Some Aspects of Fluorene Chemistry and Of

Total Page:16

File Type:pdf, Size:1020Kb

Some Aspects of Fluorene Chemistry and Of 1_::rr:r ' .i ¿66r ãt$$E[üiEls '''.:' : i , 'goMlICg dO e{&gfn ,gO $üSfiC SSú EOfl Sü[E@IObffi SSü , ,{o tE¡ttr[ILmaà Íru&$rd uI ?gofiIs?E ðo Ã.úIsftEfÀINß gHü do EOEvEIffiã g&!r srIGIIüg güfiIcrìfÐ ,{o Ãslaoyc lr¡r& o& rîrÍ&Ifrtag " SIS$Eü T -:.'.: : : ÀIllì[E[$.c.Iï¡':s$rof I.fT ETIEÐTEE TXSüIEEOiãNÍ fftrf" EO C[f $IÍ6II$IEC gMffiOAlIt ,fO SüOSrßIf ffiOS 10 Ð8. E. E. CEÁ¡I,ESWOBS FOh EIg TãVAE'¡]Á3I,E ÂÐYI6E .å,XÐ TBFITIIEI¡T ?ÀtsIETT êT]ÐÂTCE IT tsHTS FTESÍ 9EüEEEK XTBO THE Bts,å,IT OF gEPeîr EEEiEAkGgrIHg ^AElEgR rS €IRAßFÛE| i:i', ¡¡.¡.j,:: i.,¡:!1ì.:r.rf,{, 1r'1i,,}.!j': }l :!¡J;:i":iijii.'.r.¡-,:.tffriT?Ë tri}'Ì::1t:-Ì'a¡t:ì:i:::ii.".t: Ìì1.¡.i1:/...l¡".<f¡:a?is¡ ÎABIE OF OOI{18}¡TS fltl-e page Acln:orleelgeuenù .. ... .lLL Iatroduotl.on e¡xat abstract .. ........1 tl,tenature su¡reey ......4 I' lhe ohæf.st¡ry of fluorene and fluorenone ... .. ...4 fI. Exteas Lons of the Roforuatsþ ¡reactlon ..........a3 III. Efbe¡ls of fluoreno .........,.".27 IV. Substr.ùutedl banblüurlc acl.d.s .... ........"....28 Dlgeusslon of regul.tc . ... e .. .. r . .. ' " Jl I. 8xùensLons of the Refomatsþ neactLon ,... r. ......31 A. Synthesls of ethylo(-(9-hydro¡qyfLuo:renyl) p¡ropLonatg .....rr.. .r,.'............'.....¡.J2 B. Roforæatek¡r reaotlon rf.Èh etbyl ¡'-broropooptoaate33 C. Befornatsþ reaotLot¿ wltb brononÈlonf.c ester ....35 '1. ltith e - tol.uat¿ehyde .r o... ...ç.r....:"....?5 2. Iültb cyc1ohêxanorrô rr¡ ........r?6 3r Wlth fluorenone ......r.r......e..o.r{r.............36 II. Etherg of fluorene .;.....r.......¡............"...38 III. Fniedel - Crafts reaetLons r.o.... ..,.19 1.. tsenzene - êlch1oracetLc acl.d ...... ........:9 2. DtpherryS. - dLchl-oraeetLc acLd..o..r. .......1+O 3. Bonzorx€ - illbromoaalonio eeter ......... .....¡+0 þ Olphenyf - dlib¡romomalonLc esten ... ......,.......".h1 rAtsI..E OF CONTE&SS 5. Dlphenyl - ethylld.ene eh]-onl.de oo.... .......h1 IV, Tho synthesLs of. fluorenyl bar"blturlc acLd .......hz Ex¡rerlmental .....¡...... o ù . r..........,......1¡l¡ .T¡ Befoløatsþ reactl.ons ...... ........4b Ar Synthesls of €ühyL4-(9-bfd"o¡ryfLuonerryl) . proplorrate . ù .. o . , . .......o¡+lj4 Br !Íltb É-bronopnopionate ...r.. ......U5 1o Wlth flÌ¡orenorlê ¡r....... ...,115 &¡ Prepanatlon of f -bnonopropLoïric acid .......,...46 b" PreparatLon of etþyL É-b"oropoopfonate ........,þ6 oe OxLdLatlon of f1uorene to fluorenohê .¡r ¡ .. .. ..".42 d. Frepa:ratlon of activatêd 31nc 2¿ üIlttrr acetophenone ...,¡...,.....,...................51 3. WlËh benzophênorlê ¡¡e¡e..... ...... ......,..52 ¿!. WLth acetonê o e e ¡¡ .. .. .._...52 Cr Wtth ethyL bromomalonate . ... ., . " . ..53 1r flll th eyclohexånon€ .. r.... ...... ... ....52 . 