Diagnostic Update

Total Page:16

File Type:pdf, Size:1020Kb

Diagnostic Update Diagnostic Services Laboratory, Atlantic Veterinary College University of Prince Edward Island 550 University Avenue, Charlottetown PE, C1A 4P3 Phone: 902.566.0860 • Fax: 902.566.0723 • www.upei.ca/diagserv/ Diagnostic Update Serologic Testing for Lyme Disease February 2009, Volume 3, Issue 1 in Dogs By Barbara Horney, Veterinary Clinical Pathologist In this Issue: Lyme disease is associated with Borrelia Lyme disease testing in dogs ............... 1 burgdorferi (Bb) infection, usually through a tick bite, and can be considered to be an Strongyloides stercoralis infection ..... 2 emerging disease in the Atlantic Canada region. The Ixodes scapularis ticks that carry this agent Therapeutic drug monitoring .............. 3 appear in our region either by expansion of their geographic range or by being carried from Finch population mortalities ............... 5 endemic areas on migrating birds. In general, the proportion of dogs showing serologic Packing and shipping samples ............ 5 evidence of exposure to Bb in our region is low (less than 5%). Laboratory news .................................. 7 The following information and Staff focus ........................................... 8 recommendations on testing for Lyme disease have been adapted from the 2006 ACVIM Small Animal Consensus Statement on Lyme Disease in Dogs.1 1. Evidence of exposure to Bb (usually by demonstration of serum antibodies to Bb), 2. Clinical findings consistent with Lyme In endemic areas, 95% of dogs exposed to Bb disease which include: fever, arthropathy remain asymptomatic. The clinical signs of (lameness), nephropathy (proteinuria), Lyme disease are relatively nonspecific and may 3. Consideration of other differentials, and be similar to those associated with other 4. Response to treatment. infectious and noninfectious agents. The consensus statement maintains that diagnosis of canine Lyme disease cannot be made from an individual test and that presumptive diagnosis of Types of tests for antibody to Bb available: ELISA and IFA tests Lyme disease should include: : Identify serum antibodies to Borrelia but require Western blot testing to help Test Sample Testing Cost differentiate between a true positive and a required location (2008) vaccine response or infection with other Borrelia species. IDEXX 1 ml AVC $30.00 SNAP-4Dx†* serum IDEXX SNAP-4Dx (3Dx): Includes a IFA§ 1 ml Michigan $65.00 qualitative test for antibody to the C6 antigen serum (Sent though (expressed when a dog is infected with Bb and AVC) not present in the vaccine). A positive test indicates exposure to the Bb organism but does †In cases in which Lyme disease is the most likely not prove clinical disease. The antibody diagnosis and antibiotic therapy is instituted, a C6 response to the Lyme vaccine should not be quantitative test pre- and post- therapy may help to detected as a positive result by this method. A evaluate response to treatment. This test can be quantitative C6 antibody test is also offered requested through AVC (forwarded to an IDEXX through IDEXX which can be used to laboratory - please call AVC DS for cost) * demonstrate decreasing antibody levels after The 4Dx assay also includes tests for Anaplasma therapy. phagocytophilum, Erhlichia canis and Heartworm. §Followup testing of an IFA positive result by Western For patients with suspicious clinical signs: blot analysis (forwarded to Cornell for analysis) is Either testing type is valid. A positive result can recommended to differentiate from response to a vaccine support (but does not confirm) a diagnosis of or other Borrelia species. Lyme disease, as long as other possible causes of the clinical signs have been ruled out. References: Demonstration of rising titres (acute and 1. Littmen M, et al. ACVIM small animal consensus “convalescent” samples) are not required as the statement on Lyme disease in dogs: diagnosis, treatment clinical signs of Lyme disease usually develop and prevention. J Vet Intern Med. 2006;20:422-434. after seroconversion. In seropositive dogs, the C6 quantitative test can be useful to identify 2. Peregrine A, et al. Screening dogs in Ontario for decreasing antibody levels as a response to Borrelia burgdorferi and Ehrlichia canis should be therapy, with serum samples taken before and 6 selective rather than routine. Can Vet J. 2007;48:673. months post treatment. The consensus statement also recommends testing seropositive dogs for proteinuria which can be associated Strongyloides stercoralis infection in a with Lyme nephropathy. puppy Testing healthy dogs: By Gary Conboy, Veterinary Parasitologist This is somewhat controversial1 but it is generally not recommended in areas with a low A fecal sample was submitted for examination from prevalence of exposure to Bb, as the proportion a 3.5 month-old, male Yorkshire terrier with of false positives can be high even with a clinical signs of a cough and diarrhea. The dog had sensitive and specific test.2 been purchased and transported from western Canada to Prince Edward Island (PEI) 1.5 months Testing through the Atlantic Veterinary earlier. The dog had been treated with Interceptor College Diagnostic Services (AVC DS): (milbemycin oxime) for presumed lungworm When