Fuzzy Logic with Engineering Applications

Total Page:16

File Type:pdf, Size:1020Kb

Fuzzy Logic with Engineering Applications FUZZY LOGIC WITH ENGINEERING APPLICATIONS Third Edition Fuzzy L ogic w ith Engine e ring A pplic ations, Third Edition Timothy J. Ross © 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-74376-8 FUZZY LOGIC WITH ENGINEERING APPLICATIONS Third Edition Timothy J. Ross University of New Mexico, USA A John Wiley and Sons, Ltd., Publication This edition first published 2010 © 2010 John Wiley & Sons, Ltd First edition published 1995 Second edition published 2004 Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Library of Congress Cataloging-in-Publication Data Ross, Timothy J. Fuzzy logic with engineering applications / Timothy J. Ross.–3rd ed. p. cm. Includes bibliographical references and index. ISBN 978-0-470-74376-8 (cloth) 1. Engineering mathematics. 2. Fuzzy logic. I. Title. TA331.R74 2010 620.001511313–dc22 2009033736 A catalogue record for this book is available from the British Library. ISBN: 978-0-470-74376-8 Set in 10/12pt Times Roman by Laserwords Pvt Ltd, Chennai, India Printed in Singapore by Fabulous Printers Pte Ltd This book is dedicated to my brother Larry, my cousin Vicki Ehlert and my best friends Rick and Judy Brake, all of whom have given me incredible support over the past 5 years. Thank you so much for helping me deal with all my angst! CONTENTS About the Author xiii Preface to the Third Edition xv 1 Introduction 1 The Case for Imprecision 2 A Historical Perspective 3 The Utility of Fuzzy Systems 6 Limitations of Fuzzy Systems 8 The Illusion: Ignoring Uncertainty and Accuracy 10 Uncertainty and Information 13 The Unknown 14 Fuzzy Sets and Membership 14 Chance Versus Fuzziness 16 Sets as Points in Hypercubes 18 Summary 20 References 20 Problems 21 2 Classical Sets and Fuzzy Sets 25 Classical Sets 26 Operations on Classical Sets 28 Properties of Classical (Crisp) Sets 29 Mapping of Classical Sets to Functions 32 Fuzzy Sets 34 Fuzzy Set Operations 35 Properties of Fuzzy Sets 37 Alternative Fuzzy Set Operations 40 Summary 41 References 42 Problems 42 viii CONTENTS 3 Classical Relations and Fuzzy Relations 48 Cartesian Product 49 Crisp Relations 49 Cardinality of Crisp Relations 51 Operations on Crisp Relations 52 Properties of Crisp Relations 52 Composition 53 Fuzzy Relations 54 Cardinality of Fuzzy Relations 55 Operations on Fuzzy Relations 55 Properties of Fuzzy Relations 55 Fuzzy Cartesian Product and Composition 55 Tolerance and Equivalence Relations 62 Crisp Equivalence Relation 63 Crisp Tolerance Relation 64 Fuzzy Tolerance and Equivalence Relations 65 Value Assignments 68 Cosine Amplitude 69 Max–Min Method 71 Other Similarity Methods 71 Other Forms of the Composition Operation 72 Summary 72 References 73 Problems 73 4 Properties of Membership Functions, Fuzzification, and Defuzzification 89 Features of the Membership Function 90 Various Forms 92 Fuzzification 93 Defuzzification to Crisp Sets 95 λ-Cuts for Fuzzy Relations 97 Defuzzification to Scalars 98 Summary 110 References 111 Problems 112 5 Logic and Fuzzy Systems 117 Part I Logic 117 Classical Logic 118 Proof 124 Fuzzy Logic 131 Approximate Reasoning 134 Other Forms of the Implication Operation 138 Part II Fuzzy Systems 139 Natural Language 140 Linguistic Hedges 142 CONTENTS ix Fuzzy (Rule-Based) Systems 145 Graphical Techniques of Inference 148 Summary 159 References 161 Problems 162 6 Development of Membership Functions 174 Membership Value Assignments 175 Intuition 175 Inference 176 Rank Ordering 178 Neural Networks 179 Genetic Algorithms 189 Inductive Reasoning 199 Summary 206 References 206 Problems 207 7 Automated Methods for Fuzzy Systems 211 Definitions 212 Batch Least Squares Algorithm 215 Recursive Least Squares Algorithm 219 Gradient Method 222 Clustering Method 227 Learning From Examples 229 Modified Learning From Examples 233 Summary 242 References 