2. Tfltb' m - tolualdehyd.e .... .,..¡r..........51t år Synthes ls of ra-tolyl. earbfr¡ol ....... .."...55 ?, Wlth fluoreftort€ ¡ . ¡ . .. .r . , . ,56 â.o Synthesls of the p-nf.trobenzoate fLuo of nerol ".52 b. Synthes ls of èhe 3r5 dtnttrobenzoate of fluorono l ..r... G¡ Synthesls of th6 pheny]. u::ethan of fluorenol .,.58 i-.'{i,s ",:., ?AtsIE OF-CONTENES A. Synthesls of tb.ed-naphthyl urethan of fllrorenol . o............ ........5g II. Ether"s of fluorene . ..... ,....5g 1. Methyl ethen . .. .. .. .. ..,.59 2. Et?r¡r1 ethen 2. Propy1 ether ....... .........ó0 ¡+., Cyelohexyl ether ...¡........r. ...... r..r..62 '5, N-buty1 ethen....... o . 63 . " . 6. Benzyl othor ¡¡.............,...........r......t6? fII^" Frloitel - Craafte ::eaetlons . r . ¡ ¡ í o ¡ r . ...6? i. Benzene. - ¿llchlo"acetLc acld......¡ ,......61 2, Dtphenyl - d.lchlonacetic acid ......611 . 3. Benzene - d.Lb:eonromal-onl c ester .,.... .....66 4. Dlphercfl - dLb:rouomal.onL c esten r . r r. .66 5.. Dlphenyl - ethyLlcleno ehLorÍdê oo.r. ......68 XV. Subetituted. barbíturlc acLd ... .....68 1. S¡rnthosls of fluorenyl malonLe ester . .. .. .ó8 2. Synthes f.s of Rono fluorenyt barbitunLc acl.d c..t.6Ç SûütnaIT of Regul.ts ....... ........ ...... c.........¡¡........?1 Bf,bllognaphy ... r. ¡...... r . ¡ . .....73 i:ì'¡i i-* r :. 1.: (1) IITBODÛCTIOT AFD .â,BSTB¡,GT Íhc pnesenÈ fnvosËigatl.ôn was ontgtaal.ly lntendeå to bc a eontiauatloa a¡d corrolnsfon of Ëhe ro¡îk bêggn f,n tbose laboratorles by E. torl.Ëc (Ç) fn 1950r üorlta hedt sta¡tedl a.a fnvestf.gatLoa Lnto the ertEnsl.on of t¡be Eof,oraatsþ :reactLon to the uge of etb¡rl ; f -þronop¡loBLsnate¡ Ee ras pantleralar:t¡r. lntor.ssted. tn LÈs uac tn the ¡rroparatfoa, of :, fluonose de¡rLvatLveg b¡r eoadeaalng 1t rtt"h !-f,luøreaoae (X) tn tbfs ¡rcactLon . iì,-r': c,,.- c<:rr i: ;>r:,i Ès- e J-1.ô t¡o l' ll*- -o [ )a= qF -cHr-cí¿q.]t- ¿. t1,! Ee also lalt!,ateð aa LnveøtlgatLoa lato tho ap¡¡X.f.eabl,11ty of tho Þloêel - GrAfù¡ regetl,on to the s¡ratbesle s.f fluoranc - 9r9 - dtlea¡rborryllo eater (II) from ittpheayl andl eÈhyl dlbromo- [alonatc. fi.,i,"i;î:*b &.ï.:ï lbe êl,ceovef5r of bi.ologlcsJ. eetivtüy fa lrårty flt¡orcr¡o coqlounêa, suob as Z-acoÈy1a:nlne fluo:re¡re, (fl1) rrhtcb ls bXgLly earelaogea!.e, leð MorlÈa t'o atÈæ¡rù Èho pncpanatf'oa illl -co-cra (TTI ) of sonê ot'hê¡t olsss of flüg¡lGrrê eoqrouado rhf.eh elgþt al'so Þe biologloal.l.y Êctlve, as fl€sronyJ. bårblturfe aelcl (W). "tåh il*-c,'(""-1þ' (rr) Þree ts Xeck of Èfuer torLta ras snåb1e ùo eartgttbeoe iaveø tlgettons ta oenpleùloa. &e probl,æ !,4 thls nescareh ras to fc-êrsûlqê ad colpl.