Semantic Analysis of Wikipedia's Linked Data Graph for Entity

Total Page:16

File Type:pdf, Size:1020Kb

Semantic Analysis of Wikipedia's Linked Data Graph for Entity Semantic Analysis of Wikipedia’s Linked Data Graph for Entity Detection and Topic Identification Applications by Milad AlemZadeh A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2012 ©Milad AlemZadeh 2012 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Semantic Web and Linked Data community is now the reality of the future of the Web. The standards and technologies defined in this field have opened a strong pathway towards a new era of knowledge management and representation for the computing world. The data structures and the semantic formats introduced by the Semantic Web standards offer a platform for all the data and knowledge providers in the world to present their information in a free, publicly available, semantically tagged, inter-linked, and machine-readable structure. As a result, the adaptation of the Semantic Web standards by data providers creates numerous opportunities for development of new applications which were not possible or, at best, hardly achievable using the current state of Web which is mostly consisted of unstructured or semi-structured data with minimal semantic metadata attached tailored mainly for human-readability. This dissertation tries to introduce a framework for effective analysis of the Semantic Web data towards the development of solutions for a series of related applications. In order to achieve such framework, Wikipedia is chosen as the main knowledge resource largely due to the fact that it is the main and central dataset in Linked Data community. In this work, Wikipedia and its Semantic Web version DBpedia are used to create a semantic graph which constitutes the knowledgebase and the back-end foundation of the framework. The semantic graph introduced in this research consists of two main concepts: entities and topics. The entities act as the knowledge items while topics create the class hierarchy of the knowledge items. Therefore, by assigning entities to various topics, the semantic graph presents all the knowledge items in a categorized hierarchy ready for further processing. Furthermore, this dissertation introduces various analysis algorithms over entity and topic graphs which can be used in a variety of applications, especially in natural language understanding and knowledge management fields. After explaining the details of the analysis algorithms, a number of possible applications are presented and potential solutions to these applications are provided. The main themes of these applications are entity detection, topic identification, and context acquisition. To demonstrate the efficiency of the framework algorithms, some of the applications are developed and comprehensively studied by providing detailed experimental results which are compared with appropriate benchmarks. These results show how the framework can be used in different configurations and how different parameters affect the performance of the algorithms. iii Acknowledgements This work has only been made possible with the unwavering support and help of my supervisor Professor Fakhreddine Karray to whom I would like to give my sincere thanks. I am forever grateful to him for the freedom he provided me to explore the areas of science I have always liked to venture into while assisting me whenever I needed it. For this and all the directions I received throughout all the stages of this work, I am thankful to him. I would also like to express my gratitude to the members of my committee, Professors Robert Mercer, Mahesh Tripunitara, Kshirasagar Naik, and Kumaraswamy Ponnambalam for all of their invaluable comments and suggestions which helped improve the quality of this work. I would like to extend my appreciation to Professors Frank Tompa and Mohamed Kamel for the valuable lessons I learned in their classes which helped shape the work presented in this dissertation. Moreover, I would very much like to acknowledge the vital role my family has played in helping me achieve my goals in life. I am particularly thankful to my wife, Sarah, for her relentless support these past few years and to my mother for providing a great childhood in spite of all the hardships. I am very grateful for the unconditional support of my sisters, Parisa and Soraia, and my brothers, Davood and Saeed, whenever I needed it. Last but certainly not least, I would like to thank my good friend and the co-author of many of my published works Professor Richard Khoury. In collaboration with Richard, I learned how to better express my ideas and, at the same time, improve my work considerably. This work would have undoubtedly not been possible if it was not for his tireless efforts and significant feedback. iv Dedication Sarah, my dear beloved: I cannot express sufficiently how much your love means to me. I think and I wonder but I am not able to imagine how I would be able to live let alone progress in life if you have not been in it. This is just but a gesture, a simple nod to, and a token of my love for all you have given me. This is for you. v Table of Contents AUTHOR'S DECLARATION ............................................................................................................... ii Abstract ................................................................................................................................................. iii Acknowledgements ............................................................................................................................... iv Dedication .............................................................................................................................................. v Table of Contents .................................................................................................................................. vi List of Figures ....................................................................................................................................... ix List of Tables ......................................................................................................................................... xi Chapter 1 Introduction ............................................................................................................................ 