242 Problems 243 8 Fuzzy Systems Simulation 245 Fuzzy Relational Equations 250 Nonlinear Simulation Using Fuzzy Systems 251 Fuzzy Associative Memories (FAMS) 255 Summary 264 References 265 Problems 266 9 Decision Making with Fuzzy Information 276 Fuzzy Synthetic Evaluation 278 Fuzzy Ordering 280 Nontransitive Ranking 283 Preference and Consensus 285 Multiobjective Decision Making 289 Fuzzy Bayesian Decision Method 294 Decision Making Under Fuzzy States and Fuzzy Actions 304 Summary 317 x CONTENTS References 318 Problems 319 10 Fuzzy Classification 332 Classification by Equivalence Relations 333 Crisp Relations 333 Fuzzy Relations 335 Cluster Analysis 339 Cluster Validity 340 c-Means Clustering 340 Hard c-Means (HCM) 341 Fuzzy c-Means (FCM) 349 Fuzzy c-Means Algorithm 352 Classification Metric 357 Hardening the Fuzzy c-Partition 360 Similarity Relations from Clustering 361 Summary 362 References 362 Problems 363 11 Fuzzy Pattern Recognition 369 Feature Analysis 370 Partitions of the Feature Space 371 Single-Sample Identification 371 Multifeature Pattern Recognition 378 Image Processing 390 Summary 398 References 399 Problems 400 12 Fuzzy Arithmetic and the Extension Principle 408 Extension Principle 408 Crisp Functions, Mapping, and Relations 409 Functions of Fuzzy Sets – Extension Principle 411 Fuzzy Transform (Mapping) 411 Practical Considerations 413 Fuzzy Arithmetic 418 Interval Analysis in Arithmetic 420 Approximate Methods of Extension 422 Vertex Method 423 DSW Algorithm 426 Restricted DSW Algorithm 428 Comparisons 429 Summary 432 References 433 Problems 433 CONTENTS xi 13 Fuzzy Control Systems 437 Control System Design Problem 439 Control (Decision) Surface 440 Assumptions in a Fuzzy Control System Design 441 Simple Fuzzy Logic Controllers 441 Examples of Fuzzy Control System Design 442 Aircraft Landing Control Problem 446 Fuzzy Engineering Process Control 453 Classical Feedback Control 453 Fuzzy Control 457 Fuzzy Statistical Process Control 464 Measurement Data – Traditional SPC 466 Attribute Data – Traditional SPC 472 Industrial Applications 478 Summary 479 References 482 Problems 484 14 Miscellaneous Topics 501 Fuzzy Optimization 501 One-Dimensional Optimization 502 Fuzzy Cognitive Mapping 508 Concept Variables and Causal Relations 508 Fuzzy Cognitive Maps 510 Agent-Based Models 520 Summary 524 References 525 Problems 526 15 Monotone Measures: Belief, Plausibility, Probability, and Possibility 530 Monotone Measures 531 Belief and Plausibility 532 Evidence Theory 537 Probability Measures 540 Possibility and Necessity Measures 542 Possibility Distributions as Fuzzy Sets 549 Possibility Distributions Derived from Empirical Intervals 551 Deriving Possibility Distributions from Overlapping Intervals 552 Redistributing Weight from Nonconsonant to Consonant Intervals 554 Comparison of Possibility Theory and Probability Theory 568 Summary 569 References 571 Problems 572 Index 579 ABOUT THE AUTHOR Timothy J. Ross is Professor and Regents’ Lecturer of Civil Engineering at the Uni- versity of New Mexico. He received his PhD degree in Civil Engineering from Stanford University, his MS from Rice University, and his BS from Washington State Univer- sity. Professor Ross has held previous positions as Senior Research Structural Engineer, Air Force Weapons Laboratory, from 1978 to 1986; and Vulnerability Engineer, Defense Intelligence Agency, from 1973 to 1978. Professor Ross has authored more than 130 pub- lications and has been active in the research and teaching of fuzzy logic since 1983. He is the founding Co-Editor-in-Chief of the International Journal of Intelligent and Fuzzy Systems, the co-editor of Fuzzy Logic and Control: Software and Hardware Applications, and the co-editor of Fuzzy Logic and Probability Applications: Bridging the Gap.His sabbatical leaves in 2001–2002 at the University of Calgary, Alberta, Canada, and most recently in 2008–2009 at Gonzaga University in Spokane, Washington, have resulted in the education of numerous additional students and faculty in the subject of fuzzy logic as he transferred this technology to both those institutions. Dr Ross continues to be active in applying fuzzy logic in his areas of research: decision support systems, reliability