âte $onl,tels ¡orkr to ltlsattfy êErÈafll ntlrrlê¡ra Plreduetg e¡ild tô clart fþ Ëhe ¡oaotLoas by rhlcb Èheeo lcrc obta!'nsdl' flre BcfslneÈsbilr ls¡êùLoa eqrto¡riag et&yl -l - brr@æItroptonatc rao atteqrteê noË oaly wltb. fl¡¡orcaøae (I), Þttt alee çltb a rinsbe¡l of otbor kctones as rel.l¡ A fLuoreae êonlnat!.ve r fluo¡reac -9- oa¡rborylte aotd (Y) m.e s¡nrtlrcolreê by neaae of e Þtredle1 ." Graftg conêe¡rsaùf'oa $ eryLoylng blpberyl and dlchloracif,to aoldo cc Ég. l" u*)"u-too' (v) 8"rt'**-iteþ An attqrt ras [adc to pnepare sevena]. ethe¡:s sf flno¡oae b¡r ooadeas lng 9-brerof,lüorcae (lI) rlth t¡he sod!.r¡! aalts of ya¡rLoug aleobola (fil,ltanssn nethoil) r .t't" B - redl.oals . æ¡r3.oycdl : a noñr ll:y-å" i:þo-åo\G E* è-Hut -' 1vr) slaoe oaly fos¡ eÈhcfc of fluo¡ronc arc ¡recorôeô Ln t, fho 1lte¡ratuner. , Slaee oaly tro dlcrlvatlvês of fluoreoo3. (YII) r by rhlcb. lt utght be elasslfiedl , fêlo 3.Lstcd, lt ¡ls 1,,. eôrûslåêreô¿ of sose Latêrcst Èo s¡æüheetze aevc:ral of th.c .i. '..'.: ag:r€ €o@rì dtø¡dvaÈLves, aueh as thc rLt¡robcszoete, etc. (WII). ' i:tì i.i¡,r, ii:*'L-c¿1,¡-,úo¿ (wr) (vrrr) i,:..¿ I+FERATüBE snRYtr T. : Irr 1867 tarccl].ln Bertbolet (8) feolateil Èon the 3OO - 3fgo botl.tag f¡racÈlon of orrud.e e¡¡Èhraecae a fluoneseent bryrdÞooarbon aelttrg at Xl3o. Beoeuso lt fluoreseoê hc n¡ne4 It rl¡luo¡.caet. Itg I t¡fl¡otûre has bcea dcte:nfaeð tbrougb thc LavoetlgaÈ!.ons of FdtÈLg eadl Oato¡u.Eyer (22)r a¿r$ter (6)' aad, l,s sbor& t¡c ùbc prø¡laraüLoa of tbe ooultsüEd &on btpheryrl eud dl.etrlorglcth¿ac (1). l)''" Ê'c'|' G-- +¿Flcl 8* ry &e Eùm.eture of Flso¡tênc f.c Íeêleêtêat by (IX). Cr. Èlr €!': [*u]* (Ix) Fluorcae possesses aa aotlye uetÞylene grory fn the p poo!.!loa, løcatoð rt6ar tro ¡ratrrs of doubXy l.lakodl earbon atons. lhl.s aetLvity lae been c:pl'el,neù by tbø æðera eLcet:ronl.e thce¡t of, Gosg añat Ingolgat {251 aa çc1L ag by tbc oldler lhl'clc ir:: theort of tbe eÈb¡rl'crll.e boado flrls aetLve netsleac gr:.on¡r la (5) cv!.dleat Þy tts f,oraêtioa of â ôed.flÐ dcrlvatlvc rlttr ¡¡cÈaIl!.e soilù¡s ag reLl as rlt¡r ¡ocla¡¡lðe r lbc øyaÈihes!.s of f,lEô¡9cae dlc¡lvatf'veg bg,g bêêE aêeo$pl'tshc.l È,¡r tl1¡reet sêbsttttltloa La the noleoul-e f'tgelf or Lnd'íneefþ th¡rougb sonc LstcrEeålete o@ror¡aèc Dtneot nrolsar sEbõÈlËEfLôt¡ la thc boa¡cao rtngs e¡rpcarc to fol&pr ¿ êeffalte roulee. chì.ollac¡ bloalue ¡ af,t¡rle a¡rit astpbul.io aot ile rôaet f.a fJae 2 poaltl.o¡ eadl c¡têaåô{t sabet!'taÈf'ens lcad ùo tùe 2r7 osqrcuadls¡ lfhlg parÈLouf'tr reaeùlvlË¡r of tho 2r? Poslütoag I'g oLataedl to ba O¡¡c to tAo rupellon äl¡reeÈf.ve lt¡toPolttiles of thc pþryL gttoglt (p9). IÈ ls of süe ùrto¡rcgt th¡t substltuêaüa [u ùþô 2 poaltloa gfcatll¡ aotlvató tiho nsth¡r1eae g¡ory Ln Gbs $ poeLtl'or¡ ag notprtcdt by SohsLaslol. aEd Elð¡oit (56). pfnon (l#) f¡E postulateê übat, übta Lac¡reaaed aotlvtþ lalr aecour¡t f,or tbe oarclnogcnl,c AettvltÍ of ccrtata 2 substl.