submitting a canine serum to test for infection due to a persistent cough that occurred antibodies to Bb, please specify which test you would like: 2 4 weeks after arriving on PEI. The cough improved with deworming. The puppy then developed diarrhea, was positive for Giardia canis cysts on fecal flotation and was treated with a 5 day course of fenbendazole at 50 mg/kg. After a short period of clinical improvement, the cough and diarrhea returned and progressively worsened. A second fecal sample was submitted for flotation and Baermann examination. The flotation was still positive for Giardia canis cysts and the Baermann detected first-stage larvae of Strongyloides stercoralis (Figures 1 & 2). The puppy was treated with ivermectin (0.2 mg/kg SQ) and showed marked improvement, with Figure 2: Anterior-end of first-stage larvae of clinical signs resolving over the next 7 days. Strongyloides stercoralis larvae showing Post-treatment Baermann fecal examinations characteristic esophagus. were negative. known whether the dog acquired the infection in western Canada or PEI. The prevalence of Giardia infection in puppies is high (up to 40%) and infection can result in diarrhea, but most infections are subclinical. The presence of Giardia in this dog was likely incidental. This is the second case of S. stercoralis we have diagnosed in a dog with clinical signs involving chronic cough. Fenbendazole and ivermectin have both been recommended for use in the treatment of dogs infected with this parasite. However, the 5 day course of fenbendazole given for the Giardia did not result in a cure. Strongyloides stercoralis is a serious pathogen in humans which heightens the importance of proper diagnosis, treatment and diagnostic post-treatment follow-up Figure 1: Iodine stained first-stage larvae of in cases involving dogs or cats. Strongyloides stercoralis recovered by Baermann fecal examination from a puppy with The Therapeutic Drug Monitoring of clinical signs of a cough and diarrhea. Phenobarbital Strongyloides stercoralis infects the small By Sandra McConkey, Veterinary Clinical Pathologist and intestine of dogs and cats and can cause a Pharmacologist life threatening enteritis with clinical signs of diarrhea. Animals acquire infection by the Therapeutic drug monitoring (TDM) is the ingestion or direct skin penetration of infective measurement of the plasma or serum drug third-stage larvae. Larvae of S. stercoralis concentrations in patients to determine if the undergo migration through the lungs during dosage is correct. It is typically used for drugs their developmental cycle, and this was the with a narrow therapeutic index or variable cause of the cough in this patient. Strongyloides pharmacokinetics. Diagnostic Services at the stercoralis occurs worldwide and it is not 3 Atlantic Veterinary College does TDM for more Phenobarbital treatment can be associated with than 150 clients every month. The majority of several adverse effects, including sedation, samples are evaluated for phenobarbital and polyuria, polydipsia, polyphagia and behavioral potassium bromide (KBr) concentrations with changes. Many animals experience one or more lower numbers of samples submitted for of these signs during the first few weeks of digoxin, theophylline, gentamicin and treatment, but these usually spontaneously resolve cyclosporine. Uncommon drugs can be with the development of pharmacokinetic and evaluated by special request. pharmacodynamic tolerance. Occasional animals will continue to demonstrate these signs despite Phenobarbital has both a narrow therapeutic blood phenobarbital concentrations in the desired index and a variable half-life. In fact, the therapeutic range. These dogs should be changed therapeutic response to phenobarbital to alternative anti-convulsants. corresponds better with its serum concentration than its dosage. Most dogs require a Mild elevations of ALT activity and mild to phenobarbital concentration within a therapeutic marked elevations of ALP activity can occur in range of 54-190 µmol/L for sufficient seizure animals on chronic phenobarbital therapy. These control. The wide range allows for several changes are believed to be due to phenobarbital upward adjustments of the dosage over time if induction rather than secondary to a toxic control is lost. The addition of a second reaction.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Control of Intestinal Protozoa in Dogs and Cats
    Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 1 ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ, United Kingdom First Edition Published by ESCCAP in August 2011 Second Edition Published in February 2018 © ESCCAP 2018 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-53-1 2 TABLE OF CONTENTS INTRODUCTION 4 1: CONSIDERATION OF PET HEALTH AND LIFESTYLE FACTORS 5 2: LIFELONG CONTROL OF MAJOR INTESTINAL PROTOZOA 6 2.1 Giardia duodenalis 6 2.2 Feline Tritrichomonas foetus (syn. T. blagburni) 8 2.3 Cystoisospora (syn. Isospora) spp. 9 2.4 Cryptosporidium spp. 11 2.5 Toxoplasma gondii 12 2.6 Neospora caninum 14 2.7 Hammondia spp. 16 2.8 Sarcocystis spp. 17 3: ENVIRONMENTAL CONTROL OF PARASITE TRANSMISSION 18 4: OWNER CONSIDERATIONS IN PREVENTING ZOONOTIC DISEASES 19 5: STAFF, PET OWNER AND COMMUNITY EDUCATION 19 APPENDIX 1 – BACKGROUND 20 APPENDIX 2 – GLOSSARY 21 FIGURES Figure 1: Toxoplasma gondii life cycle 12 Figure 2: Neospora caninum life cycle 14 TABLES Table 1: Characteristics of apicomplexan oocysts found in the faeces of dogs and cats 10 Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 3 INTRODUCTION A wide range of intestinal protozoa commonly infect dogs and cats throughout Europe; with a few exceptions there seem to be no limitations in geographical distribution.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Z:\My Documents\WPDOCS\IACUC
