Studies on the Antimicrobial Defence of Human Hair Follicle Epithelium

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Antimicrobial Defence of Human Hair Follicle Epithelium Aus der Klinik für Dermatologie, Venerologie und Allergologie der medizinischen Fakultät der Universität Lübeck und dem Institut für Veterinär-Anatomie des Fachbereichs Veterinärmedizin der Freien Universität Berlin Studies on the antimicrobial defence of human hair follicle epithelium Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Katrin Reithmayer Tierärztin aus Landshut Berlin 2008 Journal-Nr.:3266 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Prof. Dr. Leo Brunnberg Erster Gutachter: Prof. Dr. Johanna Plendl Zweiter Gutachter: Prof. Dr. Ralf Paus Dritter Gutachter: Prof. Dr. Lothar H. Wieler Deskriptoren (nach CAB-Thesaurus): man, hair follicle, natural immunity, defence mechanisms, antimicrobial properties, peptides, immunohistochemistry, polymerase chain reaction Tag der Promotion: 20.04.2009 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. ISBN: 978-3-86664-591-2 Zugl.: Berlin, Freie Univ., Diss., 2008 Dissertation, Freie Universität Berlin D 188 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen, usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürfen. This document is protected by copyright law. No part of this document may be reproduced in any form by any means without prior written authorization of the publisher. alle Rechte vorbehalten | all rights reserved mensch und buch verlag 2009 choriner str. 85 - 10119 berlin [email protected] – www.menschundbuch.de “The pyogenic cocci, staphylococci and streptococci are constantly found on human skin, most frequently hidden in the depths of the canals of hair follicles. These micro-organisms seize every opportunity to attack the organism, producing such local lesions as acne, pimples, boils and erisipelas [SIC] or even becoming generalized in the blood and tissues as in the septicemias and pyemias. To the skin, therefore, must be assigned a very important function in the prevention of the invasion of micro-organisms, which are found constantly on the surface of the body…”(Metchnikoff 1905) Table of contents TABLE OF CONTENTS Table of contents .........................................................................................................................I Figures......................................................................................................................................IV Tables .......................................................................................................................................VI Abbreviations ..........................................................................................................................VII 1 Introduction ........................................................................................................................ 1 2 Specific questions addressed.............................................................................................. 2 3 Literature ............................................................................................................................ 3 3.1 Overview over hair follicle biology ........................................................................... 3 3.1.1 Functional anatomy of the human hair follicle .................................................. 3 3.1.2 Hair follicle cycle............................................................................................... 8 3.1.3 Hair follicle immunology................................................................................. 11 3.2 Microflora of the skin and the hair follicle .............................................................. 13 3.2.1 Resident microflora.......................................................................................... 13 3.2.2 Transient microflora......................................................................................... 14 3.2.3 Most common bacteria and fungi of skin and hair follicle infections in humans ………………………………………………………………………………...14 3.2.4 Important pathogenicity factors of bacteria ..................................................... 16 3.2.4.1 Lipopolysaccharides..................................................................................... 17 3.2.4.2 Lipoteichoic acid.......................................................................................... 18 3.2.4.3 Protein A....................................................................................................... 19 3.3 Defence mechanisms in the human skin .................................................................. 19 3.3.1 Physical barrier................................................................................................. 20 3.3.2 Chemical barrier............................................................................................... 22 3.3.3 Recognition of pathogens................................................................................. 22 3.3.4 Cellular barrier................................................................................................. 24 3.4 Antimicrobial peptides............................................................................................. 26 3.4.1 General overview............................................................................................. 