Recommended publications
  • The State of the Art in Developing Fuzzy Ontologies: a Survey
    The State of the Art in Developing Fuzzy Ontologies: A Survey Zahra Riahi Samani1, Mehrnoush Shamsfard2, 1Faculty of Computer Science and Engineering, Shahid Beheshti University Email:[email protected] 1Faculty of Computer Science and Engineering, Shahid Beheshti University Email:[email protected] Abstract Conceptual formalism supported by typical ontologies may not be sufficient to represent uncertainty information which is caused due to the lack of clear cut boundaries between concepts of a domain. Fuzzy ontologies are proposed to offer a way to deal with this uncertainty. This paper describes the state of the art in developing fuzzy ontologies. The survey is produced by studying about 35 works on developing fuzzy ontologies from a batch of 100 articles in the field of fuzzy ontologies. 1. Introduction Ontology is an explicit, formal specification of a shared conceptualization in a human understandable, machine- readable format. Ontologies are the knowledge backbone for many intelligent and knowledge based systems [1, 2]. However, in some domains, real world knowledge is imprecise or vague. For example in a search engine one may be interested in ”an extremely speedy, small size, not expensive car”. Classical ontologies based on crisp logic are not capable of handling this kind of knowledge. Fuzzy ontologies were proposed as a combination of fuzzy theory and ontologies to tackle such problems. On the topic of fuzzy ontology, we studied about 100 research articles which can be categorized into four main categories. The first category includes the research works on applying fuzzy ontologies in a specific domain- application to improve the performance of the application such as group decision making systems [3] or visual video content analysis and indexing [4].The ontology development parts of the works in this category were done manually or were not of much concentration.
    [Show full text]
  • A Fuzzy Description Logic
    From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. A Fuzzy Description Logic Umberto Straccia I.E.I - C.N.R. Via S. Maria, 46 I-56126 Pisa (PI) ITALY [email protected] Abstract is such a concept: we may say that an individual tom is an instance of the concept Tall only to a certain degree Description Logics (DLs, for short) allow reasoning n ∈ [0, 1] depending on tom’s height. about individuals and concepts, i.e. set of individuals with common properties. Typically, DLs are limited to Fuzzy logic directly deals with the notion of vague- dealing with crisp, well dened concepts. That is, con- ness and imprecision using fuzzy predicates. Therefore, cepts for which the problem whether an individual is it oers an appealing foundation for a generalisation of an instance of it is a yes/no question. More often than DLs in order to dealing with such vague concepts. not, the concepts encountered in the real world do not The aim of this work is to present a general fuzzy DL, have a precisely dened criteria of membership: we which combines fuzzy logic with DLs. In particular we may say that an individual is an instance of a concept will extend DLs by allowing expressions of the form only to a certain degree, depending on the individual’s hC(a) ni (n ∈ [0, 1]), e.g. hTall(tom) .7i, with intended properties. Concepts of this kind are rather vague than precise. As fuzzy logic directly deals with the notion of meaning “the membership degree of individual a being vagueness and imprecision, it oers an appealing foun- an instance of concept C is at least n”.
