The Determination of Aerosol Optical Thickness Over Germany Using

Total Page:16

File Type:pdf, Size:1020Kb

The Determination of Aerosol Optical Thickness Over Germany Using TheThe determinationdetermination ofof aerosolaerosol opticaloptical thicknessthickness overover GermanyGermany usingusing differentdifferent satellitesatellite algorithmsalgorithms andand instruments:instruments: aa casecase studystudy A. A. Kokhanovsky and satellite aerosol retrieval team* University of Bremen, Bremen, Germany [email protected] IntroductionIntroduction z Inter-comparison of various aerosol retrieval algorithms is performed for a single satellite scene over Germany z Used instruments: MERIS, AATSR, SCIAMACHY (ENVISAT), MISR, MODIS (TERRA), POLDER (PARASOL), OMI (AURA) z Algorithms: 1. MERIS: Bremen University/Germany, ESA/Italy, Institute of Physics/Belarus 2. AATSR: Oxford/UK, Swansea/UK, TNO/The Netherlands-FMI/Finland 3. SCIAMACHY+AATSR: DLR/Germany 4. SCIAMACHY: CNR-ISAC/Italy 5. OMI: KNMI/The Netherlands 6. MISR: JPL/USA 7. MODIS: NASA/USA, UMD/USA 8. POLDER: LOA/France Studied scene 53 52 51 latitude, degrees latitude, 50 49 7 8 9 101112 longitude, degrees Studied area Osnabruck Wolfsburg Goettingen Saarbrucken Regensburg Instruments and main algorithms N Instrument Algorithm Reference Spatial resolution Remarks of reported AOT 1. MERIS ESA Santer et al.(1999) 1x1km2 Standard ESA product 2. MERIS BAER von Hoyningen-Huene et 1x1km2 NDVI-based retrievals al.(2003) 3. AATSR AATSR-1 Grey et al.(2006) 10x10km2 Dual-view technique 4. AATSR AATSR-2 Thomas 3x3km2 Dual-view technique et al.(2007) 5. AATSR AATSR-3 Thomas et al.(2007) 3x3km2 Single-view technique 6. SCIAMACHY+ SYNAER T. Holzer-Popp (2007) 30x60km2 Single view hyperspectral AATSR measurements 7. MISR JPL Diner et al. (2005) 17.6x17.6km2 Multiple view technique 8. MODIS NASA Kaufman et al. (1997) 10x10km2 Spectral correlation technique 9. MODIS MBAER Lee et al. (2005) 1x1km2 AFRI-based retrievals 10. POLDER ESA Deuze et al. (2001) 5.3x6.2km2 11. OMI KNMI Veihelmann et al. (2007) 13x24km2 12. AATSR AT-DV Veefkind et al. (1998) 1x1km2 13. SCIAMACHY ASP Di Nicolantonio (2007) 30x30km2 14. MERIS ART Katsev et al. (2007) 1x1km2 AOD (7~12E, 49~53N) Hannover NASA MODIS L2 NASA MODIS L2 Ver 5. Ver 4. Mainz Wurzburg Nurnberg MISR L2 P195 AOT maps Mainz AATSR: Oxford, Swansea, TNO-FMI 0.7 100 220 80 200 AATSR-2 0.6 Oxford 60 180 0.5 160 DV 40 140 20 0.4 120 0 100 0.3 -20 frequency difference, % 80 -40 0.2 60 -60 40 aerosol optical thickness (AATSR-2) thickness optical aerosol 0.1 AATSR-1 Swansea DV-80 20 -100 0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.00.10.20.30.40.50.60.7 aerosol optical thickness (AATSR-1) aerosol optical thickness aerosol optical thickness (AATSR-1) 52.30 0.4 52.25 550nm Oxford: 3*3 52.20 0.3 Swansea:10*10 52.15 0.2 latitude, degrees 52.10 AOT(Swansea) 0.1 52.05 0.0 0.0 0.1 0.2 0.3 0.4 52.00 10.2 10.3 10.4 10.5 10.6 AOT (ATSR-DV) longitude, degrees AATSR/Oxford 0.7 0.7 τ(forward) =-0.02018+1.06875 τ(dual) τ(nadir) =0.02903+1.17882 τ(dual) R=0.85 R= 0.5 0.6 0.6 N=466 N=466 