quality Management – An Introduction 4.2 Kaizen 4.3 Six Sigma 4.1 TOTAL QUALITY MANAGEMENT – AN INTRODUCTION Total Quality Management is a management approach that originated in the 1950s and has steadily become more popular since the early 1980s. Total Quality is a description of the culture, attitude and organization of a company that strives to provide customers with products and services that satisfy their needs. The culture requires quality in all aspects of the company’s operations, with processes being done right the first time and defects and waste eradicated from operations. Total Quality Management, TQM, is a method by which management and employees can become involved in the continuous improvement of the production of goods and services. It is a combination of quality and management tools aimed at increasing business and reducing losses due to wasteful practices. Total Quality Management (TQM) refers to management methods used to enhance quality and productivity in business organizations. TQM is a comprehensive management approach that works horizontally across an organization, involving all departments and employees and extending backward and forward to include both suppliers and clients/customers. TQM is only one of many acronyms used to label management systems that focus on quality. Other acronyms include CQI (continuous quality improvement), SQC (statistical quality control), QFD (quality function deployment), QIDW (quality in daily work), TQC (total quality control), etc.
    [Show full text]
  • Achieving Total Quality Management in Construction Project Using Six Sigma Concept
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 06 | June 2018 www.irjet.net p-ISSN: 2395-0072 Achieving Total Quality Management in Construction Project Using Six Sigma Concept Dr.Divakar.K1 and Nishaant.Ha2 1Associate Professor in Civil Engineering, Coimbatore Institute of Technology, Coimbatore-641014 2Assistant Professor in Civil Engineering, Kumaraguru College of Technology, Coimbatore-641049 ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - A Six Sigma approach is one of the most Low Sui Pheng and Mok Sze Hui (2004) examined the efficient quality improvement processes. In this study, six strategies and concepts of Six Sigma and implemented sigma concepts were applied in construction scheduling those concepts in construction industry. A. D. Lade et.al. process to avoid delay as well as to maintain the quality of (2015) analysed the quality performance of Ready Mix the construction activities. Detailed schedule of the building Concrete (RMC) plant at Mumbai, India, using the six was analysed & also the updated schedule was verified. At sigma philosophy had been evaluated using various this stage, DMAIC (Define, Measure, Analyse, Improve and quality tools and sigma value was calculated. According to Control) principle was implemented. The variation in the the sigma level, recommendations were given for the scheduling due to delay of the activities was noted down. improvement. Seung Heon Han et.al. in their study they Delay reasons and their impacts in the whole project were developed a general methodology to apply the six sigma calculated. All delayed activities were considered as principles on construction operations rather than “Defects”. DPMO (Defects Per Million Opportunities) was construction materials in terms of the barometers to calculated.
    [Show full text]
  • Six Sigma Vs. Total Quality Management – Presence in World and Serbian Economy  Udc 005.6(100+497.11)
    FACTA UNIVERSITATIS Series: Economics and Organization Vol. 8, No 2, 2011, pp. 221 - 233 SIX SIGMA VS. TOTAL QUALITY MANAGEMENT – PRESENCE IN WORLD AND SERBIAN ECONOMY UDC 005.6(100+497.11) Marija Anđelković Pešić, Vinko Lepojević, Vladimir Zlatić University of Niš, Faculty of Economics, Serbia [email protected], [email protected], [email protected] Abstract. The Six Sigma concept represents a step forward in the evolutionary development of the approaches for providing competitive advantage based on continuous quality improvement. In that sense, this concept is the successor of Total Quality Management, and, as each new generation surpasses its predecessor, Six Sigma goes beyond Total Quality Management. After implementation of this concept many companies around the world have achieved significant results. Guided by this fact, the aim of this paper is to show the advantages of the Six Sigma concept compared to Total Quality Management. The paper presents data which show presence of the Six Sigma concept in the world economy, but at the same time data from which one can realize the "place" of the Serbian economy compared to the world economy, when it is about implementation of this concept. Key Words: Six Sigma, Total Quality Management, customers, defects, leadership, business culture. INTRODUCTION The appearance of defects is possible in all the processes that take place in an enter- prise. This means that defects occur during: determining the needs and demands of cus- tomers, product design and development, materials and equipment procurement, planning and preparation of production, transport of materials and unfinished products or parts of products, storage of materials and equipment, production process, storage of finished products, sales and distribution, product installation, technical assistance and maintenance and servicing.