    [Show full text]
  • A Unifying Field in Logics: Neutrosophic Logic
    University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2007 A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS - 6th ed. Florentin Smarandache University of New Mexico, [email protected] Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Logic and Foundations Commons, Other Applied Mathematics Commons, and the Set Theory Commons Recommended Citation Florentin Smarandache. A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS - 6th ed. USA: InfoLearnQuest, 2007 This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (sixth edition) InfoLearnQuest 2007 FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (sixth edition) This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/basic Copyright 2007 by InfoLearnQuest. Plenty of books can be downloaded from the following E-Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm Peer Reviewers: Prof. M. Bencze, College of Brasov, Romania.
    [Show full text]
  • A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics
    FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 1 Contents: Preface by C. Le: 3 0. Introduction: 9 1. Neutrosophy - a new branch of philosophy: 15 2. Neutrosophic Logic - a unifying field in logics: 90 3. Neutrosophic Set - a unifying field in sets: 125 4. Neutrosophic Probability - a generalization of classical and imprecise probabilities - and Neutrosophic Statistics: 129 5. Addenda: Definitions derived from Neutrosophics: 133 2 Preface to Neutrosophy and Neutrosophic Logic by C.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMl films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Infonnation Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 AN ANTHROPOLOGICAL INVESTIGATION OF THREE INFORMATION TECHNOLOGY FIRMS USING JAMES C. SCOTT'S THEORIES RELATED TO EVERYDAY FORMS OF RESISTANCE TO POWER DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Cynthia Joseph Smith, B.A., M.A.
    [Show full text]
  • Integrating Fuzzy Logic in Ontologies
    INTEGRATING FUZZY LOGIC IN ONTOLOGIES Silvia Calegari and Davide Ciucci Dipartimento di Informatica, Sistemistica e Comunicazione, Universita` degli Studi di Milano Bicocca, via Bicocca degli Arcimboldi 8, 20126 Milano, Italy Keywords: Concept modifiers, fuzzy logics, fuzzy ontologies, membership modifiers, KAON, ontology editor. Abstract: Ontologies have proved to be very useful in sharing concepts across applications in an unambiguous way. Nowadays, in ontology-based applications information is often vague and imprecise. This is a well-known problem especially for semantics-based applications, such as e-commerce, knowledge management, web por- tals, etc. In computer-aided reasoning, the predominant paradigm to manage vague knowledge is fuzzy set theory. This paper presents an enrichment of classical computational ontologies with fuzzy logic to create fuzzy ontologies. So, it is a step towards facing the nuances of natural languages with ontologies. Our pro- posal is developed in the KAON ontology editor, that allows to handle ontology concepts in an high-level environment. 1 INTRODUCTION A possible solution to handle uncertain data and, hence, to tackle these problems, is to incorporate fuzzy logic into ontologies. The aim of fuzzy set An ontology is a formal conceptualization of a partic- theory (Klir and Yuan, 1995) introduced by L. A. ular domain of interest shared among heterogeneous Zadeh (Zadeh, 1965) is to describe vague concepts applications. It consists of entities, attributes, rela- through a generalized notion of set, according to tionships and axioms to provide a common under- which an object may belong to a certain degree (typ- standing of the real world (Lammari and Mtais, 2004; ically a real number from the interval [0,1]) to a set.
    [Show full text]
  • Fuzzy Types: a Framework for Handling Uncertainty About Types of Objects Tru H
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector International Journal of Approximate Reasoning 25 (2000) 217±253 www.elsevier.com/locate/ijar Fuzzy types: a framework for handling uncertainty about types of objects Tru H. Cao a,*, Peter N. Creasy b a Department of Engineering Mathematics, Arti®cial Intelligence Group, University of Bristol, Bristol BS8 1TR, UK b Department of Computer Science and Electrical Engineering, University of Queensland, Qld 4072, Australia Received 1 November 1999; received in revised form 1 June 2000; accepted 1 July 2000 Abstract Like other kinds of information, types of objects in the real world are often found to be ®lled with uncertainty and/or partial truth. It may be due to either the vague nature of a type itself or to incomplete information in the process determining it even if the type is crisp, i.e., clearly de®ned. This paper proposes a framework to deal with uncertainty and/or partial truth in automated reasoning systems with taxonomic information, and in particular type hierarchies. A fuzzy type is formulated as a pair combining a basic type and a fuzzy truth-value, where a basic type can be crisp or vague (in the intuitive sense). A structure for a class of fuzzy truth-value lattices is proposed for this con- struction. The fuzzy subtype relation satisfying intuition is de®ned as a partial order between two fuzzy types. As an object may belong to more than one (fuzzy) type, conjunctive fuzzy types are introduced and their lattice properties are studied.