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 aerosol optical thickness (forward view) (forward thickness optical aerosol 8000 0.1 (nadirthickness view) aerosol optical 0.1 Nadir 7000 0.0 Forward 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 aerosol optical thickness (dual view) Dual 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 6000 aerosol optical thickness (dual view) 5000 4000 frequency 3000 2000 1000 0 0.0 0.2 0.4 0.6 0.8 1.0 aerosol optical thickness (AATSR) MERIS(BAER)- AATSR(Swansea) 0.5 150 500 450 BAER MERIS 0.4 400 100 350 0.3 SSA 300 50 250 0.2 frequency 200 difference, % difference, 150 0 0.1 100 AATSR-1 aerosol optical thickness (BAER MERIS) (BAER thickness optical aerosol 50 0.0 0 -50 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 aerosol optical thickness aerosol optical thickness (AATSR-1) aerosol optical thickness (AATSR-1) MERIS(BAER, ESA)- AATSR(TNO-FMI) 0.4 0.40 550nm 550nm 0.35 coeff. correlation: 0.35 0.3 0.30 0.25 0.2 0.20 0.15 AOT(MERIS-ESA) AOT(MERIS-BAER) 0.1 0.10 0.05 0.0 0.00 0.0 0.1 0.2 0.3 0.4 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 AOT(ATSR-DV) AOT(ATSR-DV) MERIS 0.30 443nm 550nm BAER 2000 0.25 ESA MERIS 0.20 frequency 0.15 aerosol optical thickness (BAER MERIS) 0.10 0 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30 aerosol optical thickness (ESA MERIS) aerosol optical thickness 100 Continental BAER 10 1 Phase function Phase ART 0.1 0 30 60 90 120 150 180 Angle, deg MERIS/MODIS/AATSR 0.4 AOT(MODIS)= 0.69112*AOT(MISR)+0.0361 0.30 550nm Correlation coef=0.62 0.25 0.3 0.20 0.15 0.2 AOT(MISR) 0.10 0.1 0.05 aerosol optical thickness (NASA MODIS) thickness (NASA optical aerosol 0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 AOT(ATSR-DV) 0.0 0.00.10.20.30.4 aerosol optical thickness (MISR) TNO-FMI 0.30 ESA MERIS ART, iterations BAER 0.25 0.20 0.15 0.10 aerosol optical thickness (MERIS) thickness optical aerosol 0.05 0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 aerosol optical thickness (MISR) AATSR/TNO-FMI 0.4 0.30 550nm 0.25 0.3 0.20 0.2 0.15 0.10 AOT (MODIS) AOT(PARASOL) 0.1 0.05 0.0 0.00 0.0 0.1 0.2 0.3 0.4 0.00 0.05 0.10 0.15 0.20 0.25 0.30 AOT (ATSR-DV) AOT(ATSR-DV) MERIS/MISR/POLDER/MO DIS/ SCIA/OMI 100 130 100 BAER MERIS ESA MERIS 120 MISR 90 MISR MBAER MODIS BAER MERIS 110 NASA MODIS 80 80 100 0.30 70 MISR90 550nm MODIS 60 0.25 80 60 70 50 PARASOL 0.20 60 frequency 40 frequency 50 frequency 40 0.15 30 40 30 20 0.10 20 20 10 10 0.05 0 0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0 AOT(SYNAER, SCIAMACHY+AATSR) 0.0 0.1 0.2 0.3 0.4 aerosol optical thickness0.00 aerosol optical thickness 0.00 0.05 0.10 0.15 0.20 0.25 0.30 aerosol optical thickness 0.30 0.6 AOT(TERRA) MISR MISR 550nm MODIS AATSR 0.25 0.5 MODIS 0.20 0.4 0.15 0.3 AOT 0.10 0.2 0.05 0.1 13*24AOT(SYNAER, SCIAMACHY+AATSR) 30*60 0.00 0.