Severe Thunderstorm and Tornado Warnings at Raleigh, North Carolina

Total Page:16

File Type:pdf, Size:1020Kb

Severe Thunderstorm and Tornado Warnings at Raleigh, North Carolina Severe Thunderstorm and Tornado Warnings at Raleigh, North Carolina Debra K. Hoium,* Allen J. Riordan,* John Monahan,+ and Kermit K. Keeter* ABSTRACT The National Weather Service issues public warnings for severe thunderstorms and tornadoes when these storms appear imminent. A study of the warning process was conducted at the National Weather Service Forecast Office at Raleigh, North Carolina, from 1994 through 1996. The purpose of the study was to examine the decision process by documenting the types of information leading to decisions to warn or not to warn and by describing the sequence and timing of events in the development of warnings. It was found that the evolution of warnings followed a logical sequence beginning with storm monitoring and proceeding with increasingly focused activity. For simplicity, information input to the process was categorized as one of three types: ground truth, radar reflectivity, or radar velocity. Reflectivity, velocity, and ground truth were all equally likely to initiate the investigation process. This investiga- tion took an average of 7 min, after which either a decision was made not to warn or new information triggered the warn- ing. Decisions not to issue warnings were based more on ground truth and reflectivity than radar velocity products. Warnings with investigations of more than 2 min were more likely to be triggered by radar reflectivity, than by velocity or ground truth. Warnings with a shorter investigation time, defined here as "immediate trigger warnings," were less frequently based on velocity products and more on ground truth information. Once the decision was made to warn, it took an average of 2.1 min to prepare the warning text. In 85% of cases when warnings were issued, at least one contact was made to emergency management officials or storm spotters in the warned county. Reports of severe weather were usually received soon after the warning was transmitted—almost half of these within 30 min after issue. A total of 68% were received during the severe weather episode, but some of these storm reports later proved false according to Storm Data. Even though the WSR-88D is a sophisticated tool, ground truth information was found to be a vital part of the warn- ing process. However, the data did not indicate that population density was statistically correlated either with the num- ber of warnings issued or the verification rate. 1 • Introduction lent thunderstorms, 500 floods, 1000 tornadoes, and several hurricanes" (Friday 1994). Clearly, in this en- "In a typical year, the United States can expect a vironment, timely and accurate severe weather fore- staggering assault by the elements: some 10 000 vio- casts are essential to protect the public. Environmental conditions that lead to the develop- ment of severe thunderstorms and tornadoes are rea- * Department of Marine, Earth and Atmospheric Sciences, North sonably well recognized and can be forecast with Carolina State University, Raleigh, North Carolina. +Department of Statistics, North Carolina State University, demonstrable skill (Johns and Doswell 1992). Raleigh, North Carolina. However, there is as yet no reliable method to predict #National Weather Service Forecast Office, Raleigh, North the development of a specific severe storm. Thus, in Carolina. the United States there is a two-tier process of issuing Corresponding author address: Dr. Allen J. Riordan, College watches for large threat areas and warnings for spe- of Physical and Mathematical Sciences, North Carolina State cific storms. University, Box 8208, Raleigh, NC 27695-8208. E-mail: [email protected] Severe thunderstorm and tornado watches are In final form 1 August 1997. based on our ability to predict the storm environment. ©1997 American Meteorological Society Since 1954, the Severe Local Storms Unit of the Na- Bulletin of the American Meteorological Society 2539 Unauthenticated | Downloaded 10/10/21 05:36 PM UTC tional Severe Storms Forecast Center, now called the breaks appeared imminent but did not develop to cases Storm Prediction Center, in Norman, Oklahoma, has when supercells produced multiple tornadoes. Since provided national guidance with its wide array of fore- the collaboration began, 72 severe thunderstorm and cast products including the issuing of watches. These 20 tornado warnings have been fully documented. products are issued when there is a strong potential for This paper presents the results of the documenta- severe weather over an area of roughly 64 000 km2 for tion of the severe weather warning process at the Ra- a period of up to about 7 h (Ostby 1992). leigh NWSFO. The objective is to describe how the Once a specific damaging storm is detected or ap- storm coordinator reached a decision to issue or not pears imminent, each local National Weather Service to issue a warning. Of special interest is the role of (NWS) office is responsible for warning the public various WSR-88D products and the influence of within its area of responsibility. Warnings for severe ground truth reports in the decision process. convective storms are issued for counties or parts of counties for periods of generally up to 1 h. Each year the local NWS offices issue thousands of warnings 2. Background across the United States. The decisions for each of these warnings are At the Raleigh NWSFO during this study, the shaped by a wide array of factors including informa- Doppler radar PUP with its twin 19-in. color monitors tion from radar, the meteorological environment, (Crum and Alberty 1993), normally the center of ac- ground truth reports, and the judgment of forecasters. tivity, was located facing the south wall of the opera- The installation of the Weather Surveillance Radar- tions room. In