    [Show full text]
  • PREPRINT Intelligence, Science and the Ignorance Hypothesis David R
    PREPRINT Intelligence, Science and the Ignorance Hypothesis David R. Mandel Defence Research and Development Canada Intelligence organizations perform many functions. For example, they conduct covert operations that would be too politically sensitive for militaries to undertake as explicit missions. They also collect vast amounts of data that are inaccessible to others, except perhaps other intelligence organizations. However, the principal purpose of information collection is to produce substantive intelligence that can inform policymakers, commanders and other decision-makers who guard their nation’s interests and security. The fundamental premise of intelligence is that it serves to improve the planning and decision-making of these elite decision-makers by elevating the debate about policy options (Kent, 1955). If this were not so, the multi-billion dollar annual budgets would not be justified. If the premise is justified, then clearly the intellectual rigor and accuracy with which intelligence assessments are produce is of paramount importance. How do intelligence organizations ensure that the intelligence assessments they have produced are as accurate and sound as they can be? In this chapter, I will propose that the short answer is “not very well at all.” Methods and policies for ensuring analytic rigor have surely been implemented over the past several decades, but what has been endemic to these efforts is a rather pre-scientific, if not a fully anti-scientific, attitude towards their development and testing. After reviewing some examples of intelligence practices intended to ensure analytic rigor, I advance what I call the ignorance hypothesis to explain the absence of scientific attempts to discern what practices work from those that do not work so that intelligence organizations can effectively learn and adapt to the challenges of the modern world.
    [Show full text]
  • What Is a Fuzzy Concept Lattice? *
    ? WhatWhat is is a a fuzzy fuzzy concept concept lattice? lattice? ? Radim Bˇelohl´avek and Vil´em Vychodil Radim Bˇelohl´avek and Vil´em Vychodil Department of Computer Science, Palacky University, Olomouc DepartmentTomkova of Computer 40, CZ-779 Science, 00 Olomouc, Palack´yUniversity, Czech Republic Olomouc Tomkova{radim.belohlavek, 40, CZ-779 00 vilem.vychodil Olomouc, Czech}@upol.cz Republic {radim.belohlavek, vilem.vychodil}@upol.cz Abstract. The paper is an overview of several approaches to the notion of a concept lattice from the point of view of fuzzy logic. The main aim is to clarify relationships between the various approaches. Keywords: formal concept analysis, fuzzy logic, fuzzy attribute 1 Introduction Formal concept analysis (FCA) deals with a particular kind of analysis of data which, in the basic setting, has the form of a table with rows corresponding to objects, columns corresponding to attributes, and table entries containing 1’s and 0’s depending on whether an object has or does not have an attribute (we assume basic familiarity with FCA and refer to [24] for information). The basic setting is well-suited for attributes which are crisp, i.e. each object of the domain of applicability of the attribute either has (1) or does not have (0) the attribute. Many attributes are fuzzy rather than crisp. That is to say, it is a matter of degree to which an object has a (fuzzy) attribute. For instance, when asking whether a man with a height of 182 cm is tall, one probably gets an answer like “not completely tall but almost tall” or “to a high degree tall”, etc.
    [Show full text]
  • Modeling Fuzzy Rules with Description Logics
    Wright State University CORE Scholar Computer Science and Engineering Faculty Publications Computer Science & Engineering 11-1-2005 Modeling Fuzzy Rules with Description Logics Sudhir Agarwal Pascal Hitzler [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/cse Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons Repository Citation Agarwal, S., & Hitzler, P. (2005). Modeling Fuzzy Rules with Description Logics. CEUR Workshop Proceedings, 188, 5. https://corescholar.libraries.wright.edu/cse/75 This Conference Proceeding is brought to you for free and open access by Wright State University’s CORE Scholar. It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Modeling Fuzzy Rules with Description Logics Sudhir Agarwal and Pascal Hitzler Institute of Applied Informatics and Formal Description Methods (AIFB), University of Karlsruhe (TH), Germany. {agarwal,hitzler}@aifb.uni-karlsruhe.de Abstract. In real application scenarios, input data and knowledge is often vague. Likewise, it is often the case that exact reasoning over data is impossible due to complex dependencies between input data and tar- get outputs. For practical applications, however, good approximations often suffice, and efficient calculation of an approximate answer is often preferable over complex processing which may take a long time to come up with an exact answer. Fuzzy logic supports both features by provid- ing fuzzy membership functions and fuzzy IF-THEN rule bases.