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.0 0.1 0.2 0.3 0.4 0.5 0.6 AOT(TERRA) AOT(OMI) AERONET 0.8 BAER-MERIS 0.7 AATSR-2 Oxford, DV AATSR-1 SWANSEA, DV 0.6 PARASOL MISR 0.5 SCIAMACHY CNR/ISAC, Italy NASA MODIS 0.4 MBAER MODIS UMD, USA ESA MERIS 0.3 0.2 satellite aerosol optical thickness 0.1 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 AERONET aerosol optical thickness AERONET AOT/440,670nm/ Station Position Time Hamburg 53.568N, 09:52 0.21 0.15 0.11 9.973E Helgoland 54.178N, 09:45 0.27 0.20 0.15 7.887E Cabauw 51.971N, 09:57 0.25 0.19 0.15 4.927E Den Haag 52.110N, 09:44 0.31 0.22 0.16 4.327E Leipzig 51.354N, 10:06 0.24 0.17 0.13 12.435E Mainz 49.999N, 09:58 0.42 0.31 0.24 8.300E Karsruhe 49.093N, 09:43 0.31 0.22 0.16 8.428E ISGDM_ 45.437N, 09:59 0.57 0.41 0.31 CNR 12.332E Venice 45.314N, 09:29 0.47 0.41 0.24 12.508E Bremen 53.05N, 8.78E 10:06 0.35 0.26 0.20 Statistical characteristics of retrieved AOT at 550nm for the area 9-11.5E, 52-52.5N (October 13th, 2005). Instrument/algorithm Average AOT Standard deviation MODIS/NASA&OMI 0.15 0.03 MISR/JPL 0.16 0.02 POLDER 0.16 0.04 MERIS/BAER 0.20 0.02 MODIS/BAER 0.20 0.01 MERIS/ESA 0.21 0.05 AATSR-2 0.22 0.06 AATSR-1 0.30 0.05 Conclusions There are local differences between algorithms Average values for large spatial areas of almost all algorithms are close *satellite aerosol retrieval team F.-M.
Recommended publications
  • Evaluation of Multiple Satellite Precipitation Products and Their Use in Hydrological Modelling Over the Luanhe River Basin, China
    water Article Evaluation of Multiple Satellite Precipitation Products and Their Use in Hydrological Modelling over the Luanhe River Basin, China Peizhen Ren, Jianzhu Li *, Ping Feng, Yuangang Guo and Qiushuang Ma State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China; [email protected] (P.R.); [email protected] (P.F.); [email protected] (Y.G.); [email protected] (Q.M.) * Correspondence: [email protected]; Tel.: +86-136-2215-1558 Received: 26 March 2018; Accepted: 14 May 2018; Published: 24 May 2018 Abstract: Satellite precipitation products are unique sources of precipitation measurement that overcome spatial and temporal limitations, but their precision differs in specific catchments and climate zones. The purpose of this study is to evaluate the precipitation data derived from the Tropical Rainfall Measuring Mission (TRMM) 3B42RT, TRMM 3B42, and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) products over the Luanhe River basin, North China, from 2001 to 2012. Subsequently, we further explore the performances of these products in hydrological models using the Soil and Water Assessment Tool (SWAT) model with parameter and prediction uncertainty analyses. The results show that 3B42 and 3B42RT overestimate precipitation, with BIAs values of 20.17% and 62.80%, respectively, while PERSIANN underestimates precipitation with a BIAs of −6.38%. Overall, 3B42 has the smallest RMSE and MAE and the highest CC values on both daily and monthly scales and performs better than PERSIANN, followed by 3B42RT. The results of the hydrological evaluation suggest that precipitation is a critical source of uncertainty in the SWAT model, and different precipitation values result in parameter uncertainty, which propagates to prediction and water resource management uncertainties.