1 1.1 Background .................................................................................................................................. 1 1.2 Motivations ................................................................................................................................... 2 1.3 Problem Domain and Contributions ............................................................................................. 3 1.4 Organization of the Dissertation ................................................................................................... 4 Chapter 2 Background and Literature Review ....................................................................................... 6 2.1 Semantic Web ............................................................................................................................... 6 2.1.1 General Structure ................................................................................................................... 6 2.1.2 URI/IRI .................................................................................................................................. 6 2.1.3 XML ...................................................................................................................................... 7 2.1.4 RDF ....................................................................................................................................... 8 2.1.5 Ontology .............................................................................................................................. 10 2.1.6 Ontology Editors ................................................................................................................. 12 2.1.7 Reasoning Engines .............................................................................................................. 14 2.2 Linked Data ................................................................................................................................ 15 2.3 Wikipedia ................................................................................................................................... 18 2.3.1 Wikipedia and Semantic Web ............................................................................................. 18 2.3.2 Wikipedia and Topic Identification ..................................................................................... 18 2.3.3 Wikipedia and Text Classification ...................................................................................... 20 2.4 Summary .................................................................................................................................... 20 Chapter 3 Semantic Analysis of Wikipedia .......................................................................................... 21 3.1 Introduction ................................................................................................................................ 21 3.2 Problem
Recommended publications
  • Semantic Wiki Search
    Semantic Wiki Search Peter Haase1, Daniel Herzig1,, Mark Musen2,andThanhTran1 1 Institute AIFB, Universit¨at Karlsruhe (TH), Germany {pha,dahe,dtr}@aifb.uni-karlsruhe.de 2 Stanford Center for Biomedical Informatics Research (BMIR) Stanford University, USA [email protected] Abstract. Semantic wikis extend wiki platforms with the ability to represent structured information in a machine-processable way. On top of the structured in- formation in the wiki, novel ways to search, browse, and present the wiki content become possible. However, while powerful query languages offer new opportuni- ties for semantic search, the syntax of formal query languages is not adequate for end users. In this work we present an approach to semantic search that combines the expressiveness and capabilities of structured queries with the simplicity of keyword interfaces and faceted search. Users articulate their information need in keywords, which are translated into structured, conjunctive queries. This transla- tion may result in multiple possible interpretations of the information need, which can then be selected and further refined by the user via facets. We have imple- mented this approach to semantic search as an extension to Semantic MediaWiki. The results of a user study in the SMW-based community portal semanticweb.org show the efficiency and effectiveness of the approach as well as its ease of use. 1 Introduction The availability of structured information on the Semantic Web enables new opportu- nities for information access. Search is no longer limited to matching keywords against documents, but instead complex information needs can be expressed in a structured way, with precise and structured answers as results [1,2,3].
