Oliva Et Al., 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Numerical Modelling of Snow and Ice Thicknesses in Lake Vanajavesi, Finland
View metadata, citation and similar papers at core.ac.uk SERIES A brought to you by CORE DYNAMIC METEOROLOGY provided by Helsingin yliopiston digitaalinen arkisto AND OCEANOGRAPHY PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM Numerical modelling of snow and ice thicknesses in Lake Vanajavesi, Finland By YU YANG1,2*, MATTI LEPPA¨ RANTA2 ,BINCHENG3,1 and ZHIJUN LI1, 1State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; 2Department of Physics, University of Helsinki, PO Box 48, FI-00014 Helsinki, Finland; 3Finnish Meteorological Institute, PO Box 503, FI-00101, Helsinki, Finland (Manuscript received 27 March 2011; in final form 7 January 2012) ABSTRACT Snow and ice thermodynamics was simulated applying a one-dimensional model for an individual ice season 2008Á2009 and for the climatological normal period 1971Á2000. Meteorological data were used as the model input. The novel model features were advanced treatment of superimposed ice and turbulent heat fluxes, coupling of snow and ice layers and snow modelled from precipitation. The simulated snow, snowÁice and ice thickness showed good agreement with observations for 2008Á2009. Modelled ice climatology was also reasonable, with 0.5 cm d1 growth in DecemberÁMarch and 2 cm d1 melting in April. Tuned heat flux from waterto ice was 0.5 W m 2. The diurnal weather cycle gave significant impact on ice thickness in spring. Ice climatology was highly sensitive to snow conditions. Surface temperature showed strong dependency on thickness of thin ice (B0.5 m), supporting the feasibility of thermal remote sensing and showing the importance of lake ice in numerical weather prediction. -
Libro De RUTA 2017
Libro de RUTA 2017 Gran Trail Aneto-Posets.105 km / 6 760 m+ 40.7 km of the course at an altitude above 2000 m / 10.1 km of paved roads 20.8 km of tracks / 57.9 km of footpaths / 16.2 km off-trail The Gran Trail Aneto-Posets covers all manner of terrain, from tracks and footpaths to snowfields and blockfields that surround the highest peaks in the Pyrenees: Aneto (3404 m) and Posets (3375 m). It is a spectacular race which takes place under conditions of semi self-sufficiency, joining these two mountainous massifs together to comprise a boundless route. The Gran Trail starts off from the village of Benasque with a lap around Aneto heading towards La Renclusa refuge to then head off up the Barrancs valley, climb to the Salenques mountain pass (2797 m) and from there towards the Vallibierna valley. After passing through Benasque once again, the climb up to Cerler begins, from where the route drops down to the picturesque village of Anciles and on to Eriste before starting the lap around the Posets massif. This section includes the highest point of the race, Forqueta mountain pass at 2900 m. From this point, the course takes runners down to the Biadós refuge following the GR11 leading to the Estós refuge before returning to Benasque to end the race. Vuelta al Aneto. 55 km / 3 630 m+ 27.5 km of the course at an altitude above 2000 m / 6.1 km of paved roads 8.8 km of tracks / 24.2 km of footpaths / 15.9 km off-trail The Vuelta al Aneto takes place over all manner of terrain, from tracks and footpaths to snowfields and blockfields surrounding the Maladeta massif, crowning off at the peak of Aneto (3404 m). -
High Route of Maladetas (Pyrenees)
CICMA: 2608 +34 629 379 894 [email protected] SKI TOURING HIGH ROUTE OF MALADETAS (PYRENEES) CICMA: 2608 +34 629 379 894 [email protected] CICMA: 2608 +34 629 379 894 [email protected] The Massif of Maladetas with the Aneto Peak (3.404 m) The opening of the mountain hut Cap de Llauset, in a strategic is an exceptional terrain for ski touring. In addition, its place of these mountains, gives us a multitude of options to make a circular tour around the Maladetas and to visit other mountains height and orientation allows to extend the season until with many options for skiing. May and even June, having to postpone summer plans for later. During three days and two nights at the Cap de Llauset mountain hut we will make a high route around the Maladetas and also ascend to summits such as the Vallibierna Peak (3.058 m). CICMA: 2608 +34 629 379 894 [email protected] CICMA: 2608 +34 629 379 894 [email protected] THE DESTINATION The Posets-Maladeta Natural Park is located to the north of the region of Ribagorza in the province of Lérida and northeast of Sobrarbe in the province of Huesca It includes two of the highest massifs of the Pyrenees: the Aneto (3,404 m) with other summits such as Pico Maladeta (3,308 m), and the Massif del Posets (3,375 m) with other mythical peaks such as Perdiguero (3,221 m). In the Posets-Maladeta Natural Park we can enjoy the privilege of observing some of the glaciers that still remain in the Pyrenees, such as the legendary Aneto glacier in the Maladeta massif or the Llardana glacier in the Posets massif. -
Appendix A. Supplementary Material
Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma. -
2Growth, Structure and Properties of Sea