    [Show full text]
  • Use of Simulated Reflectances Over Bright Desert
    This article was downloaded by: [European Space Agency] On: 06 August 2014, At: 01:49 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Remote Sensing Letters Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/trsl20 Use of simulated reflectances over bright desert target as an absolute calibration reference Yves Govaerts a , Sindy Sterckx b & Stefan Adriaensen b a Govaerts Consulting , Brussels , Belgium b VITO, Centre for Remote Sensing and Earth Observation , Mol , Belgium Published online: 05 Feb 2013. To cite this article: Yves Govaerts , Sindy Sterckx & Stefan Adriaensen (2013) Use of simulated reflectances over bright desert target as an absolute calibration reference, Remote Sensing Letters, 4:6, 523-531, DOI: 10.1080/2150704X.2013.764026 To link to this article: http://dx.doi.org/10.1080/2150704X.2013.764026 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.
    [Show full text]
  • (CALIPSO-PARASOL) to Evaluate Tropical Cloud Properties in the LMDZ5 GCM D
    Use of A-train satellite observations (CALIPSO-PARASOL) to evaluate tropical cloud properties in the LMDZ5 GCM D. Konsta, J.-L Dufresne, H Chepfer, A Idelkadi, G Cesana To cite this version: D. Konsta, J.-L Dufresne, H Chepfer, A Idelkadi, G Cesana. Use of A-train satellite observations (CALIPSO-PARASOL) to evaluate tropical cloud properties in the LMDZ5 GCM. Climate Dynamics, Springer Verlag, 2016, 47 (3), pp.1263-1284. 10.1007/s00382-015-2900-y. hal-01384436 HAL Id: hal-01384436 https://hal.archives-ouvertes.fr/hal-01384436 Submitted on 19 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Click here to download Manuscript: Use of A.pdf Click here to view linked References 1 Use of A-train satellite observations (CALIPSO-PARASOL) to evaluate tropical cloud properties in the LMDZ5 GCM D. Konsta, J.-L. Dufresne, H. Chepfer, A. Idelkadi, G.Cesana Laboratoire de Météorologie Dynamique (LMD/IPSL), Paris, France LMD/IPSL, UMR 8539, CNRS, Ecole Normale Supérieure, Université Pierre et Marie Curie, Ecole Polytechnique 2 3 4 5 1 6 Abstract 7 The evaluation of key cloud properties such as cloud cover, vertical profile and optical depth as well as the analysis of their 8 intercorrelation lead to greater confidence in climate change projections.