    [Show full text]
  • Probabilistic Topic Modelling with Semantic Graph
    Probabilistic Topic Modelling with Semantic Graph B Long Chen( ), Joemon M. Jose, Haitao Yu, Fajie Yuan, and Huaizhi Zhang School of Computing Science, University of Glasgow, Sir Alwyns Building, Glasgow, UK [email protected] Abstract. In this paper we propose a novel framework, topic model with semantic graph (TMSG), which couples topic model with the rich knowledge from DBpedia. To begin with, we extract the disambiguated entities from the document collection using a document entity linking system, i.e., DBpedia Spotlight, from which two types of entity graphs are created from DBpedia to capture local and global contextual knowl- edge, respectively. Given the semantic graph representation of the docu- ments, we propagate the inherent topic-document distribution with the disambiguated entities of the semantic graphs. Experiments conducted on two real-world datasets show that TMSG can significantly outperform the state-of-the-art techniques, namely, author-topic Model (ATM) and topic model with biased propagation (TMBP). Keywords: Topic model · Semantic graph · DBpedia 1 Introduction Topic models, such as Probabilistic Latent Semantic Analysis (PLSA) [7]and Latent Dirichlet Analysis (LDA) [2], have been remarkably successful in ana- lyzing textual content. Specifically, each document in a document collection is represented as random mixtures over latent topics, where each topic is character- ized by a distribution over words. Such a paradigm is widely applied in various areas of text mining. In view of the fact that the information used by these mod- els are limited to document collection itself, some recent progress have been made on incorporating external resources, such as time [8], geographic location [12], and authorship [15], into topic models.
    [Show full text]
  • Employee Matching Using Machine Learning Methods
    Master of Science in Computer Science May 2019 Employee Matching Using Machine Learning Methods Sumeesha Marakani Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. The authors declare that they are the sole authors of this thesis and that they have not used any sources other than those listed in the bibliography and identified as references. They further declare that they have not submitted this thesis at any other institution to obtain a degree. Contact Information: Author(s): Sumeesha Marakani E-mail: [email protected] University advisor: Prof. Veselka Boeva Department of Computer Science External advisors: Lars Tornberg [email protected] Daniel Lundgren [email protected] Faculty of Computing Internet : www.bth.se Blekinge Institute of Technology Phone : +46 455 38 50 00 SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 Abstract Background. Expertise retrieval is an information retrieval technique that focuses on techniques to identify the most suitable ’expert’ for a task from a list of individ- uals. Objectives. This master thesis is a collaboration with Volvo Cars to attempt ap- plying this concept and match employees based on information that was extracted from an internal tool of the company. In this tool, the employees describe themselves in free flowing text. This text is extracted from the tool and analyzed using Natural Language Processing (NLP) techniques.
    [Show full text]
  • Matrix Decompositions and Latent Semantic Indexing
    Online edition (c)2009 Cambridge UP DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. 403 Matrix decompositions and latent 18 semantic indexing On page 123 we introduced the notion of a term-document matrix: an M N matrix C, each of whose rows represents a term and each of whose column× s represents a document in the collection. Even for a collection of modest size, the term-document matrix C is likely to have several tens of thousands of rows and columns. In Section 18.1.1 we first develop a class of operations from linear algebra, known as matrix decomposition. In Section 18.2 we use a special form of matrix decomposition to construct a low-rank approximation to the term-document matrix. In Section 18.3 we examine the application of such low-rank approximations to indexing and retrieving documents, a technique referred to as latent semantic indexing. While latent semantic in- dexing has not been established as a significant force in scoring and ranking for information retrieval, it remains an intriguing approach to clustering in a number of domains including for collections of text documents (Section 16.6, page 372). Understanding its full potential remains an area of active research. Readers who do not require a refresher on linear algebra may skip Sec- tion 18.1, although Example 18.1 is especially recommended as it highlights a property of eigenvalues that we exploit later in the chapter. 18.1 Linear algebra review We briefly review some necessary background in linear algebra. Let C be an M N matrix with real-valued entries; for a term-document matrix, all × RANK entries are in fact non-negative.