Èuücå f,luo¡rcaes. &e e¡|,åattoa pnød'uot af, f,tr¡ø"orla¡ fluorenoao (I)r l. l '''.:.::.:.. Cc [1.., ,'¡..':,'i;,. | '\q --r',-o cct Il(. /- (x) ii:ji:':..+i- ts a ogæn staFtLag naùcnL¡X f,on Ëhc prcparatfoa of ¡eay of, i;t;:''::'': tbc alnc cubstl'ttlËc¿l f,lus¡Eeaggr trta p e¡4,raüloa hag bcc¡l t&p iJìJ{"_1il1:5¿:i-ï*Ë:.ffrn^r.¡_1:i*-t{.":Í 9)i1:1r.r;iti}:-r.:i.í-iQì:i;; -,lji"'--:ia¡:r'.+ t'-r:;:::.Y".r't¡::e"}¿r (6) obJcet of stüdIr fo¡r Eå.qr reseå¡ch lo:rEcra o fbe siø¡l1esü arad uosË gaùicfaototTr of Ëtre Dånür varledt uethoda ls the oxldatloa sf flLuore¡rc by sodtlnao dìlebro¡aate ta rsüüla eoið (A9). $to advantage of thls uetbod Ll.eE ln the facù tbgt tcchntoel fluonene (98É) ca¡r be uaedl¡ the luryuntt!,es havLng uo cffeot otl the flnal ytelfu Wltle poteo al.rnr perraaaga¡ete solutlon ea the orf.df.ztng ageat, ütre yteX.d, ís le¡rorted to be aLnsEt quaatf,üettvc (L5).
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0046022 A1 Takahashi (43) Pub
    US 20140046022A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0046022 A1 Takahashi (43) Pub. Date: Feb. 13, 2014 (54) FLUORENE COMPOUND (30) Foreign Application Priority Data (71) Applicant: Ajinomoto Co., Inc., Tokyo (JP) Mar. 12, 2009 (JP) ................................. 2009-06O291 (72) Inventor: Daisuke Takahashi, Mie (JP) Publication Classification (73) Assignee: Ajinomoto Co., Inc., Tokyo (JP) (51) Int. Cl. C07K L/06 (2006.01) (21) Appl. No.: 14/027,961 CD7C 43/21 (2006.01) (52) U.S. Cl. (22) Filed: Sep. 16, 2013 CPC ................. C07K I/062 (2013.01); C07C 43/21 (2013.01) Related U.S. Application Data USPC ........................................... 530/335:568/634 (62) Division of application No. 12/723,027, filed on Mar. (57) ABSTRACT 12, 2010, now Pat. No. 8,569,453. Particular compounds having a fluorene skeleton are Superior (60) Provisional application No. 61/159,998, filed on Mar. in broad utility and stability, as a protecting reagent for liquid 13, 2009. phase synthesis of amino acids and/or peptides. US 2014/0046022 A1 Feb. 13, 2014 FLUORENE COMPOUND carrier, an isolation target compound can be selectively pre cipitated from a homogeneous solution state, in other words, CROSS REFERENCES TO RELATED a particular compound can be isolated after a liquid phase APPLICATIONS reaction when other soluble components still remain in a Solution, thus obviating the need to consider extraction and 0001. This application is a division of U.S. Ser. No. precipitation conditions for each compound. 12/723,027, filed Mar. 12, 2010, and claims priority to U.S. 0010. However, when a polymer is used as a carrier mol Provisional Patent Applications No.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Structure Index
    NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type.