26 3.4.2 Primary modes of action .................................................................................. 31 3.4.2.1 Antimicrobial activity.................................................................................. 31 3.4.2.2 Anti-endotoxin effects.................................................................................. 33 3.4.2.3 Antifungal activity........................................................................................33 I Table of contents 3.4.2.4 Antiparasitic activity.................................................................................... 33 3.4.2.5 Antiviral activity.......................................................................................... 34 3.4.3 Antimicrobial peptides as key molecules at the interface of innate and adaptive immunity… ...................................................................................................... 34 3.4.4 Additional non-immunological functions of AMPs......................................... 35 3.4.5 Antimicrobial peptides in the skin ................................................................... 36 3.5 Selected AMPs......................................................................................................... 39 3.5.1 RNase 7............................................................................................................ 39 3.5.2 Psoriasin (S100A7) .......................................................................................... 41 3.5.3 Hornerin ........................................................................................................... 43 3.5.4 LEKTI-2........................................................................................................... 44 3.6 Antimicrobial peptides in the hair follicle................................................................ 45 3.6.1 Antimicrobial peptide expression and function in the human hair follicle...... 45 3.6.2 Antimicrobial peptide expression and function in the hair follicle of other mammalian species .......................................................................................... 47 4 Material and Methods....................................................................................................... 48 4.1 Tissue specimens...................................................................................................... 48 4.2 Full thickness scalp skin organ culture..................................................................... 48 4.3 Immunohistochemistry............................................................................................. 49 4.3.1 Primary and secondary antibodies.................................................................... 50 4.3.2 Avidin-Biotin-Complex-Alkaline Phosphatase (ABC).................................... 50 4.3.3 Tyramide signal amplification (TSA) .............................................................. 51 4.3.4 Immunocytochemistry...................................................................................... 52 4.4 Microscopical equipment ......................................................................................... 52 4.5 Quantitative immunhistomorphometry .................................................................... 53 4.6 Statistical analysis.................................................................................................... 54 4.7 Isolation of outer root sheath cells ..........................................................................
Recommended publications
  • Effect of Dermcidin, an Antimicrobial Peptide, on Body Fat Mobilization in Normal Mice
    111 Effect of dermcidin, an antimicrobial peptide, on body fat mobilization in normal mice Kyung-Ah Kim1,*, Sun-O Ka1,*, Woo Sung Moon2, Ho-Keun Yi3, Young-Hoon Lee4, Kang-Beom Kwon5, Jin-Woo Park1 and Byung-Hyun Park1 Departments of 1Biochemistry and 2Pathology, Medical School and Institute for Medical Sciences, 3Biochemistry and 4Oral Anatomy, Dental School and Institute of Oral Biosciences, Chonbuk National University, Jeonju, Jeonbuk 561-756, South Korea 5Department of Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, South Korea (Correspondence should be addressed to B-H Park; Email: [email protected]) *(K-A Kim and S-O Ka contributed equally to this work) Abstract Dermcidin (DCD), an antimicrobial peptide that is secreted tissues obtained from Ad-b-gal-injected mice. The gene by sweat glands, is reportedly a human homolog of mouse expression profiles revealed an upregulation of hormone- proteolysis-inducing factor. This study was conducted to sensitive lipase and adipose fatty acid-binding protein, both of investigate the effect of DCD on body fat mobilization. The which are involved in adipocyte lipolysis, in Ad-DCD- expression level of DCD in the livers of Ad-DCD-injected injected mice, and this lipolytic effect of DCD paralleled the mice was higher than in those of Ad-b-galactosidase (Ad-b- increase of circulating tumor necrosis factor-a (TNF-a)level gal)-injected mice 7 days after injection. In addition, injection that was observed. The perilipin levels in adipose tissue were with the Ad-DCD virus led to decreased body weight and decreased in Ad-DCD-injected mice when compared with epididymal fat mass when compared with controls.