Growth, Structure and Properties 2 of Sea Ice Chris Petrich and Hajo Eicken 2.1 Introduction The substantial reduction in summer Arctic sea ice extent observed in 2007 and 2008 and its potential ecological and geopolitical impacts generated a lot of attention by the media and the general public. The remote-sensing data documenting such recent changes in ice coverage are collected at coarse spatial scales (Chapter 6) and typically cannot resolve details fi ner than about 10 km in lateral extent. However, many of the processes that make sea ice such an important aspect of the polar oceans occur at much smaller scales, ranging from the submillimetre to the metre scale. An understanding of how large-scale behaviour of sea ice monitored by satellite relates to and depends on the processes driving ice growth and decay requires an understanding of the evolution of ice structure and properties at these fi ner scales, and is the subject of this chapter. As demonstrated by many chapters in this book, the macroscopic properties of sea ice are often of most interest in studies of the interaction between sea ice and its environment. They are defi ned as the continuum properties averaged over a specifi c volume (Representative Elementary Volume) or mass of sea ice. The macroscopic properties are determined by the microscopic structure of the ice, i.e. the distribution, size and morphology of ice crystals and inclusions. The challenge is to see both the forest, i.e. the role of sea ice in the environment, and the trees, i.e. the way in which the constituents of sea ice control key properties and processes. -
The Natural Magic of Aragon the Plus Points
The Natural Magic Of Aragon This is a truly magical region in the foothills of the Spanish Pyrenees. It is packed with dramatic landscapes, thousand-year-old castles, hermitages built into cliff-faces, exceptionally quaint villages, great weather, wonderful walking, original places to stay, and distinctively Aragonese cuisine. 7 nights, 6 walking days Minimum required 2 From point to point With luggage transportation Self-guided Code : FP2PURI The plus points • Transfers from and to Zaragoza (other transfers available) • Luggage transfers every day so you only carry a daysack • Typical Arogonese hotels with dinner included • 24/7 customer service Before departure, please check that you have an updated fact sheet. https://www.purelypyrenees.com/natural_magic_aragon.html FP2PURI Last update 29/12/2020 1 / 14 Aragon is a truly enchanting kingdom, a world unto itself, and your walking holiday includes a village they say is at the end of the world. But the "magic" comes from the frequent surprises (natural and man made) you get whilst walking through this panoramic landscape. For example, on just one walk you will find stunning, pink cliffs rising a sheer 1,000 feet above you; ancient hermitages cut into rock; almost hidden shepherds' huts; panoramic views of the Ebro plain and the High Pyrenees mountains; an abandoned village; a Roman bridge; a lovely waterfall. And that is without talking about the "magical" light that characterises Aragon, or its distinctive cuisine and hotels. It is a real surprise that, with all this on offer, there are not many more foreign visitors. Unsurprisingly, we thoroughly recommend it. THE PROGRAMME DAY 1 Arrival at Zaragoza or Loarre Standard option: You drive yourself to you first night's hotel, which will be in Loarre. -
Climatic Variability in Western Victoria
DROUGHTS AND FLOODING RAINS: A FINE-RESOLUTION RECONSTRUCTION OF CLIMATIC VARIABILITY IN WESTERN VICTORIA, AUSTRALIA, OVER THE LAST 1500 YEARS. CAMERON BARR Thesis submitted for the degree of Doctor of Philosophy, Discipline of Geographical and Environmental Studies, University of Adelaide, Australia. 2010 CHAPTER 1 – INTRODUCTION 1.1 Introduction This thesis presents the results of a study examining the short-term (approximately 1500 year) history of climatic change from the south-eastern Australian mainland. In order to achieve this, fossil diatom assemblages from sediment cores retrieved from two crater lakes in western Victoria are examined in fine resolution and interpreted through the application of a diatom-conductivity transfer function developed specifically for use in low salinity lake systems. 1.2 Research context In early November 2006, the then Prime Minister of Australia, John Howard, called an emergency ‘water summit’ with the premiers of the south-eastern states to discuss the impact of the prevailing drought on water availability in the Murray Darling Basin, a key agricultural region for the nation. At this meeting, the attendees were informed that the drought that was afflicting the region was “the worst in 1000 years” (Shanahan and Warren, 2006). This claim proved so startling that it was widely disseminated through the local and national media and was even reported as far away as the United Kingdom (Vidal, 2006). The Prime Minister, however, remained unconvinced of the veracity of the claim because “there are no records [to verify it against]” (Shanahan and Warren, 2006). This brief exchange between the Nation’s leaders and the press highlights the problems faced by water, agricultural, environmental and social planners in Australia. -
Chronology, Stable Isotopes, and Glaciochemistry of Perennial Ice in Strickler Cavern, Idaho, USA