    [Show full text]
  • ALABAMA SEAFOOD SURVEILLANCE SAMPLES NPH = Naphthalene, FLU = Fluorene, PHN = Phenanthrene, ANT = Anthracene, FLA = Fluoranthene
    ALABAMA SEAFOOD SURVEILLANCE SAMPLES NPH = Naphthalene, FLU = Fluorene, PHN = Phenanthrene, ANT = Anthracene, FLA = Fluoranthene, Polycyclic Aromatic Hydrocarbon (PAH) and PYR = Pyrene, BaA = Benz(a)anthracene, CHR = Chrysene, BbF = Benzo(b)fluoranthene, DOSS Results Summary BkF = Benzo(k)fluoranthene, BaP = Benzo(a)pyrene, DBA = Dibenz(a,h)anthracene, IcdPy = Indeno(1,2,3-cd)pyrene, DOSS = Dioctylsulfosuccinate **The estimated maximum total PAH value represents a "worst case" estimate of the PAHs including alkyl homologs that could potentially be in the that happens to yield fluorescence responsesample. Results reported using FDACS Screening Method 521, based on It may include fluorescent compounds other than PAHs and background signal that happens to yield fluorescence response FDA LC Fluorescence Screening Method and FDACS DOSS Levels of Concern bases on FDA's Protocol for Interpretation and Use of Sensory Testing and Analytical Chemistry Results for Reopening In order to "PASS" Method 522 based on FDA's Determination of Levels of Concern (ppm) Oil-Impacted Areas closed to Seafood Harvesting. 7/26/10 samples must not Dioctylsulfosuccinate in Select Seafoods using LC/MS Shrimp and Crab 123 246 1846 246 185 1.32 1.32 13.2 0.132 0.132 1.32 61.5 500 exceed any Sorted by seafood type (crab, finfish, oyster, shrimp), Oysters 133 267 2000 267 200 1.43 143 1.43 14.3 0.143 0.143 1.43 66.5 500 FDA Levels of harvest area and sample # Finfish 32.7 65.3 490 65.3 49 0.35 35 0.35 0.35 0.035 0.035 0.35 16.35 100 Concern <LOD = less than Limit of Detection,
    [Show full text]
  • Azulene—A Bright Core for Sensing and Imaging
    molecules Review Azulene—A Bright Core for Sensing and Imaging Lloyd C. Murfin * and Simon E. Lewis Department of Chemistry, University of Bath, Bath BA2 7AY, UK; [email protected] * Correspondence: lloyd.murfi[email protected] Abstract: Azulene is a hydrocarbon isomer of naphthalene known for its unusual colour and fluores- cence properties. Through the harnessing of these properties, the literature has been enriched with a series of chemical sensors and dosimeters with distinct colorimetric and fluorescence responses. This review focuses specifically on the latter of these phenomena. The review is subdivided into two sec- tions. Section one discusses turn-on fluorescent sensors employing azulene, for which the literature is dominated by examples of the unusual phenomenon of azulene protonation-dependent fluorescence. Section two focuses on fluorescent azulenes that have been used in the context of biological sensing and imaging. To aid the reader, the azulene skeleton is highlighted in blue in each compound. Keywords: fluorescence; azulene; sensor; dosimeter; bioimaging; chemosensor; chemodosimeter 1. Introduction Azulene, 1, is an isomer of naphthalene, 2, composed of fused 5- and 7-membered ring systems (Figure1) and named for its vibrant blue colour. Unlike naphthalene, azulene is a non-alternant hydrocarbon, possessing nodal points at C-2 and C-6 of the HOMO and C-1 and C-3 of the LUMO [1]. The location of these nodes results in low electronic repulsion in the S1 singlet excited state, affording a relatively small HOMO-LUMO gap. Hence, the S0!S1 transition arises from absorption in the visible region. Conversely, in naphthalene, coefficient magnitudes remain consistent for each position in both the HOMO Citation: Murfin, L.C.; Lewis, S.E.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons (Pahs)
    Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet 4th edition Donata Lerda JRC 66955 - 2011 The mission of the JRC-IRMM is to promote a common and reliable European measurement system in support of EU policies. European Commission Joint Research Centre Institute for Reference Materials and Measurements Contact information Address: Retiewseweg 111, 2440 Geel, Belgium E-mail: [email protected] Tel.: +32 (0)14 571 826 Fax: +32 (0)14 571 783 http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 66955 © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Belgium Table of contents Chemical structure of PAHs................................................................................................................................. 1 PAHs included in EU legislation.......................................................................................................................... 6 Toxicity of PAHs included in EPA and EU