    [Show full text]
  • Latent Semantic Analysis for Text-Based Research
    Behavior Research Methods, Instruments, & Computers 1996, 28 (2), 197-202 ANALYSIS OF SEMANTIC AND CLINICAL DATA Chaired by Matthew S. McGlone, Lafayette College Latent semantic analysis for text-based research PETER W. FOLTZ New Mexico State University, Las Cruces, New Mexico Latent semantic analysis (LSA) is a statistical model of word usage that permits comparisons of se­ mantic similarity between pieces of textual information. This papersummarizes three experiments that illustrate how LSA may be used in text-based research. Two experiments describe methods for ana­ lyzinga subject's essay for determining from what text a subject learned the information and for grad­ ing the quality of information cited in the essay. The third experiment describes using LSAto measure the coherence and comprehensibility of texts. One of the primary goals in text-comprehension re­ A theoretical approach to studying text comprehen­ search is to understand what factors influence a reader's sion has been to develop cognitive models ofthe reader's ability to extract and retain information from textual ma­ representation ofthe text (e.g., Kintsch, 1988; van Dijk terial. The typical approach in text-comprehension re­ & Kintsch, 1983). In such a model, semantic information search is to have subjects read textual material and then from both the text and the reader's summary are repre­ have them produce some form of summary, such as an­ sented as sets ofsemantic components called propositions. swering questions or writing an essay. This summary per­ Typically, each clause in a text is represented by a single mits the experimenter to determine what information the proposition.
    [Show full text]
  • How Latent Is Latent Semantic Analysis?
    How Latent is Latent Semantic Analysis? Peter Wiemer-Hastings University of Memphis Department of Psychology Campus Box 526400 Memphis TN 38152-6400 [email protected]* Abstract In the late 1980's, a group at Bellcore doing re- search on information retrieval techniques developed a Latent Semantic Analysis (LSA) is a statisti• statistical, corpus-based method for retrieving texts. cal, corpus-based text comparison mechanism Unlike the simple techniques which rely on weighted that was originally developed for the task of matches of keywords in the texts and queries, their information retrieval, but in recent years has method, called Latent Semantic Analysis (LSA), cre• produced remarkably human-like abilities in a ated a high-dimensional, spatial representation of a cor• variety of language tasks. LSA has taken the pus and allowed texts to be compared geometrically. Test of English as a Foreign Language and per• In the last few years, several researchers have applied formed as well as non-native English speakers this technique to a variety of tasks including the syn• who were successful college applicants. It has onym section of the Test of English as a Foreign Lan• shown an ability to learn words at a rate sim• guage [Landauer et al., 1997], general lexical acquisi• ilar to humans. It has even graded papers as tion from text [Landauer and Dumais, 1997], selecting reliably as human graders. We have used LSA texts for students to read [Wolfe et al., 1998], judging as a mechanism for evaluating the quality of the coherence of student essays [Foltz et a/., 1998], and student responses in an intelligent tutoring sys• the evaluation of student contributions in an intelligent tem, and its performance equals that of human tutoring environment [Wiemer-Hastings et al., 1998; raters with intermediate domain knowledge.
    [Show full text]
  • Navigating Dbpedia by Topic Tanguy Raynaud, Julien Subercaze, Delphine Boucard, Vincent Battu, Frederique Laforest
    Fouilla: Navigating DBpedia by Topic Tanguy Raynaud, Julien Subercaze, Delphine Boucard, Vincent Battu, Frederique Laforest To cite this version: Tanguy Raynaud, Julien Subercaze, Delphine Boucard, Vincent Battu, Frederique Laforest. Fouilla: Navigating DBpedia by Topic. CIKM 2018, Oct 2018, Turin, Italy. hal-01860672 HAL Id: hal-01860672 https://hal.archives-ouvertes.fr/hal-01860672 Submitted on 23 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Fouilla: Navigating DBpedia by Topic Tanguy Raynaud, Julien Subercaze, Delphine Boucard, Vincent Battu, Frédérique Laforest Univ Lyon, UJM Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516 Saint-Etienne, France [email protected] ABSTRACT only the triples that concern this topic. For example, a user is inter- Navigating large knowledge bases made of billions of triples is very ested in Italy through the prism of Sports while another through the challenging. In this demonstration, we showcase Fouilla, a topical prism of Word War II. For each of these topics, the relevant triples Knowledge Base browser that offers a seamless navigational expe- of the Italy entity differ. In such circumstances, faceted browsing rience of DBpedia. We propose an original approach that leverages offers no solution to retrieve the entities relative to a defined topic both structural and semantic contents of Wikipedia to enable a if the knowledge graph does not explicitly contain an adequate topic-oriented filter on DBpedia entities.