    [Show full text]
  • Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Yazan H
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2013 Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Yazan H. Akkam University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Biochemistry Commons, Medicinal and Pharmaceutical Chemistry Commons, and the Molecular Biology Commons Recommended Citation Akkam, Yazan H., "Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications" (2013). Theses and Dissertations. 908. http://scholarworks.uark.edu/etd/908 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology by Yazan H. Akkam Jordan University of Science and Technology Bachelor of Science in Pharmacy, 2001 Al-Balqa Applied University Master of Science in Biochemistry and Chemistry of Pharmaceuticals, 2005 August 2013 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Dr. David S. McNabb Dissertation Director Professor Roger E. Koeppe II Professor Gisela F. Erf Committee Member Committee Member Professor Ralph L. Henry Dr. Suresh K. Thallapuranam Committee Member Committee Member ABSTRACT Candida species are the fourth leading cause of nosocomial infection. The increased incidence of drug-resistant Candida species has emphasized the need for new antifungal drugs.
    [Show full text]
  • Analysis of the Solution Structure of the Human Antibiotic Peptide Dermcidin and Its Interaction with Phospholipid Vesicles
    BMB reports Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles Hyun Ho Jung1, Sung-Tae Yang2, Ji-Yeong Sim1, Seungkyu Lee1, Ju Yeon Lee1, Ha Hyung Kim3, Song Yub Shin4 & Jae Il Kim1,* 1Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, 2Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, 3College of Pharmacy, Chung-Ang University, Seoul, 4Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 501-759, Korea Dermcidin is a human antibiotic peptide that is secreted by the of the modes of action of various antimicrobial peptides have sweat glands and has no homology to other known antimicro- revealed that their cationic nature contributes to their initial bial peptides. As an initial step toward understanding dermci- binding to negatively charged bacterial membranes through din’s mode of action at bacterial membranes, we used homo- electrostatic interaction, while their amphipathic structures en- nuclear and heteronuclear NMR to determine the conforma- hance peptide-lipid interactions at the water-bilayer interface, tion of the peptide in 50% trifluoroethanol solution. We found ultimately leading to cell death via pore formation or mem- that dermcidin adopts a flexible amphipathic α-helical struc- brane disintergration (9-14). ture with a helix-hinge-helix motif, which is a common molec- Dermcidin (DCD) is an antimicrobial peptide found in hu- ular fold among antimicrobial peptides. Spin-down assays of man sweat.
    [Show full text]
  • Persistent Infection by Yersinia Pseudotuberculosis
    Persistent infection by Yersinia pseudotuberculosis Kemal Avican Department of Molecular Biology Umeå Centre for Microbial Research (UCMR) Laboratory for Molecular Infection Sweden (MIMS) Umeå University Umeå 2015 Copyright © Kemal Avican Responsible publisher under swedish law: the Dean of the Medical Faculty This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7601-335-9 ISSN: 0346-6612 New Series No: 1748 Cover Picture: Transcriptome of Yersinia pseudotuberculosis Cover Design: Kemal Avican Electronic version is avaliable at http://umu.diva-portal.org/ Printed by: Print & Media Umeå, Sweden 2015 To my parents… ! Table of contents Abstract ................................................................................................... i List of Abbreviations ............................................................................. ii Papers in This Thesis ........................................................................... iv 1! Introduction ...................................................................................... 1! 1.1! Emergence of Bacterial Pathogens ................................................................ 3! 1.1.1! Emergence of pathogenic properties ............................................................................ 3! 1.1.1.1! Bacteria–protozoa interactions .............................................................................. 3! 1.1.1.2! Genome plasticity .................................................................................................