    [Show full text]
  • NON-TARGET ANALYSIS of BIOREMEDIATED SOIL Zhenyu
    NON-TARGET ANALYSIS OF BIOREMEDIATED SOIL Zhenyu Tian A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Environmental Sciences and Engineering in the Gillings School of Global Public Health. Chapel Hill 2018 Approved by: Michael D. Aitken Wanda M. Bodnar Avram Gold Kun Lu Jason D. Surratt © 2018 Zhenyu Tian ALL RIGHTS RESERVED ii ABSTRACT Zhenyu Tian: Non-target Analysis of Bioremediated Soil (Under the direction of Michael D. Aitken) Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of environmental concern. Bioremediation, relying on stimulation of natural microbial degradation processes, is a well-established technology to clean up PAH-contaminated soils. However, bioremediation does not necessarily lead to a reduction in soil toxicity. PAH-contaminated sites are affected by extremely complex mixtures, like coal tar or creosote, and biotransformation products or co- occurring compounds can also contribute to the overall toxicological effects of contaminated soil before and after bioremediation. Therefore, the objective of this dissertation was to use non- target analysis workflows to identify the genotoxic transformation products, important co- occurring pollutants, and the unrecognized biotransformation pathways that could contribute to explain the toxicological effects observed beyond parent PAHs. To identify the source(s) of increased genotoxicity in bioremediated soil, we pursued a non-target analytical approach combining effect-directed analysis (EDA) and metabolite profiling to compare extracts of PAH-contaminated soil before and after bioremediation. A compound with the composition C15H8O2 and four methylated homologues were shown to accumulate as a result of bioreactor treatment, and the C15H8O2 compound was determined to be genotoxic.
    [Show full text]
  • Oxidation of 9-Fluorenol to 9-Fluorenone with Sodium Hypochlorite
    CHEM 2229 EXP 1: Oxidation of 9-Fluorenol to 9-Fluorenone with Sodium Hypochlorite Objective: In this experiment you will learn how to perform an oxidation reaction by oxidizing an alcohol (9- hydroxyfluorene) to a ketone (9-fluorenone) using sodium hypochlorite in an acidic environment; how to perform TLC to monitor a reaction; how to perform an extraction to isolate a product; and, how to verify purity of a product using TLC and melting point. * Chromatography is a useful method for separating components of a mixture of compounds based on their polarity. Thin layer chromatography is especially useful for determining the number of components in a mixture, the identity of the compounds, and the purity of a compound. **Solvent Extraction is also known as Liquid–liquid extraction (LLE) or partitioning. It is a method used to separate compounds based on their relative solubilities in two different immiscible liquids: usually the polar solvent water and a non-polar organic solvent. Immiscible means that the liquids do not mix and because of this form two distinct layers. ***The melting point (MP) is a physical property of a solid also used for the purpose of identification and purity determination. Reading Assignment: OCLT: OCLT, pp. 83-108 (chromatography generalities & TLC), pp. 368-369 (TLC technique summary), pp. 203-246 (extraction); pp. 376-381 (extraction illustrations); 366 (vacuum filtration); and 309-315 (melting point). Solomons Organic Chemistry, 12th ed. (Note: Pages correspond to 12th ed.) pp. 542-547 (12.4 Oxidation of Alcohols) Concepts: Acids, Bases, Decantation, Drying Agents, Exothermic Reactions, Extraction, Half Cell Method, Oxidation/Reduction, Oxidizing Agents, Reducing Agents, Reflux, Salting Out Chemicals: acetic acid (glacial), acetone, 9-fluorenol, 9-fluorenone, hexane, sodium bicarbonate, sodium chloride, sodium hypochlorite (aq soln) / bleach, sodium sulfate Safety Precautions: Wear chemical splash-proof goggles and appropriate attire at all times.