    ZOONOTIC DISEASES OF LABORATORY, AGRICULTURAL, AND WILDLIFE ANIMALS July, 2007 Michael S. Rand, DVM, DACLAM University Animal Care University of Arizona PO Box 245092 Tucson, AZ 85724-5092 (520) 626-6705 E-mail: [email protected] http://www.ahsc.arizona.edu/uac Table of Contents Introduction ............................................................................................................................................. 3 Amebiasis ............................................................................................................................................... 5 B Virus .................................................................................................................................................... 6 Balantidiasis ........................................................................................................................................ 6 Brucellosis ........................................................................................................................................ 6 Campylobacteriosis ................................................................................................................................ 7 Capnocytophagosis ............................................................................................................................ 8 Cat Scratch Disease ............................................................................................................................... 9 Chlamydiosis .....................................................................................................................................
    [Show full text]
  • Biologic Effects of Fenbendazole in Rats and Mice: a Review
    Journal of the American Association for Laboratory Animal Science Vol 46, No 6 Copyright 2007 November 2007 by the American Association for Laboratory Animal Science Pages 8–15 Overview Biologic Effects of Fenbendazole in Rats and Mice: A Review David Villar, Carolyn Cray,* Julia Zaias, and Norman H Altman This review summarizes fi ndings from toxicologic, carcinogenic, immunologic, and metabolic studies on fenbendazole (FBZ). Currently, FBZ is used to treat or prevent pinworm outbreaks in laboratory rodents. Because antiparasitic treatments usually are not part of experimental designs, interactions from the medication on the outcomes of ongoing experiments are a concern. At therapeutic levels, FBZ does not alter the total content of cytochromes P450 but does induce certain hepatic cytochrome P450 isoforms, namely 1A1, 1A2, and 2B1. Although expressed constitutively at low or undetectable levels, these isoforms particularly are known for bioactivating a number of procarcinogens. Lifetime studies in rats have shown that FBZ is not a carcinogen but that it may behave as a tumor promoter when given after certain initiators. Unlike in other animal species, FBZ treatment-associated myelosuppression has not been reported to occur in rodents. The few currently available immunologic studies in mice, including an autoimmune model, have not shown effects on selected immune responses. How- ever, data from other animal species suggest that the ability of B and T lymphocytes to proliferate in the secondary immune response may be suppressed during treatment
    [Show full text]
  • Federal Register/Vol. 79, No. 39/Thursday, February 27, 2014
    10976 Federal Register / Vol. 79, No. 39 / Thursday, February 27, 2014 / Rules and Regulations NADA/ANADA Ingredient new animal drugs 107–997 ............ Roxarsone/NICARB (nicarbazin)/LINCOMIX (lincomycin). 108–115 ............ Roxarsone/NICARB (nicarbazin). 120–724 ............ 3–NITRO (roxarsone)/STAFAC (virginiamycin)/COBAN (monensin). 138–953 ............ 3–NITRO (roxarsone)/STAFAC (virginiamycin)/BIO–COX (salinomycin). 141–058 ............ 3–NITRO (roxarsone)/AVIAX (semduramycin)/BMD (bacitracin MD). 141–066 ............ 3–NITRO (roxarsone)/AVIAX (semduramycin). 141–226 ............ Roxarsone/AVIAX (semduramycin)/STAFAC (virginiamycin). 200–170 ............ 3–NITRO (roxarsone)/NICARMIX 25 (nicarbazin)/LINCOMIX (lincomycin). 200–172 ............ 3–NITRO (roxarsone)/NICARMIX 25 (nicarbazin). • Elanco Animal Health, A Division that FDA withdraw approval of the of Eli Lilly & Co., Lilly Corporate Center, following four NADAs: Indianapolis, IN 46285 has requested NADA Ingredient new animal drugs 041–500 ............ 3–NITRO (roxarsone)/COBAN (monensin). 049–464 ............ Roxarsone/monensin/bacitracin. 140–445 ............ Roxarsone/MONTEBAN (narasin). 141–113 ............ 3–NITRO (roxarsone)/MAXIBAN (narasin and nicarbazin). • Cross Vetpharm Group Ltd., withdraw approval of the following Broomhill Road, Tallaght, Dublin 24, three NADAs: Ireland, has requested that FDA NADA Ingredient new animal drugs 038–241 ............ PRO–GEN (arsanilic acid)/ERYTHRO (erythromycin)/zoalene. 038–242 ............ PRO–GEN (arsanilic acid)/ERYTHRO