    [Show full text]
  • Keratolysis Exfoliativa
    University of Groningen Keratolysis exfoliativa (dyshidrosis lamellosa sicca) van der Velden, J.; van der Wier, G.; Kramer, D.; Diercks, G.F.; van Geel, M.; Coenraads, P.J.; Zeeuwen, P.L.; Jonkman, M.F.; Chang, Y.Y. Published in: BRITISH JOURNAL OF DERMATOLOGY DOI: 10.1111/j.1365-2133.2012.11175.x IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van der Velden, J., van der Wier, G., Kramer, D., Diercks, G. F., van Geel, M., Coenraads, P. J., ... Chang, Y. Y. (2012). Keratolysis exfoliativa (dyshidrosis lamellosa sicca): a distinct peeling entity. BRITISH JOURNAL OF DERMATOLOGY, 167(5), 1076-1084. https://doi.org/10.1111/j.1365-2133.2012.11175.x Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Microbial Mechanisms of Pathogenicity 661
    Chapter 15 | Microbial Mechanisms of Pathogenicity 661 Chapter 15 Microbial Mechanisms of Pathogenicity Figure 15.1 Although medical professionals rely heavily on signs and symptoms to diagnose disease and prescribe treatment, many diseases can produce similar signs and symptoms. (credit left: modification of work by U.S. Navy) Chapter Outline 15.1 Characteristics of Infectious Disease 15.2 How Pathogens Cause Disease 15.3 Virulence Factors of Bacterial and Viral Pathogens 15.4 Virulence Factors of Eukaryotic Pathogens Introduction Jane woke up one spring morning feeling not quite herself. Her throat felt a bit dry and she was sniffling. She wondered why she felt so lousy. Was it because of a change in the weather? The pollen count? Was she coming down with something? Did she catch a bug from her coworker who sneezed on her in the elevator yesterday? The signs and symptoms we associate with illness can have many different causes. Sometimes they are the direct result of a pathogenic infection, but in other cases they result from a response by our immune system to a pathogen or another perceived threat. For example, in response to certain pathogens, the immune system may release pyrogens, chemicals that cause the body temperature to rise, resulting in a fever. This response creates a less-than-favorable environment for the pathogen, but it also makes us feel sick. Medical professionals rely heavily on analysis of signs and symptoms to determine the cause of an ailment and prescribe treatment. In some cases, signs and symptoms alone are enough to correctly identify the causative agent of a disease, but since few diseases produce truly unique symptoms, it is often necessary to confirm the identity of the infectious agent by other direct and indirect diagnostic methods.
    [Show full text]
  • The Antimicrobial Effect of Dermcidin Investigated by Computational Electrophysiology Molecular Dynamics Simulations
    The antimicrobial effect of dermcidin investigated by computational electrophysiology molecular dynamics simulations Björn Forsberg Department of Biochemistry and Biophysics Stockholm University 2013 Supervisor(s): Erik Lindahl (SU) / Bert de Groot (MPI-BPC) Conducted in the group for biomolecular dynamics at the dept. of theoretical and computational biophysics, Max-Planck Institute for biophysical Chemistry, Göttingen, Germany The barber put a hand on top of my head to turn me for a better look. Then he said to the guard, "Did you get your deer, Charles?" I liked this barber. We weren’t acquainted well enough to call each other by name, but when I came in for a haircut he knew me and knew I used to fish, so we’d talk fishing. I don’t think he hunted, but he could talk on any subject and was a good listener. In this regard he was a good barber. "Bill, it’s a funny story. The damnedest thing," the guard said. He removed the toothpick and laid it in the ashtray. He shook his head. "I did and yet I didn’t. So yes and no to your question." - Raymond Carver, The Calm 2 Contents 1 Popular science description 4 2 Abstract 5 3 Introduction 6 4 Introduction to the biological system under study 6 4.1 Cellular membranes . 6 4.1.1 Lipids . 6 4.1.2 Additional components . 7 4.1.3 Bacterial membranes . 7 4.2 AntiMicrobial Peptides (AMPs)and the antimicrobial effect . 8 4.3 Human dermcidin . 9 4.3.1 Prevalence and function . 9 4.3.2 Structure .
