Subject Index
Total Page:16
File Type:pdf, Size:1020Kb
Cambridge University Press 978-0-521-85337-8 — Free Ideal Rings and Localization in General Rings P. M. Cohn Index More Information Subject index Any terms not found here may be in the list of notations and conventions p. xvi. Left and right or upper and lower properties are usually not listed separately, thus ‘left depth’ and ‘upper depth’ are listed under ‘depth’. abelian category 527 Bezout domain 73, 109, 115f., 121, 183, 351f. absolute property 238 Bezout relation 54, 183 absolute rational identity 475f. biassociated matrices 456 abstract atomic factor 249 bicentral subfield 477 ACC = ascending chain condition xvii bipointed module 456 ACCdense 321f. bipolar structure 399 additive category 526, 530 Birkhoff’s representation theorem 210, 524 additive functor 530 block, -factorization 220 a-adic filtration 163 -blocked matrix 463 adjoint associativity 534 Boolean algebra 245, 522 adjoint functor, pair 530 bordered matrix 456 admissible subcategory 225 bound component, module 264 admissible system, matrix 414, 455 bound of an element 80, 341 affine automorphism 397 bounded element, module 253, 341 affine scheme 517 bridge category 185 -algebra xviii algebraic algebra, matrix 251f. cancellable ring 23 algebraic power series 167, 184, 323 canonical non-IBN ring 7, 510 algebra of invariants 379 capacity 17 Amitsur’s theorem 477f. cardinality of I ,(|I |) xvi antichain 370 category 525 anti-ideal 358f. centred automorphism 397 associated elements, matrices, maps xviii, 28, chain ring 200 74 characteristic of a module 26, 120, 144 atom, (n-)atomic xvii, 55, 74 cleavage, cleft 220f. augmentation ideal 136 closed submodule, closure 282 augmentation-preserving automorphism 397 code 361ff., 407 codomain 525 Baer’s criterion 531 cofactor 133, 169 balanced relation 188, 304f. cofinal sequence, subset 110, 322 BDT bounded decomposition type 6 cogenerated 264 Bergman’s centralizer theorem 378, 407 coherent ring 298, 536 566 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85337-8 — Free Ideal Rings and Localization in General Rings P. M. Cohn Index More Information Subject index 567 coimage, cokernel 526f. determinantal sum 429 coinduced extension 534 DFL = distributive factor lattice 232 column rank 80, 283 diagonal matrix sum 428 comaximal pair, relation xviii, 31, 149, 188 diagram chasing 527 comaximal transposition 197, 309 Dieudonn´edeterminant 494 comma category 529f. differential operator ring 64, 105, 339, 378 comma-free code 407 dimension of a display 416 commensurable elements xviii dimension, (co-)homological 532 commutative diagram 525 direct limit 123 companion matrix 253 direct power, sum 1, 525 comparison theorem 463 direct product 524 complement (in a lattice) 522 display 416 completable matrix 20 distributive lattice 225ff., 521f. complete direct decomposition 216 distributive module 116, 226f. complete factorization xvii, 196 divisibility preordering 52 complete (inversely filtered) ring 158, 375 division algorithm (DA) 66ff. complete prefix code 374 divisor group D(–) 497 completely primary ring 217, 251, 346 domain 420, 525 completion 158 dual module xvi, 2 complex-skew polynomial ring 64, 209f., 213 duality 529 conductor 332 duality for modules 193f., 269ff. conical monoid xvii, 14, 52, 172f., 358 dyad 58 conjugate idempotents 13 connected inversely filtered K -ring 161 E-related 150 connecting homomorphism 531 E-ring 117 continuant polynomial 148 eigenring E(–) 33, 58, 105, 251ff. contravariant functor 529 elementary divisor ring 85, 106 convex 93 elementary divisors 84 coprime pair, relation xviii, 138 elementary embedding 481 coproduct 135, 526 elementary matrix xvii, 196f. core of admissble system 414, 460 elementary operation 80, 437 core of bipolar structure 399 elementary sentence 538 covariant functor 529 epimorphism, epie 419, 526 cover (in a lattice) 520 equidivisible 43 Cramer’s rule 416 equivalence of categories 529 Czerniakiewicz-Makar-Limanov theorem 402, essential extension 270, 531 409 essential left factor 280 essentially distinct factorizations 207 decomposable element 214ff. Euclidean algorithm 68, 105 Dedekind’s lemma 388 Euclidean ring 67 defect theorem 366 Euler’s theorem 140 degenerate matrix 435 exact functor 531 degree (-function) 60f., 123, 380 exact sequence 527 denominator 38, 414 exchange principle 157, 184 ∗ dense subcategory 342, 525 extended elementary group E2 (R) xvii, 147 dense submodule 282 Ext, extension of modules 532f. dependence number 127, 157, 184 depth 413, 467ff. factor-complete matrix set 501 derivation 41, 61 factor-inverting matrix set 447, 500 derived functor 513f. factor-stable matrix set 437 derived set 67, 105 factorial duality 195 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85337-8 — Free Ideal Rings and Localization in General Rings P. M. Cohn Index More Information 568 Subject index fastest algorithm 68 Gr¨obnerbasis 184 Fibonacci numbers 148 Grothendieck category 276 field of fractions 39, 419 Grothendieck group 14, 98 field spectrum X(–) 442 filter 538 Hasse’s