    [Show full text]
  • Document and Topic Models: Plsa
    10/4/2018 Document and Topic Models: pLSA and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline • Topic Models • pLSA • LSA • Model • Fitting via EM • pHITS: link analysis • LDA • Dirichlet distribution • Generative process • Model • Geometric Interpretation • Inference 2 1 10/4/2018 Topic Models: Visual Representation Topic proportions and Topics Documents assignments 3 Topic Models: Importance • For a given corpus, we learn two things: 1. Topic: from full vocabulary set, we learn important subsets 2. Topic proportion: we learn what each document is about • This can be viewed as a form of dimensionality reduction • From large vocabulary set, extract basis vectors (topics) • Represent document in topic space (topic proportions) 푁 퐾 • Dimensionality is reduced from 푤푖 ∈ ℤ푉 to 휃 ∈ ℝ • Topic proportion is useful for several applications including document classification, discovery of semantic structures, sentiment analysis, object localization in images, etc. 4 2 10/4/2018 Topic Models: Terminology • Document Model • Word: element in a vocabulary set • Document: collection of words • Corpus: collection of documents • Topic Model • Topic: collection of words (subset of vocabulary) • Document is represented by (latent) mixture of topics • 푝 푤 푑 = 푝 푤 푧 푝(푧|푑) (푧 : topic) • Note: document is a collection of words (not a sequence) • ‘Bag of words’ assumption • In probability, we call this the exchangeability assumption • 푝 푤1, … , 푤푁 = 푝(푤휎 1 , … , 푤휎 푁 ) (휎: permutation) 5 Topic Models: Terminology (cont’d) • Represent each document as a vector space • A word is an item from a vocabulary indexed by {1, … , 푉}. We represent words using unit‐basis vectors.
    [Show full text]
  • Vector-Based Word Representations for Sentiment Analysis: a Comparative Study
    CORE Metadata, citation and similar papers at core.ac.uk Provided by SEDICI - Repositorio de la UNLP Vector-based word representations for sentiment analysis: a comparative study M. Paula Villegas1, M. José Garciarena Ucelay1, Juan Pablo Fernández1, Miguel A. 2 1 1,3 Álvarez-Carmona , Marcelo L. Errecalde , Leticia C. Cagnina 1LIDIC, Universidad Nacional de San Luis, San Luis, Argentina 2Language Technologies Laboratory, INAOE, Puebla, México 3CONICET, Argentina {villegasmariapaula74, mjgarciarenaucelay, miguelangel.alvarezcarmona, merrecalde, lcagnina}@gmail.com Abstract. New applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this context, word representation models in general and vector-based word representations in particular have gained increasing interest to overcome or alleviate some of the limitations that Bag of Words-based representations exhibit. In this article, we analyze the use of several vector-based word representations in a sentiment analysis task with movie reviews. Experimental results show the effectiveness of some vector-based word representations in comparison to standard Bag of Words representations. In particular, the Second Order Attributes representation seems to be very robust and effective because independently the classifier used with, the results are good. Keywords: text mining, word-based representations, text categorization, movie reviews, sentiment analysis 1 Introduction Selecting a good document representation model is a key aspect in text categorization tasks. The usual approach, named Bag of Words (BoW) model, considers that words are simple indexes in a term vocabulary. In this model, originated in the information retrieval field, documents are represented as vectors indexed by those words.
