My Favorite Integer Sequences N. J. A. Sloane Information Sciences Research AT&T Shannon Lab Florham Park, NJ 07932-0971 USA Email:
[email protected] Abstract. This paper gives a brief description of the author's database of integer sequences, now over 35 years old, together with a selection of a few of the most interesting sequences in the table. Many unsolved problems are mentioned. This paper was published (in a somewhat different form) in Sequences and their Applications (Proceedings of SETA '98), C. Ding, T. Helleseth and H. Niederreiter (editors), Springer-Verlag, London, 1999, pp. 103- 130. Enhanced pdf version prepared Apr 28, 2000. The paragraph on \Sorting by prefix reversal" on page 7 was revised Jan. 17, 2001. The paragraph on page 6 concerning sequence A1676 was corrected on Aug 02, 2002. 1 How it all began I started collecting integer sequences in December 1963, when I was a graduate student at Cornell University, working on perceptrons (or what are now called neural networks). Many graph-theoretic questions had arisen, one of the simplest of which was the following. Choose one of the nn−1 rooted labeled trees with n nodes at random, and pick a random node: what is its expected height above the root? To get an integer sequence, let an be the sum of the heights of all nodes in all trees, and let Wn = an=n. The first few values W1; W2; : : : are 0, 1, 8, 78, 944, 13800, 237432, : : :, a sequence engraved on my memory. I was able to calculate about ten terms, but n I needed to know how Wn grew in comparison with n , and it was impossible to guess this from so few terms.