criterion 77, 131 filtered ring, filtration 125ff., 134 HCF, HCLF, HCRF highest common (left, final object 525 right) factor 54, 154 (L, K )-finite 477 height (of lattice element) 521 finite free resolution 26, 79 hereditary ring 108, 183 finitely presented, related 26, 533f. Hermite ring 19, 58, 87, 115 fir = free ideal ring 110, 136, 183, 371 higher derivation 91 firoid 185 Higman’s trick 311 Fitting’s lemma 217, 230, 276 Hilbert basis theorem 63 five-lemma 528 Hilbert series 142, 184, 382 flat module 50, 122, 369, 535f. HNN-construction 141, 185, 399, 407, 454 forgetful functor 530 hollow matrix 187, 430 formal degree 131f. homogeneous subalgebra 368f. formal Laurent series 88 homological dimension 532 formal power series 88 honest ring homomorphism 287, 446 formula xix Fox derivative 86 IBN = invariant basis number 2, 58 fraction 413 idealizer I (–) 33, 58, 488 Frame–Robinson–Thrall formula 382 idempotent matrix 12ff. free associative algebra 135 image 527 free D-field on a set 474f. indecomposable 523 free ideal ring, see fir independence property of tensor product 534 free K -ring 135 index of a matrix xviii free monoid 357ff. inert subring 165 free product 183, 398 inertia lemma 255f., 292 free subset 360, 376 inertia theorem 165, 184, 453 Frobenius’ inequality 299 inessential modification 113, 222, 305 Frobenius–K¨onigtheorem 191 initial object 525 full matrix 3, 186, 428 injective hull 531 full relation 188 injective resolution 533 full subcategory 525 inner derivation 42, 64 fully atomic semifir 196 inner rank 3, 58 fully invariant submodule 229 integral closure 332 fully inverting homomorphism 447 integral element, extension 332, 338 fully reducible matrix 220 integral section 517 fully reversible ring 512 intersection theorem 328 functor 529 interval 210, 520 Inv-atom 334 G-value 491 Inv-(in)decomposable element 345 Galois theory 388, 408 invariant 379 Gauss’s lemma 140 invariant element, monoid, ring 53, 231, 236 generalized polynomial identity (GPI) 477 invariant factors 84, 254 GE-related 150 invariant matrix 335 GL-related 31, 150, 189 invariant principal ideal 333 global dimension 107, 532 inverse filtration 157 graded ring 141 inverse weak algorithm 157, 161, 184 graph of a mapping 226 invertible ring 515 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85337-8 — Free Ideal Rings and Localization in General Rings P. M. Cohn Index More Information Subject index 569 -inverting 37, 411 lower segment 370 involution 326 L¨uroth’s theorem 367 irredundant decomposition 215, 523 isomorphic idempotents 13 magic lemma 448, 492 isomorphism of factorizations 75, 208 Magnus’ theorem 328 isotone (= order-preserving) map 243 Malcev conditions 37 iterated skew polynomial ring 98 Malcev–Neumann power series 94 Malcolmson’s criterion 438f., 474 J-(skew polynomial) ring 98, 106 matrix algebraic k-algebra 251 Jacobian matrix 405 matrix atom 195 Jacobson radical 15, 102, 201, 230 matrix ideal 430 join 519 matrix local ring 17 join-irreducible 244, 523 matrix nilradical 444f. de Jonqui`eresautomorphism 397 matrix pre-ideal 429 Jordan–H¨oldertheorem 75, 192, 246, 521 matrix prime 496 matrix reduction functor 11, 58, 180 Kaplansky’s theorem 109f. matrix units xvii, 8 kernel (map) 526 matrix valuation 500 Koszul resolution 297 maximal code 362 Kraft–McMillan inequality 362, 408 meet 519 Kronecker delta 8 meta-Artinian, -Noetherian module 228 Kronecker function ring 353 meta(semi)fir 112, 183 Krull domain 337, 351 minimal admissible matrix 463 Krull–Schmidt theorem 83, 217, 276, 523 minimal bound module 278, 308 K -theory 58 minimal domain 420 Kurosh–Ore theorem 216, 523 modular lattice, law 520 monic matrix 312 large element (in a ring) 40 monic normal form 313 lattice 519ff. monic polynomial xviii lattice isomorphism 10 monomial right K-basis 132 Laurent polynomial ring 86 monomorphism, monic 526 law of nullity 189, 290f. monoid xvi LCM, LCRM, LCLM least common (right, Morita equivalence 9, 119, 219, 529 left) multiple 54, 117 multiplicative (matrix-)set 38, 411f. leading term 94, 173 leapfrog construction 148 Nagata’s theorem 57 least matrix (pre-) ideal 444f. Nakayama’s lemma 16f. left (right) full matrix, relation 186ff. natural filtration 134 left prime matrix 187f. natural transformation 529 Leibniz’s formula 47 negative module 273 length of a chain or lattice 520 neutral 525 length of a monoid element 56, 75, 141, 358 nilradical 511 level of a matrix 203 normalizer, normalizing element 488 linearization by enlargement 311 null matrix 9 linear dependence xviii, 118 nullity, law of 189, 290f. link in a lattice 210, 520 numerator 38, 414 local homomorphism 16 local rank 293 obstruction 533 local ring 15 one-sided fir 175, 185, 204f. localization 39, 110f., 500ff. opposite category 525 Los’s theorem 539 opposite ring xvi, 10 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85337-8 — Free Ideal Rings and Localization in General Rings P. M. Cohn Index More Information 570 Subject index order of an admissible system 414 quotient 67 order-function 88, 137, 157 quotient of matrix ideals 435f.