    [Show full text]
  • The Structure of the Antimicrobial Human Cathelicidin LL-37 Shows
    www.nature.com/scientificreports OPEN The structure of the antimicrobial human cathelicidin LL‑37 shows oligomerization and channel formation in the presence of membrane mimics Enea Sancho‑Vaello1,7, David Gil‑Carton2, Patrice François 3, Eve‑Julie Bonetti3, Mohamed Kreir4,8, Karunakar Reddy Pothula 5, Ulrich Kleinekathöfer 5 & Kornelius Zeth6* The human cathelicidin LL‑37 serves a critical role in the innate immune system defending bacterial infections. LL‑37 can interact with molecules of the cell wall and perforate cytoplasmic membranes resulting in bacterial cell death. To test the interactions of LL‑37 and bacterial cell wall components we crystallized LL‑37 in the presence of detergents and obtained the structure of a narrow tetrameric channel with a strongly charged core. The formation of a tetramer was further studied by cross‑ linking in the presence of detergents and lipids. Using planar lipid membranes a small but defned conductivity of this channel could be demonstrated. Molecular dynamic simulations underline the stability of this channel in membranes and demonstrate pathways for the passage of water molecules. Time lapse studies of E. coli cells treated with LL‑37 show membrane discontinuities in the outer membrane followed by cell wall damage and cell death. Collectively, our results open a venue to the understanding of a novel AMP killing mechanism and allows the rational design of LL‑37 derivatives with enhanced bactericidal activity. Te increase in antibiotic resistance is one of the biggest health challenges our society is currently facing1. As a consequence, the discovery of new bactericidal drug candidates from any source including antimicrobial peptides (AMPs) is urgent2–4.
    [Show full text]
  • A Practical Approach to the Diagnosis and Management of Hair Loss in Children and Adolescents
    A Practical Approach to the Diagnosis and Management of Hair Loss in Children and Adolescents The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Xu, Liwen, Kevin X. Liu, and Maryanne M. Senna. 2017. “A Practical Approach to the Diagnosis and Management of Hair Loss in Children and Adolescents.” Frontiers in Medicine 4 (1): 112. doi:10.3389/ fmed.2017.00112. http://dx.doi.org/10.3389/fmed.2017.00112. Published Version doi:10.3389/fmed.2017.00112 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34375289 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA REVIEW published: 24 July 2017 doi: 10.3389/fmed.2017.00112 A Practical Approach to the Diagnosis and Management of Hair Loss in Children and Adolescents Liwen Xu1†, Kevin X. Liu1† and Maryanne M. Senna2* 1 Harvard Medical School, Boston, MA, United States, 2 Department of Dermatology, Massachusetts General Hospital, Boston, MA, United States Hair loss or alopecia is a common and distressing clinical complaint in the primary care setting and can arise from heterogeneous etiologies. In the pediatric population, hair loss often presents with patterns that are different from that of their adult counterparts. Given the psychosocial complications that may arise from pediatric alopecia, prompt diagnosis and management is particularly important. Common causes of alopecia in children and adolescents include alopecia areata, tinea capitis, androgenetic alopecia, traction Edited by: alopecia, trichotillomania, hair cycle disturbances, and congenital alopecia conditions.