front of the PUP there was space enough 1988 Doppler (WSR-88D) radar at NWS offices has for two staff persons, one to select products to be dis- been aimed at improving the accuracy and timeliness played, hereafter designated as the radar operator, and of warnings (Polger et al. 1994; Klazura and Imy 1993; sometimes a second person, normally to the left, who Bieringer and Ray 1996). Lemon et al. (1992) discuss provided support to the operator since at this position the use of this valuable, but complex, new tool. there was full view of the PUP screens and desktop To gain insights into its warning process, the NWS space for reference to a variety of detailed county Forecast Office (NWSFO) at Raleigh, North Carolina, maps. On the wall facing the radar and visible to the invited selected faculty and students at North Carolina radar operator was a large color map of cities, high- State University (NCSU) to participate in its warning ways, and county boundaries of the warning area. activities. This collaborative effort began in 1992 and Immediately adjacent to the PUP was a computer continues today. It includes the period since the WSR- that, during periods of severe weather, was dedicated 88D became operational. One purpose of the univer- exclusively to typing and transmitting warnings. Also sity involvement was to document and facilitate the adjacent to the PUP was a small table with space for warning process. Under the direction of the NWS one of three autodial phones for ready access to county storm coordinator, university staff were assigned du- sheriffs or emergency personnel in any county of the ties such as analyzing surface mesoscale features, re- warning area. Other phones of this type were located questing ground truth reports, and maintaining a elsewhere in the office so that multiple calls could be detailed time log of the activity at the WSR-88D Prin- processed simultaneously. Completing the line of po- cipal User Processor (PUP). As a result of the collabo- sitions to the left of the PUP was a desk with a ham ration, both researchers and forecasters have learned radio console for one or two SKYWARN volunteers. about how the warning process evolved in real time. Staffing varied greatly with the level of severity of While the benefits of this program cannot be measured the event. In a situation when a severe weather out- objectively, it has provided support for forecasters and break was anticipated, there were typically up to four given researchers insight into the operational arena. NWS personnel, including a radar operator, a warn- Also, the experience of the group has channeled re- ing text editor, at least one person to receive and ini- search toward practical forecast problems and initiated tiate phone calls, and a severe storms coordinator. data collection for future research. Ideally, several of these individuals had no additional To date, the collaborative group has developed a operational duties, such as aviation forecasting, and shared experience of over 60 situations during which could be dedicated totally to the severe weather activ- severe weather was anticipated. These have ranged ity. In these cases, there were typically one or two over a wide spectrum from cases when major out- NCSU volunteers and two SKYWARN ham radio 2540 Vol. 78, No. 7 7, November 1997 Unauthenticated | Downloaded 10/10/21 05:36 PM UTC operators as well. By marked contrast, in other situa- it is helpful to describe the types of storms that oc- tions where one or two thunderstorms became margin- curred in central North Carolina in 1995, the year of ally severe, but widespread or intense activity was not most concentrated study. In this year, 56% of severe anticipated, there were only one or two NWS staff, weather for the Raleigh warning area (not counting borrowed from other operational shift responsibilities flash floods) in Storm Data was reported as thunder- to execute the warning process including monitoring storm wind damage, nearly all of which was described the radar. Of course, interesting times ensued when as downed trees. Hail reports included nearly all the what appeared initially to be a benign situation rap- rest with 27% of the total for hail diameters of 1 in.
Recommended publications
  • Severe Storms in the Midwest
    Informational/Education Material 2006-06 Illinois State Water Survey SEVERE STORMS IN THE MIDWEST Stanley A. Changnon Kenneth E. Kunkel SEVERE STORMS IN THE MIDWEST By Stanley A. Changnon and Kenneth E. Kunkel Midwestern Regional Climate Center Illinois State Water Survey Champaign, IL Illinois State Water Survey Report I/EM 2006-06 i This report was printed on recycled and recyclable papers ii TABLE OF CONTENTS Abstract........................................................................................................................................... v Chapter 1. Introduction .................................................................................................................. 1 Chapter 2. Thunderstorms and Lightning ...................................................................................... 7 Introduction ........................................................................................................................ 7 Causes ................................................................................................................................. 8 Temporal and Spatial Distributions .................................................................................. 12 Impacts.............................................................................................................................. 13 Lightning........................................................................................................................... 14 References .......................................................................................................................