    [Show full text]
  • CAMELID MEDICINE CABINET Antibiotics
    CAMELID MEDICINE CABINET Pamela G. Walker, DVM, MS, DACVIM-LA Camelid Care Veterinary Services The camelid population is continuing to grow in the United States with an increasing need for scientific information about proper dosage for medications in camelids. There is ongoing research in many institutions to try to find answers for these questions. The lack of complete information represents a challenge for veterinarians and camelid owners when determining a course of treatment for their camelid patients. As camelid owners it is important to work with your local veterinarian to plan treatment protocols for your llamas and alpacas. There are many factors to take into consideration when determining which drugs and what dosage to use in different situations. The information provided here is a basic guideline; specific treatments should be started only with the guidance of your veterinarian. Due to lack of complete information, the dosages used in camelids are frequently taken from dosages used in sheep, goats, cattle and horses. However, several differences have already been discovered, for example antibiotics, as a general rule, appear to have a longer time of action in camelids compared to domestic ruminants. There also seems to be a difference in dosing between llamas and alpacas. These differences can be dangerous and result in fatal over-dosages if the drug mechanism is not understood, for example Panacur and Valbazen doses. The choice of which drug to use in certain situations is a complicated decision and should not be decided upon in a “cookie cutter” manner. The age, sex, pregnancy status and general health of the alpaca/llama should be taken into consideration when deciding which drug to use.
    [Show full text]
  • EUROPEAN PHARMACOPOEIA 10.0 Index 1. General Notices
    EUROPEAN PHARMACOPOEIA 10.0 Index 1. General notices......................................................................... 3 2.2.66. Detection and measurement of radioactivity........... 119 2.1. Apparatus ............................................................................. 15 2.2.7. Optical rotation................................................................ 26 2.1.1. Droppers ........................................................................... 15 2.2.8. Viscosity ............................................................................ 27 2.1.2. Comparative table of porosity of sintered-glass filters.. 15 2.2.9. Capillary viscometer method ......................................... 27 2.1.3. Ultraviolet ray lamps for analytical purposes............... 15 2.3. Identification...................................................................... 129 2.1.4. Sieves ................................................................................. 16 2.3.1. Identification reactions of ions and functional 2.1.5. Tubes for comparative tests ............................................ 17 groups ...................................................................................... 129 2.1.6. Gas detector tubes............................................................ 17 2.3.2. Identification of fatty oils by thin-layer 2.2. Physical and physico-chemical methods.......................... 21 chromatography...................................................................... 132 2.2.1. Clarity and degree of opalescence of
    [Show full text]
  • Dairy 2014 Animal and Health and Management Practices on U.S
    United States Department of Agriculture Dairy 2014 Animal and Health and Management Practices on U.S. Plant Health Inspection Dairy Operations, 2014 Service Veterinary Services National Animal Health Monitoring System February 2018 Report 3 Table of Contents The U.S. Department of Agriculture (USDA) prohibits dis- Mention of companies or commercial products does not crimination in all its programs and activities on the basis imply recommendation or endorsement by the USDA of race, color, national origin, age, disability, and where over others not mentioned. USDA neither guarantees nor applicable, sex, marital status, familial status, parental warrants the standard of any product mentioned. Product status, religion, sexual orientation, genetic information, names are mentioned solely to report factually on avail- political beliefs, reprisal, or because all or part of an able data and to provide specific information. individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) USDA–APHIS–VS–CEAH–NAHMS Persons with disabilities who require alternative means for NRRC Building B, M.S. 2E7 communication of program information (Braille, large print, 2150 Centre Avenue audiotape, etc.) Should contact USDA’s TARGET Center Fort Collins, CO 80526–8117 at 202.720.2600 (voice and TDD). 970.494.7000 http://www.aphis.usda.gov/nahms To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence #696.0218 Avenue, S.W., Washington, D.C. 20250–9410, or call Cover photograph courtesy of Dr. Jason Lombard. 800.795.3272 (voice) or 202.720.6382 (TDD). USDA is an equal opportunity provider and employer.