    [Show full text]
  • Dariusz Piętka ( Cardinal Stefan Wyszy Ń Ski University in Warsaw ) 
    ORGANON 47:2015 Dariusz Piętka ( Cardinal Stefan Wyszy ń ski University in Warsaw ) THE CONCEPT OF INTUITION AND ITS ROLE IN PLATO AND ARISTOTLE Abstract . The subject of the article is intuition and its role in philosophical cognition in Plato and Aristotle. The mai n problem concerns the rationality of intuitive knowledge. Plato is the heir of the Parmenidean doctrinal tradition of being and cognition. According to him, intuition is the immediate perceiving of ideas. This may be supernatural intuition or rational int uition. The first is perceiving ideas seen before birth, the second is recollection of knowledge or cognition of ideas in the mind. The aim of intuitive knowledge is the definition of the essence. Plotinus is the successor to Plato’s theory of supernatura l intuition. Aristotle used intuition to formulate the first principles of science or to define the goals of activity. Each type is characterised by common features, such as directness, comprehensiveness of cognition and obviousness. There are differences between the types of intuition. First of all, they concern whether the object is natural or supernatural, its intersubjectivity, and the sources of intuitive cognition. In the case of intersubjectivity, Aristotle introduced a confirmation procedure concer ning some of principles known intuitively. The idea of confirmation is forced by accusations against, for example, the principle of non – contradiction, which made Aristotle present a certain extra – intuitive way for it to be substantiated. Key – words: Intuit ion, nous , Plato, Aristotle, ancient theory of knowledge. Introduction Science, or more generally knowledge, is an organised set of propositions. Their arrangement, broadly speaking, is that particular propositions from the set are justified by proposit ions formerly accepted which are substantiated by Addr ess for correspondence: Instytu t Filozofii UKSW, W óy cickiego 1/3, 01 – 938 Warszawa , Pol and.
    [Show full text]
  • Patent Verdicts: Improving the Quality of Appellate Review by Incorporating Fuzzy Logic in Jury Verdicts Michael T
    Hastings Law Journal Volume 59 | Issue 5 Article 11 1-2008 The yM th of "Lucky" Patent Verdicts: Improving the Quality of Appellate Review by Incorporating Fuzzy Logic in Jury Verdicts Michael T. Nguyen Follow this and additional works at: https://repository.uchastings.edu/hastings_law_journal Part of the Law Commons Recommended Citation Michael T. Nguyen, The Myth of "Lucky" Patent Verdicts: Improving the Quality of Appellate Review by Incorporating Fuzzy Logic in Jury Verdicts, 59 Hastings L.J. 1257 (2008). Available at: https://repository.uchastings.edu/hastings_law_journal/vol59/iss5/11 This Note is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings Law Journal by an authorized editor of UC Hastings Scholarship Repository. For more information, please contact [email protected]. The Myth of "Lucky" Patent Verdicts: Improving the Quality of Appellate Review by Incorporating Fuzzy Logic in Jury Verdicts MICHAEL T. NGUYEN* Everything is vague to a degree you do not realize till you have tried to make it precise. - Bertrand Russell INTRODUCTION Patent jury verdicts resemble lottery jackpot winnings in a multitude of ways.' For many years, commentators have lamented the unpredictable nature of patent jury verdicts.' The damages awards of these patent verdicts, like lottery jackpots, are measured in the millions of dollars. For example, in a recent patent case, Verizon v. Vonage, the jury awarded Verizon $58 million in damages.4 For better or for worse, * J.D., University of California, Hastings College of the Law, 2008; B.A., Southwestern University, 2003.
    [Show full text]