    [Show full text]
  • Design and Synthesis of Novel Symmetric Fluorene-2,7-Diamine Derivatives As Potent Hepatitis C Virus Inhibitors
    pharmaceuticals Article Design and Synthesis of Novel Symmetric Fluorene-2,7-Diamine Derivatives as Potent Hepatitis C Virus Inhibitors Mai H. A. Mousa 1, Nermin S. Ahmed 1,*, Kai Schwedtmann 2, Efseveia Frakolaki 3, Niki Vassilaki 3, Grigoris Zoidis 4 , Jan J. Weigand 2 and Ashraf H. Abadi 1,* 1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; [email protected] 2 Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; [email protected] (K.S.); [email protected] (J.J.W.) 3 Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; [email protected] (E.F.); [email protected] (N.V.) 4 Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; [email protected] * Correspondence: [email protected] (N.S.A.); [email protected] (A.H.A.); Tel.: +202-27590700 (ext. 3429) (N.S.A.); +202-27590700 (ext. 3400) (A.H.A.); Fax: +202-27581041 (N.S.A. & A.H.A.) Abstract: Hepatitis C virus (HCV) is an international challenge. Since the discovery of NS5A direct-acting antivirals, researchers turned their attention to pursue novel NS5A inhibitors with optimized design and structure. Herein we explore highly potent hepatitis C virus (HCV) NS5A Citation: Mousa, M.H.A.; Ahmed, inhibitors; the novel analogs share a common symmetrical prolinamide 2,7-diaminofluorene scaffold. N.S.; Schwedtmann, K.; Frakolaki, E.; Modification of the 2,7-diaminofluorene backbone included the use of (S)-prolinamide or its isostere Vassilaki, N.; Zoidis, G.; Weigand, J.J.; (S,R)-piperidine-3-caboxamide, both bearing different amino acid residues with terminal carbamate Abadi, A.H.
    [Show full text]
  • Technical Background Document (U.S
    Part 5: CHEMICAL-SPECIFIC PARAMETERS Chemical-specific parameters required for calculating soil screening levels include the organic carbon normalized soil-water partition coefficient for organic compounds (Koc), the soil-water partition coefficient for inorganic constituents (Kd), water solubility (S), Henry's law constant (HLC, HN), air diffusivity (Di,a), and water diffusivity (Di,w). In addition, the octanol-water partition coefficient (Kow) is needed to calculate Koc values. This part of the background document describes the collection and compilation of these parameters for the SSL chemicals. With the exception of values for air diffusivity (Di,a), water diffusivity (Di,w), and certain Koc values, all of the values used in the development of SSLs can be found in the Superfund Chemical Data Matrix (SCDM). SCDM is a computer code that includes more than 25 datafiles containing specific chemical parameters used to calculate factor and benchmark values for the Hazard Ranking System (HRS). Because SCDM datafiles are regularly updated, the user should consult the most recent version of SCDM to ensure that the values are up to date. 5.1 Solubility, Henry's Law Constant, and Kow Chemical-specific values for solubility, Henry's law constant (HLC), and Kow were obtained from SCDM. In the selection of the value for SCDM, measured or analytical values are favored over calculated values. However, in the event that a measured value is not available, calculated values are used. Table 36 presents the solubility, Henry's law constant, and Kow values taken from SCDM and used to calculate SSLs. Henry's law constant values were available for all but two of the constituents of interest.