    [Show full text]
  • Mesoscale Convective Systems
    OCTOBER 2007 S T E I G E R E T A L . 3303 Total Lightning Signatures of Thunderstorm Intensity over North Texas. Part II: Mesoscale Convective Systems SCOTT M. STEIGER Department of Earth Sciences, State University of New York at Oswego, Oswego, New York RICHARD E. ORVILLE AND LAWRENCE D. CAREY Department of Atmospheric Sciences, Texas A&M University, College Station, Texas (Manuscript received 4 April 2006, in final form 25 January 2007) ABSTRACT Total lightning data from the Lightning Detection and Ranging (LDAR II) research network in addition to cloud-to-ground flash data from the National Lightning Detection Network (NLDN) and data from the Dallas–Fort Worth, Texas, Weather Surveillance Radar-1988 Doppler (WSR-88D) station (KFWS) were examined from individual cells within mesoscale convective systems that crossed the Dallas–Fort Worth region on 13 October 2001, 27 May 2002, and 16 June 2002. LDAR II source density contours were comma shaped, in association with severe wind events within mesoscale convective systems (MCSs) on 13 October 2001 and 27 May 2002. This signature is similar to the radar reflectivity bow echo. The source density comma shape was apparent 15 min prior to a severe wind report and lasted more than 20 min during the 13 October storm. Consistent relationships between severe straight-line winds, radar, and lightning storm cell characteristics (e.g., lightning heights) were not found for cells within MCSs as was the case for severe weather in supercells in Part I of this study. Cell interactions within MCSs are believed to weaken these relationships as reflectivity and lightning from nearby storms contaminate the cells of interest.
    [Show full text]
  • Severe Weather in the United States
    Module 18: Severe Thunderstorms in the United States Tuscaloosa, Alabama May 18, 2011 Dan Koopman 2011 What is “Severe Weather”? Any meteorological condition that has potential to cause damage, serious social disruption, or loss of human life. American Meteorological Society: In general, any destructive storm, but usually applied to severe local storms in particular, that is, intense thunderstorms, hailstorms, and tornadoes. Three Stages of Thunderstorm Development Stage 1: Cumulus • A warm parcel of air begins ascending vertically into the atmosphere. • In an unstable environment, the parcel will continue to rise as long as it is warmer than the air around it. • Billowing, puffy Cumulus Congestus Clouds continue to build in towers. Stage 2: Mature • At a certain altitude, the parcel is no longer warmer than its environment. It is unable to rise any further and develops the distinctive “Anvil” shape as seen in this figure. • In cases of particularly strong updrafts, the vertical velocity of the updraft may be sufficient to penetrate this altitude causing an “overshooting top” to develop above the flat top of the anvil. Stage 3: Dissipating • Convective inflow shut off by strong downdrafts, no more cloud droplet formation, downdrafts continue and gradually weaken until light precipitation rains out • Water droplets aloft being to coalesce until they are too heavy to support and begin to fall to the surface, strengthening the downdraft. Basic Ingredients for Thunderstorms • Moisture • Unstable Air • Forcing Mechanism Moisture Thunderstorms development generally requires dewpoints > 50°F Unstable Air Stable is resistant to change. When the air is stable, even if a parcel of air is lifted above its original position (say by a mountain for example), its temperature will always remain cooler than its environment, meaning that it will resist upwards movement.