    [Show full text]
  • Quickbird (Digital Globe) Scene Over Purdue Campus, 0.6M
    QuickBird (Digital Globe) scene over Purdue campus, 0.6m GSD EROS‐A (ImageSat Int’l) scene over Purdue campus, GSD 2m Example of radiometry outside design limits – specular reflections from car windshields cause saturation and corruption of surrounding pixel data. Quickbird scene over Indianapolis qb_eph_short.txt satId = "QB02"; revNumber = 6984; stripId = "018F24"; type = "R"; version = "A"; generationTime = 2003-01-16T19:58:19.000000Z; startTime = 2003-01-15T16:30:25.613302Z; numPoints = 1536; timeInterval = 0.020; ephemList = ( ( 1, 408384.8844293977000000, -5163749.7635908620000000, 4436609.3965829052000000, -1239.4888535016760000, -5028.7879607649920000, -5720.9589832489428000, 0.0047847180901878, 0.0001857647065552, -0.0004488663884886, 0.0104184982125138, 0.0034951595622186, 0.0033038605521562), ( 2, 408360.0945991199100000, -5163850.3368877340000000, 4436494.9775853315000000, -1239.5137702293241000, -5028.6552395191966000, -5721.0706890709816000, 0.0047847180901878, 0.0001857647065552, -0.0004488663884886, 0.0104184982125138, 0.0034951595622186, 0.0033038605521562), ( 3, 408335.3042634393800000, -5163950.9075712236000000, 4436380.5563067487000000, -1239.5386860655569000, -5028.5225194834038000, -5721.1823886786469000, 0.0047847180901878, 0.0001857647065552, -0.0004488663884886, 0.0104184982125138, 0.0034951595622186, 0.0033038605521562), ( 4, 408310.5134390606000000, -5164051.4755447917000000, 4436266.1328579923000000, -1239.5636011559900000, -5028.3897989066654000, -5721.2940835802046000, 0.0047847180901878, 0.0001857647065552,
    [Show full text]
  • Satellite Contributions to the Quantitative Characterization of Biomass Burning for Climate Modeling
    Revised Version of Review Article for Atmospheric Research Satellite Contributions to the Quantitative Characterization of Biomass Burning for Climate Modeling Charles Ichoku, Ralph Kahn, Mian Chin Lab. for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA Corresponding Author: Dr. Charles Ichoku Climate & Radiation Branch, Code 613.2 NASA Goddard Space Flight Center Greenbelt, MD 20771, USA Phone : +1-301-614-6212 Fax : +1-301-614-6307 or +1-301-614-6420 Email : [email protected] Abstract Characterization of biomass burning from space has been the subject of an extensive body of literature published over the last few decades. Given the importance of this topic, we review how satellite observations contribute toward improving the representation of biomass burning quantitatively in climate and air-quality modeling and assessment. Satellite observations related to biomass burning may be classified into five broad categories: (i) active fire location and energy release, (ii) burned areas and burn severity, (iii) smoke plume physical disposition, (iv) aerosol distribution and particle properties, and (v) trace gas concentrations. Each of these categories involves multiple parameters used in characterizing specific aspects of the biomass-burning phenomenon. Some of the parameters are merely qualitative, whereas others are quantitative, although all are essential for improving the scientific understanding of the overall distribution (both spatial and temporal) and impacts of biomass burning. Some of the qualitative satellite datasets, such as fire locations, aerosol index, and gas estimates have fairly long-term records. They date back as far as the 1970s, following the launches of the DMSP, Landsat, NOAA, and Nimbus series of earth observation satellites.
    [Show full text]
  • PARASOL/GRASP No Location Specific Assumptions!!! Bodélé Depression AOD(565 Nm) Scale Height (M) Sensitivity Test for Aerosol Vertical Information Retrieval
    GRASP aerosol from POLDER, 3MI, etc. polarimeters: towards estimation PM2.5 Oleg Dubovik1, Anton Lopatin1, Pavel Litvinov2, Yevgeny Derimian1, Tatyana Lapyonok1, Anton Lopatin1, David Fuertes2, Fabrice Ducos1, Xin Huang1, Benjamin Torres2, Michael Aspsetsberger3 and Christian Federspiel3 1 - Laboratoire d’Optique Atmosphérique, CNRS – Université Lille 1, France; 2 - GRASP-SAS, LOA, Université Lille 1, Villeneuve d’Ascq, France 3 - Catalysts GmbH, High Performance Computing, Linz, Austria AC-VC-13, Satellite aerosol for AQ, CNES, Paris, France, 29 June, 2017 Strength of GRASP algorithm concept: Based on accurate rigorous physics and math; Versatile (applicable to different sensors and retrieval of different parameters); Designed for multi-sensor retrieval (satellite, ground- based, airborne; polar and geostationary, ); Not-stagnant (different concept can be tested and compared within algorithm); Flexible: - generalizable (to