    [Show full text]
  • Histatin Peptides: Pharmacological Functions and Their Applications in Dentistry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bradford Scholars The University of Bradford Institutional Repository http://bradscholars.brad.ac.uk This work is made available online in accordance with publisher policies. Please refer to the repository record for this item and our Policy Document available from the repository home page for further information. To see the final version of this work please visit the publisher’s website. Access to the published online version may require a subscription. Link to publisher’s version: http://dx.doi.org/10.1016/j.jsps.2016.04.027 Citation: Khurshid Z, Najeeb S, Mali M et al (2016) Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharmaceutical Journal. Copyright statement: © 2016 The Authors. This is an open access article licensed under the Crative Commons CC-BY-NC-ND license. Saudi Pharmaceutical Journal (2016) xxx, xxx–xxx King Saud University Saudi Pharmaceutical Journal www.ksu.edu.sa www.sciencedirect.com REVIEW Histatin peptides: Pharmacological functions and their applications in dentistry Zohaib Khurshid a, Shariq Najeeb b, Maria Mali c, Syed Faraz Moin d, Syed Qasim Raza e, Sana Zohaib f, Farshid Sefat f,g, Muhammad Sohail Zafar h,* a Department of Dental Biomaterials, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia b School of Dentistry, University of Sheffield, Sheffield, UK c Department of Endodontics, Fatima Jinnah Dental College, Karachi, Pakistan d National Centre for Proteomics,
    [Show full text]
  • Histatin Peptides: Pharmacological Functions and Their Applications in Dentistry
    Histatin peptides: Pharmacological functions and their applications in dentistry Item Type Article Authors Khurshid, Z.; Najeeb, S.; Mali, M.; Moin, S.F.; Raza, S.Q.; Zohaib, S.; Sefat, Farshid; Zafar, M.S. Citation Khurshid Z, Najeeb S, Mali M et al (2016) Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharmaceutical Journal. Article in Press. Rights © 2016 The Authors. This is an open access article licensed under the Crative Commons CC-BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/) Download date 02/10/2021 02:35:32 Link to Item http://hdl.handle.net/10454/8907 The University of Bradford Institutional Repository http://bradscholars.brad.ac.uk This work is made available online in accordance with publisher policies. Please refer to the repository record for this item and our Policy Document available from the repository home page for further information. To see the final version of this work please visit the publisher’s website. Access to the published online version may require a subscription. Link to publisher’s version: http://dx.doi.org/10.1016/j.jsps.2016.04.027 Citation: Khurshid Z, Najeeb S, Mali M et al (2016) Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharmaceutical Journal. Copyright statement: © 2016 The Authors. This is an open access article licensed under the Crative Commons CC-BY-NC-ND license. Saudi Pharmaceutical Journal (2016) xxx, xxx–xxx King Saud University Saudi Pharmaceutical Journal www.ksu.edu.sa www.sciencedirect.com
    [Show full text]
  • Trichoscopy As a Diagnostic Tool in Trichorrhexis Invaginata and Netherton Syndrome*
    Revista1Vol90ingles_Layout 1 08/01/15 15:02 Página 114 114 CASE REPORT Trichoscopy as a diagnostic tool in trichorrhexis invaginata and Netherton syndrome* Maraya de Jesus Semblano Bittencourt1,2 Alena Darwich Mendes2,3 Emanuella Rosyane Duarte Moure2 Monique Morales Deprá2 Olga Ten Caten Pies2 Anna Luiza Piqueira de Mello2 DOI: http://dx.doi.org/10.1590/abd1806-4841.20153011 Abstract: Netherton syndrome is a rare autosomal recessive disease characterized by erythroderma, ichthyosis linearis circumflexa, atopy, failure to thrive and a specific hair shaft abnormality called trichorrhexis invaginata or bamboo hair, considered pathognomonic. We report the case of a 4-year-old boy with erythroderma since birth, growth deficit and chronic diarrhea. Trichoscopy was used to visualize typical bamboo and "golf tee" hair and of key importance to diagnose Netherton syndrome. We suggest the use of this procedure in all children diagnosed with erythroderma. Keywords: Dermoscopy; Hair; Netherton syndrome INTRODUCTION CASE REPORT Netherton syndrome (NS) is a rare recessive A four-year-old boy presented history of ery- autosomal disease characterized by erythroderma, throderma after birth, chronic diarrhea and growth ichthyosis linearis circumflexa, atopy, growth retarda- deficit. He was brought for dermatological evaluation tion and a specific hair shaft alteration, identified as tri- presenting eczematous plaques disseminated in the chorrhexis invaginata (TI) or bamboo hair. 1,2 TI is tegument. He had been using topical corticoids, oral pathognomonic of NS and presents itself microscopi- antihistamine and zinc regularly, with persistence of cally as an invagination of the shaft's distal portion to lesions and recurrent episodes of exacerbation. His its proximal portion, giving it an appearance of a “ball mother also reported that he presented brittle and in a hoop”.
    [Show full text]