    [Show full text]
  • Tornado Warnings: Delivery, Economics, & Public Perception
    Tornado Warnings: Delivery, Economics, & Public Perception Bibliography Katie Rowley, Librarian, NOAA Central Library Trevor Riley, Head of Public Services, NOAA Central Library Christine Reed, Librarian, Oklahoma University/NOAA NCRL subject guide 2018-15 10.7289/V5/SG-NCRL-18-15 June 2018 U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research NOAA Central Library – Silver Spring, Maryland Table of Contents Background & Scope ................................................................................................................................. 3 Sources Reviewed ..................................................................................................................................... 3 Section I: Economic Impact, Risk & Mitigation ......................................................................................... 4 Section II: Public Perception & Behavior ................................................................................................ 11 Section III: Tornado Identification & Technology ................................................................................... 30 Section IV: Warning Process, Development, & Delivery ......................................................................... 36 2 Background & Scope The Weather Research and Forecasting Innovation Act of 2017 requires the National Oceanic and Atmospheric Administration (NOAA) to prioritize weather research to improve weather data, modeling, computing, forecasts,
    [Show full text]
  • Thunderstorm Anatomy and Dynamics
    THUNDERSTORM ANATOMY AND DYNAMICS An Overview Prepared by LCDR Bill Nisley MR 3421 • Cloud Physics Naval Postgraduate School • Monterey, California [email protected] Photo credits: Thunderstorm Cell and Mammatus Clouds by: Michael Bath; Tornado by Daphne Zaras / NSSL; Supercell Thunderstorm by: AMOS; Wall Cloud by: Greg Michels 1. Introduction The purpose of this paper is to present a broad overview of the various cloud structures displayed during the life cycle of a thunderstorm and the atmospheric dynamics associated with each. Knowledge of atmospheric dynamics provides for a keener understanding of the physical processes related to the “why and how” certain cloud features form. Accordingly, observation of cloud features presents visual queuing of changes in the atmosphere. 2. Thunderstorm Formation and Stages of Development Thunderstorm development is dependent on three basic components: moisture, instability, and some form of lifting mechanism. 2.1 Moisture – As air near the surface is lifted higher in the atmosphere and cooled, available water vapor condenses into small water droplets which form clouds. As condensation of water vapor occurs, latent heat is released making the rising air warmer and less dense than its surroundings (figure 1). The added heat allows the air (parcel) to continue to rise and form an updraft within the developing cloud structure. 2.1.1 In general1, low level moisture increases instability simply by making more latent heat available to the lower atmosphere. Increasing mid level moisture can decrease instability in the atmosphere because moist air is less dense than dry air and therefor is unable to evaporate • Figure 1 – Positive buoyancy / instability as a result of precipitation and cloud droplets as condensation and release of latent heat.
    [Show full text]
  • Satellite INVESTIGATION INTO the JUNE 10, 1984 THUNDERSTORM VINCENNES, INDIANA
    National Weather Digest Satellite INVESTIGATION INTO THE JUNE 10, 1984 THUNDERSTORM VINCENNES, INDIANA by Mark S. Binkley (1) Department of Geography Indiana State University Terre Haute, Indiana 47809 ABSTRACT SYNOPTIC SETTING On June 10, 1984, a thunderstorm of unusual severity produced heavy precipitation in a small area As is evident in the 160 I GMT image, Vincennes centered on Vincennes, Indiana. Sequential analysis (in southwestern Indiana) has not e xperienced any of the development of the storm using satellite type of significant weathe r. However, several imagery and radar data indicates its origin as part of variables might suggest trouble in the near future. a weak cold front. The active storm cell resulted from the merging of two active cells. Full As is common in summer, the Azores-Bermuda explanation of the event draws upon examination of High has increased in strength and has begun to block prevailing synoptic conditions following the approaching frontal systems. This resulted in a weakening of a blocking High. prolonged period of dry weather in much of the eastern United States during the summer of I 98 If. Terre Haute, IN (55 miles north of Vincennes) went 21f days without precipitation (May 28 through June INTRODUCTION 21, including June 10). The State of Indiana on this date was between At midnight, Sunday, June 10, 1981f, the United the blocking Be rmuda High and the cold front States was bisected by a long, nar row cold front. advancing from the plains. Pressures had fallen This front extended from a Low in northern Wisconsin slightly during this period as the 1020.0 millibar line and stretched southwest to the Texas Panhandle.