IR, hypo spectral, to retrieval of gases and clouds, etc.); - or degradable (to less accurate but fast solution, LUT,…); Practical (rather fast and easy to use for given level fundamental complexity); Current and potential applications: Satellite instruments: polar: POLDER/PARASOL, 3MI/MetOp-SG, MERIS/Envisat, Sentinel-3 (OLCI, SLSTR), etc. geostationary: Sentinel-4, FCI, GOCO, Himawari-8, etc. Ground-based, airborne and laboratory instruments: passive: AERONET radiometers, sun/luna/star-photometers, etc. active: multi-wavelength elastic and non-elastic lidars; airborne and laboratory: polar nephelometers, Multi-instrument synergy: ground-based: lidar + radiometers + photometers , sun/luna/star-photometers, etc. satellite: OLCI + SLSTR, polarimeter + lidar (e.g. PARASOL + CALIPSO) Support: CNES (ТOSCA, RD), ANR (CaPPA), ESA (S-4, MERIS/S-3, GPGPU, CCI, CCI-2,CC+); EUMETSAT (3MI NRT), FP6-7 (ACTRIS 1-2), Catalysts GmbH, etc.
    [Show full text]
  • Principles of Active Remote Sensing: Radar. Radar Sensing of Clouds and Precipitation. Objectives: 1
    Lecture 13. Principles of active remote sensing: Radar. Radar sensing of clouds and precipitation. Objectives: 1. Radar basics. Main types of radars. 2. Basic antenna parameters. 3. Particle backscattering and radar equation. 4. Sensing precipitation and clouds with ground-based and space-borne radars (weather radars, TRMM, and CloudSat). Required reading: S: 8.1, p.401-402, 5.7, 8.2.1, 8.2.2, 8.2.3, 8.3 Additional/advanced reading: Tutorials on ground-based weather radars: http://www.srh.noaa.gov/srh/jetstream/doppler/doppler_intro.htm http://www.weathertap.com/guides/radar/weather-radar-tutorial.html Tropical Rainfall Measuring Mission (TRMM) web site: http://trmm.gsfc.nasa.gov/ http://www.eorc.jaxa.jp/en/hatoyama/satellite/satdata/trmm_e.html Liu, Zhong, Dana Ostrenga, William Teng, Steven Kempler, 2012: Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications. Bull. Amer. Meteor. Soc., 93, 1317–1325. CloudSat web site: http://cloudsat.atmos.colostate.edu/ CloudSat Data Center: http://www.cloudsat.cira.colostate.edu/ 1 1. Radar basics. Main types of radars. Radar is an active remote sensing system operating at the microwave wavelength. Radar is a ranging instrument: (RAdio Detection And Ranging) Basic principles: The sensor transmits a microwave (radio) signal towards a target and detects the backscattered radiation. The strength of the backscattered signal is measured to discriminate between different targets and the time delay between the transmitted and reflected signals determines the distance (or range) to the target. Two primary advantages of radars: all-weather and day /night imaging Radar modes of operation: Constant wave (CW) mode: continuous beam of electromagnetic radiation is transmitted and received => provides information about the path integrated backscattering radiation Pulsed mode: transmits short pulses (typically 10-6-10-8 s) and measures backscattering radiation (also called echoes) as a function of range.
    [Show full text]
  • POLDER-3 / PARASOL Land Surface Level 3 Albedo & NDVI Products
    Date Issued :08.09.2010 Issue : I2.00 POLDER-3 / PARASOL Land Surface Level 3 Albedo & NDVI Products Data Format and User Manual Issue 2.00 8th September 2010 Author : R. Lacaze (HYGEOS) POLDER-3/PARASOL Land Surface Level-3 Albedo and NDVI Products. Product Format & User manual Change Record Issue/Rev Date Pages Description of Change Release I1.00 01.03.2006 All First Issue I2.00 08.09.2010 All Focus on Albedos and NDVI provided in raw binary format. Page 3 sur 17 POLDER-3/PARASOL Land Surface Level-3 Albedo and NDVI Products. Product Format & User manual Table of contents 1 Background ................................................................................................................... 6 2 Introduction ................................................................................................................... 7 3 Algorithm ....................................................................................................................... 8 3.1 The spectral directional and hemispheric albedos .................................................... 8 3.2 The broadband albedos ............................................................................................ 9 3.3 The normalized Difference Vegetation Index ............................................................ 9 4 Product Description .................................................................................................... 11 4.1 Product identification .............................................................................................