    [Show full text]
  • Similarity Detection Using Latent Semantic Analysis Algorithm Priyanka R
    International Journal of Emerging Research in Management &Technology Research Article August ISSN: 2278-9359 (Volume-6, Issue-8) 2017 Similarity Detection Using Latent Semantic Analysis Algorithm Priyanka R. Patil Shital A. Patil PG Student, Department of Computer Engineering, Associate Professor, Department of Computer Engineering, North Maharashtra University, Jalgaon, North Maharashtra University, Jalgaon, Maharashtra, India Maharashtra, India Abstract— imilarity View is an application for visually comparing and exploring multiple models of text and collection of document. Friendbook finds ways of life of clients from client driven sensor information, measures the S closeness of ways of life amongst clients, and prescribes companions to clients if their ways of life have high likeness. Roused by demonstrate a clients day by day life as life records, from their ways of life are separated by utilizing the Latent Dirichlet Allocation Algorithm. Manual techniques can't be utilized for checking research papers, as the doled out commentator may have lacking learning in the exploration disciplines. For different subjective views, causing possible misinterpretations. An urgent need for an effective and feasible approach to check the submitted research papers with support of automated software. A method like text mining method come to solve the problem of automatically checking the research papers semantically. The proposed method to finding the proper similarity of text from the collection of documents by using Latent Dirichlet Allocation (LDA) algorithm and Latent Semantic Analysis (LSA) with synonym algorithm which is used to find synonyms of text index wise by using the English wordnet dictionary, another algorithm is LSA without synonym used to find the similarity of text based on index.
    [Show full text]
  • LDA V. LSA: a Comparison of Two Computational Text Analysis Tools for the Functional Categorization of Patents
    LDA v. LSA: A Comparison of Two Computational Text Analysis Tools for the Functional Categorization of Patents Toni Cvitanic1, Bumsoo Lee1, Hyeon Ik Song1, Katherine Fu1, and David Rosen1! ! 1Georgia Institute of Technology, Atlanta, GA, USA (tcvitanic3, blee300, hyeoniksong) @gatech.edu (katherine.fu, david.rosen) @me.gatech.edu! !! Abstract. One means to support for design-by-analogy (DbA) in practice involves giving designers efficient access to source analogies as inspiration to solve problems. The patent database has been used for many DbA support efforts, as it is a pre- existing repository of catalogued technology. Latent Semantic Analysis (LSA) has been shown to be an effective computational text processing method for extracting meaningful similarities between patents for useful functional exploration during DbA. However, this has only been shown to be useful at a small-scale (100 patents). Considering the vastness of the patent database and realistic exploration at a large- scale, it is important to consider how these computational analyses change with orders of magnitude more data. We present analysis of 1,000 random mechanical patents, comparing the ability of LSA to Latent Dirichlet Allocation (LDA) to categorize patents into meaningful groups. Resulting implications for large(r) scale data mining of patents for DbA support are detailed. Keywords: Design-by-analogy ! Patent Analysis ! Latent Semantic Analysis ! Latent Dirichlet Allocation ! Function-based Analogy 1 Introduction Exposure to appropriate analogies during early stage design has been shown to increase the novelty, quality, and originality of generated solutions to a given engineering design problem [1-4]. Finding appropriate analogies for a given design problem is the largest challenge to practical implementation of DbA.
    [Show full text]
  • D3.5 Semantic Wiki
    D3.5 Semantic Wiki V 2.0 Project acronym: FLOOD-serv Public FLOOD Emergency Project full title: and Awareness SERvice Grant agreement no.: 693599 Responsible: SIVECO Contributors: SIVECO Document Reference: D3.5 Dissemination Level: PU Version: Final Date: 31/01/2018 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 693599 D3.5 Semantic Wiki Table of contents Table of contents ............................................................................................................. 2 List of tables .................................................................................................................... 4 List of abbreviations ......................................................................................................... 5 Executive summary .......................................................................................................... 6 1 Introduction ............................................................................................................. 7 1.1 Document Purpose and Scope .................................................................................... 7 1.2 Target Audience........................................................................................................... 7 1.3 How Final Review Observations Were Addresses ....................................................... 7 2 Technical Specifications ...........................................................................................
    [Show full text]