    [Show full text]
  • Life Cycle Characteristics of Warm-Season Severe Thunderstorms in Central United States from 2010 to 2014
    climate Article Life Cycle Characteristics of Warm-Season Severe Thunderstorms in Central United States from 2010 to 2014 Weibo Liu 1 and Xingong Li 2,* 1 Department of Geosciences, Florida Atlantic University, Boca Raton, FL 33431, USA; [email protected] 2 Department of Geography and Atmospheric Science, University of Kansas, Lawrence, KS 66045, USA * Correspondence: [email protected]; Tel.: +1-785-864-5545 Academic Editor: Christina Anagnostopoulou Received: 17 July 2016; Accepted: 6 September 2016; Published: 8 September 2016 Abstract: Weather monitoring systems, such as Doppler radars, collect a high volume of measurements with fine spatial and temporal resolutions that provide opportunities to study many convective weather events. This study examines the spatial and temporal characteristics of severe thunderstorm life cycles in central United States mainly covering Kansas, Oklahoma, and northern Texas during the warm seasons from 2010 to 2014. Thunderstorms are identified using radar reflectivity and cloud-to-ground lightning data and are tracked using a directed graph model that can represent the whole life cycle of a thunderstorm. Thunderstorms were stored in a GIS database with a number of additional thunderstorm attributes. Spatial and temporal characteristics of the thunderstorms were analyzed, including the yearly total number of thunderstorms, their monthly distribution, durations, initiation time, termination time, movement speed and direction, and the spatial distributions of thunderstorm tracks, initiations, and terminations. Results revealed that thunderstorms were most frequent across the eastern part of the study area, especially at the borders between Kansas, Missouri, Oklahoma, and Arkansas. Finally, thunderstorm occurrence is linked to land cover, including a comparison of thunderstorms between urban and surrounding rural areas.
    [Show full text]
  • Bunkers, M. J., and C. A. Doswell III, 2016
    OCTOBER 2016 C O R R E S P O N D E N C E 1715 CORRESPONDENCE Comments on ‘‘Double Impact: When Both Tornadoes and Flash Floods Threaten the Same Place at the Same Time’’ MATTHEW J. BUNKERS NOAA/National Weather Service, Rapid City, South Dakota CHARLES A. DOSWELL III Doswell Scientific Consulting, Norman, Oklahoma (Manuscript received 14 June 2016, in final form 1 September 2016) 1. Introduction However, this is not necessarily true, especially with respect to precipitation efficiency (e.g., Davis 2001). Nielsen et al. (2015) studied the environments of Although these items are minor, we believe that in total concurrent, collocated tornado and flash flood (hereafter they are sufficient to be addressed formally. Therefore, our TORFF) events that occurred across the continental goals in this comment are to 1) discuss the importance of United States from 2008 to 2013. They found that storm (and supercell) motion in potentially helping to an- TORFF events are difficult to distinguish from tornado ticipate TORFF events; 2) provide examples contrary to the events that do not produce flash flooding, although the notion that tornadic storms are necessarily fast moving, as TORFF environments tended to possess greater moisture well as discuss briefly the characteristics of slow-moving and synoptic-scale forcing for ascent. tornadic supercell environments; and 3) clarify the re- Although we agree with most of the content of the paper lationship of CAPE with rainfall and precipitation efficiency. by Nielsen et al. (2015), one thing that they did not address was storm motion as it relates to these TORFF events; neither the mean wind nor any other proxy for storm or 2.
    [Show full text]
  • Operational Observations of Extreme Reflectivity Values in Convective Cells
    OPERATIONAL OBSERVATIONS OF EXTREME REFLECTIVITY VALUES IN CONVECTIVE CELLS Alan E. Gerard NOAA/National Weather Service Forecast Office Jackson, Mississippi Abstract WRIST technique was designed to find was the height of the Digital Video Integrated Processor (DNIP) level 5. The observation of high reflectivity values aloft as an Lemon (1980) found that the presence ofDNIP level 5 or indicator of the potential for a convective storm to produce higher above 27 Kft had a strong correlation with a thun­ severe weather has been widely known for many years. derstorm cell's capability to produce severe weather The advent of the Weather Surveillance Radar-88 Doppler (winds of 50 kt or greater, hail 0.75 in. or larger in diam­ (WSR-88D) has given operational forecasters a new tool eter, or tornadoes). This was because the presence of high for looking at reflectivity data, and a greater spectrum of DNIP levels aloft was an indication of the presence of a values at which to look. In the use of these new data, anec­ strong updraft in the storm, and the strength of the dotal evidence has suggested to some radar operators that updraft has a direct correlation to the ability of a thun­ extremely high reflectivity values (65 dBZ or greater) derstorm to produce severe weather. appear to have a correlation with the production of severe Although the WSR-88D allows for relatively easy weather. Data from the Cleveland, Ohio and Jackson, examination of many meteorological parameters to deter­ Mississippi WSR-88D radars were examined to observe mine a storm's severity, the height of high reflectivities in the formation of extremely high values of reflectivity in a particular storm cell continues to be an important fac­ convective cells, and to determine any correlation with the tor in the warning decision, especially when warning for production of severe weather.