    [Show full text]
  • Addendum A: Antiparasitic Drugs Used for Animals
    Addendum A: Antiparasitic Drugs Used for Animals Each product can only be used according to dosages and descriptions given on the leaflet within each package. Table A.1 Selection of drugs against protozoan diseases of dogs and cats (these compounds are not approved in all countries but are often available by import) Dosage (mg/kg Parasites Active compound body weight) Application Isospora species Toltrazuril D: 10.00 1Â per day for 4–5 d; p.o. Toxoplasma gondii Clindamycin D: 12.5 Every 12 h for 2–4 (acute infection) C: 12.5–25 weeks; o. Every 12 h for 2–4 weeks; o. Neospora Clindamycin D: 12.5 2Â per d for 4–8 sp. (systemic + Sulfadiazine/ weeks; o. infection) Trimethoprim Giardia species Fenbendazol D/C: 50.0 1Â per day for 3–5 days; o. Babesia species Imidocarb D: 3–6 Possibly repeat after 12–24 h; s.c. Leishmania species Allopurinol D: 20.0 1Â per day for months up to years; o. Hepatozoon species Imidocarb (I) D: 5.0 (I) + 5.0 (I) 2Â in intervals of + Doxycycline (D) (D) 2 weeks; s.c. plus (D) 2Â per day on 7 days; o. C cat, D dog, d day, kg kilogram, mg milligram, o. orally, s.c. subcutaneously Table A.2 Selection of drugs against nematodes of dogs and cats (unfortunately not effective against a broad spectrum of parasites) Active compounds Trade names Dosage (mg/kg body weight) Application ® Fenbendazole Panacur D: 50.0 for 3 d o. C: 50.0 for 3 d Flubendazole Flubenol® D: 22.0 for 3 d o.
    [Show full text]
  • Advances in Reptile Clinical Therapeutics
    TOPICS IN MEDICINE AND SURGERY ADVANCES IN REPTILE CLINICAL THERAPEUTICS Paul M. Gibbons, DVM, MS, Dip. ABVP (Reptiles and Amphibians) Abstract The standard of today0s reptile practice calls on clinicians to use an ever-increasing array of diagnostic tools to gather information and obtain a definitive diagnosis. Few, if any, pathognomonic signs exist for reptile diseases, and for most clinical syndromes there is a lack of information regarding pathophysiology for one to define standard therapeutic protocols based solely on clinical signs without objective diagnostic information. For example, in the relatively distant past, clinicians treating reptile patients would routinely administer parenteral calcium to green iguanas (Iguana iguana) with the primary presenting clinical sign of muscle tremors. Today, veterinarians who treat reptiles recognize that the risk of soft tissue mineralization and permanent damage to arteries, renal tubules, and other tissues usually outweighs the potential short-term benefit of calcium therapy. Before calcium therapy is initiated, it is best to know the patient0s ionized calcium concentration to reduce the risk of potential adverse therapeutic side effects. A problem-oriented diagnostic approach directed toward minimizing risk and maximizing therapeutic benefit is now the standard of reptile practice. Copyright 2014 Elsevier Inc. All rights reserved. Key words: antibiotic; antifungal; antiparasitic; antiviral; reptiles; therapy; treatment imilar to the class Mammalia, the class Reptilia includes a diverse group of species, each with a unique pharmacologic response to every chemotherapeutic agent. As a result, therapeutic safety and efficacy differ among species. Unlike mammals, conscious reptiles are ectothermic, so physiologic and biochemical processes are strongly influenced by body temperature.1 Reasonable assumptions about each individual reptile species0 metabolism and immune Sresponse can be determined only under certain conditions.
    [Show full text]