    [Show full text]
  • The Use of Six Sigma in Healthcare
    The Use of Six Sigma in Healthcare Jayanta K. Bandyopadhyay And Karen Coppens Central Michigan University Mt. Pleasant, Michigan, U.S.A. International Journal of Quality & Productivity Management Bandyopadhyay and Volume 5, No. 1 December 15, 2005 Coppens Six Sigma Approach to Healthcare Quality and Productivity Management By Jayanta K. Bandyopadhyay and Karen Coppens Central Michigan University Abstract: For decades the U.S. health care industry has been operating on its own way ignoring emerging factors such as competition, patient safety, skyrocketing health care cost, liability, malpractice insurance cost and use of DRG for Medicare and insurance payment. However, as these factors became more prevalent and competition within the industry intensified, many U.S. hospitals have been becoming increasingly aware of the critical needs of controlling the operating costs and meet and even exceeds the expectations of patient care quality. This paper presents a model of Six Sigma approach to health care quality management for hospitals in the U.S. and abroad. Keywords: six sigma, quality and productivity management in healthcare Introduction The health care industry in the U.S has been operating on its own traditional economic domain ignoring current emerging factors such as competition, patient safety, skyrocketing health care cost, liability from malpractice lawsuits and more government control on Medicare payment.( Hansson, 2000). But in recent years, these factors have become more prevalent and competition within the industry has been intensified, and many U.S. hospitals has been becoming increasingly aware of the critical needs of controlling their operating costs and meet the expectations of patient care quality (Chow-Chua et.al,2000).
    [Show full text]
  • Kaizen Concept in the Process of a Quality Improvement in the Company
    KAIZEN CONCEPT IN THE PROCESS OF A QUALITY IMPROVEMENT IN THE COMPANY Marcin Jakubiec1 Elwira Brodnicka2 Abstract Following article concerns a topic of quality improvement realized by a concept of con- tinuous improvement – Kaizen. The main goal of the article is to analyze of practical usage of Kaizen, in terms of elimination all waste and continuous improvement. The article is divided into two parts: theoretical and cognitive ones. In the first part of it, the authors described lean philosophy and continuous improvement concept (Kaizen), which are signs to overall com- pany improvement. The cognitive part of the article concerns presentation of practical usage of Kaizen concept rules in chosen automotive sector company. This is a worldwide company with its subsidiary in Poland in Bielsko-Biała. Its main specialization are casts. The company spe- cializes in casting of high complex aluminum components such as: cylinder heads, engine blocks, transmission parts and structural components. The authors used case study method and formulated following research problems: features of Kaizen team, basic rules of Kaizen team, plan of Kaizen action and tools used during Kaizen action. Kaizen actions in analyz- ed company are realized during so-called “Kaizen week”. There is a team built from the company’s employees. As their effect (Kaizen actions) exact solutions of quality problems are formulated. The company leads also so-called “after Kaizen” actions, which are used in a case of problems which require longer time for their elimination. According to the Kaizen philosophy all activities realized in the company in quality area have continuous character. Key words: Kaizen, quality improvement, 5S.
    [Show full text]
  • 4. Six Sigma Six Sigma Is a Set of Strategies, Techniques, and Tools For
    4. Six Sigma Six Sigma is a set of strategies, techniques, and tools for process improvement. It was developed by Motorola in 1986. Six Sigma became famous when Jack Welch made it central to his successful business strategy at General Electric in 1995. Today, it is used in many industrial sectors. Six Sigma seeks to improve the quality of process outputs by identifying and removing the causes of defects (errors) and minimizing variability in manufacturing and business processes.[5] It uses a set of quality management methods, including statistical methods, and creates a special infrastructure of people within the organization ("Champions", "Black Belts", "Green Belts", "Yellow Belts", etc.) who are experts in the methods. Each Six Sigma project carried out within an organization follows a defined sequence of steps and has quantified value targets, for example: reduce process cycle time, reduce pollution, reduce costs, increase customer satisfaction, and increase profits. The term Six Sigma originated from terminology associated with manufacturing, specifically terms associated with statistical modeling of manufacturing processes. The maturity of a manufacturing process can be described by a sigma rating indicating its yield or the percentage of defect-free products it creates. A six sigma process is one in which 99.9999998% of the products manufactured are statistically expected to be free of defects (0.002 defective parts/million), although, as discussed below, this defect level corresponds to only a 4.5 sigma level. Motorola set a goal of "six sigma" for all of its manufacturing operations, and this goal became a by-word for the management and engineering practices used to achieve it.
    [Show full text]