    [Show full text]
  • Weather Spotter's Field Guide
    Weather Spotter’s Field Guide © Roger Edwards A Guide to Being a SKYWARN® Spotter U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Ⓡ June 2011 The Spotter’s Role Section 1 The SKYWARN® Spotter and the Spotter’s Role The United States is the most severe weather- prone country in the world. Each year, people in this country cope with an average of 10,000 thunderstorms, 5,000 floods, 1,200 tornadoes, and two landfalling hurricanes. Approximately 90% of all presidentially Ⓡ declared disasters are weather-related, causing around 500 deaths each year and nearly $14 billion in damage. SKYWARN® is a National Weather Service (NWS) program developed in the 1960s that consists of trained weather spotters who provide reports of severe and hazardous weather to help meteorologists make life-saving warning decisions. Spotters are concerned citizens, amateur radio operators, truck drivers, mariners, airplane pilots, emergency management personnel, and public safety officials who volunteer their time and energy to report on hazardous weather impacting their community. Although, NWS has access to data from Doppler radar, satellite, and surface weather stations, technology cannot detect every instance of hazardous weather. Spotters help fill in the gaps by reporting hail, wind damage, flooding, heavy snow, tornadoes and waterspouts. Radar is an excellent tool, but it is just that: one tool among many that NWS uses. We need spotters to report how storms and other hydrometeorological phenomena are impacting their area. SKYWARN® spotter reports provide vital “ground truth” to the NWS. They act as our eyes and ears in the field.
    [Show full text]
  • A Rare Supercell Outbreak in Western Nevada: 21 July 2008
    National Weather Association, Electronic Journal of Operational Meteorology, 2009-EJ6 A Rare Supercell Outbreak in Western Nevada: 21 July 2008 CHRIS SMALLCOMB National Weather Service, Weather Forecast Office, Reno, Nevada (Manuscript received 30 June 2009, in final form 29 September 2009) ABSTRACT A rare outbreak of organized severe thunderstorms took place in western Nevada on 21 July 2008. This paper will examine the environment antecedent to this event, including unusual values of shear, moisture, and instability. An analysis of key radar features will follow focusing primarily on WSR-88D base data analysis. The article demonstrates several locally developed parameters and radar procedures for identifying severe convection, along with addressing challenges encountered in warning operations on this day. 1. Introduction – Event Synopsis A rare outbreak of organized severe thunderstorms took place in the National Weather Service (NWS) Reno forecast area (FA) on 21 July 2008. Based on forecaster experience, this has been subjectively classified as a “one in ten” year event for the western Great Basin (WGB), which being located in the immediate lee of the Sierra Nevada Mountains, is unaccustomed to widespread severe weather. Unorganized pulse type convection is a much more frequent occurrence in this portion of the country. On 21 July 2008, numerous instances of large hail and heavy rainfall were associated with severe thunderstorms (Fig. 1). The maximum hail size reported was half-dollar (3.2 cm, 1.25”), however there is indirect evidence even larger hail occurred. Several credible reports of funnel clouds were received from spotters, though a damage survey the following day found no evidence of tornado touchdowns.
    [Show full text]
  • Chapter 3.3 Risk Assessment: Severe Storms
    CHAPTER 3.3 RISK ASSESSMENT: SEVERE STORMS 3.3. Risk Assessment: Severe Storms Description A severe storm is an atmospheric disturbance that results in one or more of the following phenomena: strong winds and large hail, thunderstorms, tornadoes, rain, snow, or other mixed precipitation. Of the 47 Presidential Disaster declarations in Idaho since 1954, 10 have been attributed to include “storms” or “severe” storms. Several damaging elements of severe storms are detailed as their own hazard in Chapter 3.2 (flooding to include dam/levee/canal failure). The sub-sections in this chapter include details for winter storms, lightning, hail, straight-line winds, and tornadoes. Winter Storms Winter storms range widely in size, duration, and intensity. These storms may impact a single community or a multi-State area. They may last hours or days. The severity of storms can range from a small amount of dry snow to a large, blanketed area of wet snow and ice. Generally, winter storms are characterized by low temperatures and blowing snow. A severe winter storm is defined as one that drops 4 or more inches of snow during a 12-hour period, or 6 or more inches during a 24-hour span. A blizzard is a winter storm with winds exceeding 35 miles per hour accompanied by snow or blowing snow and reduced visibility. Strong winds can lower the effective temperature through “wind chill.” An ice storm occurs when damaging accumulations of ice are expected during freezing rain situations, and when cold rain freezes immediately on contact with the ground, structures, and vegetation.
    [Show full text]