    [Show full text]
  • Synergetic Aerosol Retrieval from SCIAMACHY and AATSR Onboard ENVISAT
    Atmos. Chem. Phys. Discuss., 8, 2903–2951, 2008 Atmospheric www.atmos-chem-phys-discuss.net/8/2903/2008/ Chemistry © Author(s) 2008. This work is distributed under and Physics the Creative Commons Attribution 3.0 License. Discussions Synergetic aerosol retrieval from SCIAMACHY and AATSR onboard ENVISAT T. Holzer-Popp1, M. Schroedter-Homscheidt1, H. Breitkreuz2, D. Martynenko1, and L. Kluser¨ 1,3 1German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Oberpfaffenhofen, Germany 2Julius-Maximilians-University of Wurzburg,¨ Department of Geography, Wurzburg,¨ Germany 3University of Augsburg, Institute of Physics, Augsburg, Germany Received: 3 January 2008 – Accepted: 8 January 2008 – Published: 13 February 2008 Correspondence to: T. Holzer-Popp ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 2903 Abstract The synergetic aerosol retrieval method SYNAER (Holzer-Popp et al., 2002a) has been extended to the use of ENVISAT measurements. It exploits the complementary infor- mation of a radiometer and a spectrometer onboard one satellite platform to extract 5 aerosol optical depth (AOD) and speciation (as choice from a representative set of pre-defined mixtures of water-soluble, soot, mineral dust, and sea salt components). SYNAER consists of two retrieval steps. In the first step the radiometer is used to do accurate cloud screening, and subsequently to quantify the aerosol optical depth (AOD) at 550 nm and spectral surface brightness through a dark field technique. In the second 10 step the spectrometer is applied to choose the most plausible aerosol type through a least square fit of the measured spectrum with simulated spectra using the AOD and surface brightness retrieved in the first step.
    [Show full text]
  • Chenab River, Pakistan)
    water Article Hydrologic Assessment of TRMM and GPM-Based Precipitation Products in Transboundary River Catchment (Chenab River, Pakistan) Ehtesham Ahmed 1,* , Firas Al Janabi 1, Jin Zhang 2 , Wenyu Yang 3, Naeem Saddique 4 and Peter Krebs 1 1 Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01069 Dresden, Germany; fi[email protected] (F.A.J.); [email protected] (P.K.) 2 Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, China; [email protected] 3 Institute of Environmental Sciences, Brandenburgische Technische Universität, 03046 Cottbus, Germany; [email protected] 4 Institute of Hydrology and Meteorology, Technische Universität Dresden, 01062 Dresden, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-1525-6918549 Received: 9 June 2020; Accepted: 1 July 2020; Published: 3 July 2020 Abstract: Water resources planning and management depend on the quality of climatic data, particularly rainfall data, for reliable hydrological modeling. This can be very problematic in transboundary rivers with limited disclosing of data among the riparian countries. Satellite precipitation products are recognized as a promising source to substitute the ground-based observations in these conditions. This research aims to assess the feasibility of using a satellite-based precipitation product for better hydrological modeling in an ungauged and riparian river in Pakistan, i.e., the Chenab River. A semidistributed hydrological model of The soil and water assessment tool (SWAT) was set up and two renowned satellite precipitation products, i.e., global precipitation mission (GPM) IMERG-F v6 and tropical rainfall measuring mission (TRMM) 3B42 v7, were selected to assess the runoff pattern in Chenab River.