    [Show full text]
  • Substituent Effects in Hydrogen Abstraction by Trichloromethyl Radical from 10-Substituted-9
    AN ABSTRACT OF THE THESIS OF GARY SCOTT NOLAN for the degree of MASTER OF SCIENCE in CHEMISTRY presented on e IP tcv-vi Title: SUBSTITUENT EFFECTS IN HYDROGEN ABSTRACTION BY TRICHLOROMETHYL RADICAL FROM 10-SUBSTITUTED-9- METHYLANTHRACENES; A LINEAR FREE ENERGY STUDY Abstract approved: Redacted for Privacy Dr. Gerald° Jay Gleicher Hydrogen abstraction by the trichloromethy-1 radical from a series of 10-substituted-9-methylanthracenes at 70° has been examined. The logarithms of the relative rates, measured against hydrogen abstraction from fluorene, correlate very well with sigma plus parameters within the Hammett formalism. A rho value of -0.78 ± 0.05 was observed with a correlation constant of.99 and a standard regression from the mean of .06.This result implies a charge separated character to the transition state with stabilization by electron donating groups. The present work serves as a rigorous test of "Pryor's Postulate".That statement holds that the reaction con- stant or rho value for aryl methyl hydrogen abstraction is, within experimental uncertainties, the same as that for aromatic substitu- tion into the nonmethylated arene.Since a substitution study within the Hammett framework has already been performed, the present study makes a comparison of rho values possible.The rho value obtained in the trichloromethylation of 9-substituted-anthracenes at 70° was -0.83 ± 0.04.This agrees well with the present result. This agreement tends to substantiate and extend "Pryor's Postulate" by treating relatively selective radicals and polycyclic
    [Show full text]
  • Anlage II: Forschungsprofile Der Antragstellenden Wissenschaftler
    Inhaltsverzeichnis 1 Anlage II: Forschungsprofile der antragstellenden Wissenschaftler Inhaltsverzeichnis: Prof. Dr. Matthias BELLER (A1) ............................................................................................2 Prof. Dr. Uwe ROSENTHAL (A2) Sprecher des Graduiertenkollegs 1213..................................................................................19 Priv.-Doz. Dr. Detlef HELLER (A3) ......................................................................................26 Prof. Dr. Armin BÖRNER (B1) .............................................................................................30 Priv.-Doz. Dr. Sergey VEREVKIN (B2) ................................................................................37 Prof. Dr. Udo KRAGL (B3) ...................................................................................................44 Prof. Dr. Peter LANGER (B4) ...............................................................................................49 Prof. Dr.-Ing. habil. Kerstin THUROW (C1).........................................................................66 Prof. Dr.-Ing. Norbert STOLL (C2).......................................................................................72 Priv.-Doz. Dr. Angelika BRÜCKNER (C3) ...........................................................................76 Fortsetzungsantrag GRK 1213, Anlage II 2 Forschungsprofil Matthias Beller Prof. Dr. Matthias BELLER (A1) Organische Chemie Leibniz-Institut für Katalyse an der Universität Rostock e.V. (LIKAT) A.-Einstein-Str.
    [Show full text]
  • Screening and Determination of Polycyclic Aromatic Hydrocarbons
    METHOD NUMBER: C-002.01 POSTING DATE: November 1, 2017 POSTING EXPIRATION DATE: November 1, 2023 PROGRAM AREA: Seafood METHOD TITLE: Screening and Determination of Polycyclic Aromatic Hydrocarbons in Seafoods Using QuEChERS-Based Extraction and High-Performance Liquid Chromatography with Fluorescence Detection VALIDATION STATUS: Equivalent to Level 3 Multi-laboratory validation (MLV) AUTHOR(S): Samuel Gratz, Angela Mohrhaus Bryan Gamble, Jill Gracie, David Jackson, John Roetting, Laura Ciolino, Heather McCauley, Gerry Schneider, David Crockett, Douglas Heitkemper, and Fred Fricke (FDA Forensic Chemistry Center) METHOD SUMMARY/SCOPE: Analyte(s): Polycyclic aromatic hydrocarbons (PAH): acenaphthene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, fluoranthene, fluorene, indeno[1,2,3-cd]pyrene, naphthalene, phenanthrene, pyrene Matrices: Oysters, shrimp, crabs, and finfish The method provides a procedure to screen for fifteen targeted parent polycyclic aromatic hydrocarbons (PAHs) and provides an estimate of total PAH concentration including alkylated homologs in oysters, shrimp, crabs, and finfish. PAHs are extracted from seafood matrices using a modified QuEChERS sample preparation procedure. The method utilizes High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FLD) for the determination step. This procedure is applicable to screen a variety of seafood matrices including oysters, shrimp, finfish and crab for the presence of parent PAHs and the common alkylated homologs due to oil contamination. This method was originally developed and validated in response to the 2010 Gulf of Mexico oil spill. REVISION HISTORY: OTHER NOTES: Method was originally posted on November 1, 2017. It was approved for re-posting by the Chemistry Research Coordination Group for 3 years in December 2020.
    [Show full text]