    [Show full text]
  • Orbital Debris Collision Avoidance
    National Aeronautics and Space Administration USA Space Debris Environment and Policy Updates Presentation to the 45th Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space United Nations 11-22 February 2008 National Aeronautics and Space Administration Presentation Outline • Satellite Launches and Reentries in 2007 • Change in LEO Environment • Collision Avoidance • Retirement of USA GEO Spacecraft in 2007 • Satellite Fragmentations in 2007 • New NASA Orbital Debris Mitigation Requirements and Standards • New ISS Jettison Policy 2 National Aeronautics and Space Administration Satellite Launch Traffic in 2007 • The number of world-wide space launches in 2007 to reach Earth orbit or beyond was : 130 120 – Russian Federation 25 International Annual – USA 18 110 Launch Rate – China 10 100 – France 6 – India 3 90 – Japan 2 80 – Israel 1 70 60 50 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 • Cataloged Objects in Earth Orbit (from USA Space Surveillance Network): Total USA 1 January 2007 9944 4070 1 January 2008 12456 4200 3 National Aeronautics and Space Administration Historical Growth of the Large Earth-Satellite Population 13000 12000 Total 11000 10000 9000 s t c 8000 e j b O 7000 d e g 6000 o l a t Fragmentation Debris a 5000 C f o r 4000 e b m 3000 u N Spacecraft 2000 Rocket Bodies 1000 Mission-related Debris 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 0 0 0 0 0 9 9 9 9 9 8 8 8 8 8 7 7 7 7 7 6 6 6 6 6 5 5 0 0 0 0 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 National Aeronautics and Space Administration NASA Space Missions of 2007 • Seven NASA space missions were undertaken in 2007.
    [Show full text]
  • Ppt Observation
    CNES Current and future satellite programmes including brief highlights on Climatology and Meteorology Philippe Veyre, CNES CGMS-42 CNES-WP-01.ppt Observation CURRENT PROGRAMMES Parasol Jason 1 Calipso Iasi2/MetopB Saral- (2001) AltiKa 2004 20052006 20072008 2009 2010 2011 2012 2013 Spot 5 (2002) Iasi1/MetopA Jason 2 Smos Megha-Tropiques Pléiades Observation FUTURE PROGRAMMES Jason 3 Merlin Swo t GMES GMES Sent 3 Jason -CS 2013 20142015 20162017 2018 2019 2020 2021 2022 IASI-NG1/ Iasi 3/MetopC CFOSAT Metop SG A CNES missions related to climatology and meteorology atmosphere 1. MeghaMegha--TropiquesTropiques (CNES-ISRO), launched in October 2011, studies the water and energy cycles in the tropical atmosphere with MW instruments (Saphir, Madras) and a Broadband VIS/IR radiometer (Scarab). Madras was unfortunately lost end of January 2013. Madras data is still being evaluated and not yet provided to the whole scientific community. The tropical cyclone Thane as seen by Saphir on 29 December 2011. 4 CNES missions related to climatology and meteorology atmosphere ((continuedcontinued)) 2. Calipso (NASA-CNES A-Train) launched in April 2006, studies the properties of clouds and aerosols with a lidar (CALIOP, NASA) and an IR imager (IIR, CNES) on a platform provided by CNES. Extension of the mission decided until end of 2015, further extension under consideration. 3. Parasol (A -Train) launched in December 2004, studies the properties of clouds and aerosols with POLDER, a multi-viewing and multi-polarisation imager. End of the mission in December 2013. 5 CNES missions related to climatology and meteorology atmosphere ((continuedcontinued)) 4. IASI and IASIIASI--NGNG (CNES-Eumetsat) infrared sounders on Metop then Metop-SG (2021-2040).
    [Show full text]