Investigation of perennial ice in Strickler Cavern, Idaho, USA Chronology, stable isotopes, and glaciochemistry of perennial ice in Strickler Cavern, Idaho, USA Jeffrey S. Munroe†, Samuel S. O’Keefe, and Andrew L. Gorin Geology Department, Middlebury College, Middlebury, Vermont 05753, USA ABSTRACT INTRODUCTION in successive layers of cave ice can provide a record of past changes in atmospheric circula- Cave ice is an understudied component The past several decades have witnessed a tion (Kern et al., 2011a). Alternating intervals of of the cryosphere that offers potentially sig- massive increase in research attention focused ice accumulation and ablation provide evidence nificant paleoclimate information for mid- on the cryosphere. Work that began in Antarc- of fluctuations in winter snowfall and summer latitude locations. This study investigated tica during the first International Geophysi- temperature over time (e.g., Luetscher et al., a recently discovered cave ice deposit in cal Year in the late 1950s (e.g., Summerhayes, 2005; Stoffel et al., 2009), and changes in cave Strickler Cavern, located in the Lost River 2008), increasingly collaborative efforts to ex- ice mass balances observed through long-term Range of Idaho, United States. Field and tract long ice cores from Antarctica (e.g., Jouzel monitoring have been linked to weather patterns laboratory analyses were combined to de- et al., 2007; Petit et al., 1999) and Greenland (Schöner et al., 2011; Colucci et al., 2016). Pol- termine the origin of the ice, to limit its age, (e.g., Grootes et al., 1993), satellite-based moni- len and other botanical evidence incorporated in to measure and interpret the stable isotope toring of glaciers (e.g., Wahr et al., 2000) and the ice can provide information about changes compositions (O and H) of the ice, and to sea-ice extent (e.g., Serreze et al., 2007), field in surface environments (Feurdean et al., 2011). -
A Formal Classification of the Lygeum Spartum Vegetation of the Mediterranean Region
DR. CORRADO MARCENÒ (Orcid ID : 0000-0003-4361-5200) Article type : Research article Florian Jansen Coordinating Editor: Prof. Florian Jansen A formal classification of the Lygeum spartum vegetation of the Mediterranean Region Corrado Marcenò1, Riccardo Guarino2, Ladislav Mucina3, Idoia Biurrun1, Ulrich Deil4, Kamal Shaltout5, Manfred Finckh6, Xavier Font 7, Javier Loidi1 1 Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, 48080, Spain 2 Department of Biological, Chemical and Pharmaceutical Sciences, and Technologies, University of Palermo, Palermo, 90128, Italy 3 Harry Butler Institute, Murdoch University, 90 South Street, Murdoch 6150, Perth, Australia; Department of Geography and Environmental Studies, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa 4 Department of Geobotany, Faculty of Biology, University of Freiburg, 79104 Freiburg i. Br., Germany 5 Faculty of Science, Tanta University, Tanta, 31527, Egypt 6 Biodiversity, Ecology and Evolution of Plants, Institute for Plant Science and Microbiology, University of Hamburg, 22609, Hamburg, Germany 7Plant Biodiversity Resource Centre, University of Barcelona, 08028, Barcelona, Spain This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/avsc.12456 This article is protected by copyright. All rights reserved ORCID Corrado Marcenò: 0000-0003-4361-5200 Riccardo Guarino: 0000-0003-0106-9416 Ladislav Mucina: 0000-0003-0317-8886 Idoia Biurrun: 0000-0002-1454-0433 Manfred Finckh: 0000-0003-2186-0854 Xavier Font: 0000-0002-7253-8905 Javier Loidi: 0000-0003-3163-2409 Correspondence Corrado Marcenò, Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, 48080, Spain Email: [email protected] Funding information CM, IB and JL were funded by the Basque Government (IT936-16). -
No. 32 (1/2016)
International Association of Geomorphologists Association Internationale des Géomorphologues ! IAG/AIG Newsletter No. 32 (1/2016) EUISMOD ELEMENTUM Badlands, Bardenas Reales de Navarra Natural Park, Spain (picture: Marta Della Seta). Editorial Imag Editor’s Note This first issue 2016 of the IAG Newsletter is specifically dedicated to the activities of the working groups. The working groups have been established as means to develop research and !The success of the IAG/ innovation in geomorphology and to explore new fields of research. Currently, thirteen working AIG Newsletter depends groups are active, and eleven other groups were active in the past. Four working groups have upon the contributions that been approved during the last International Conference on Geomorphology in Paris: we receive. On behalf of IAG/AIG we would ask dendrogeomorphology; landform assessment for geodiversity; submarine geomorphology; tectonic y o u t o a s s i s t u s b y geomorphology. The working groups are key elements of the IAG organisation and development. supplying information May I ask the chairmen not to forget to advertise new events and to report on their activities on the related to the forthcoming IAG website and newsletter. A quick look on the IAG website shows that unfortunately it is not the activities and innovations in geomorphology in your case of all working groups. respective countries (commentaries, reviews of !!!!!! Emmanuel Reynard, IAG/AIG Publications Officer regional or national meetings and field trips, summaries of issues pertinent to Word of the President geomorphology and The Working Groups of the IAG are the main factor of development and innovation of our announcements of future meetings and workshops). -
Cirques Have Growth Spurts During Deglacial and Interglacial Periods: Evidence from 10Be and 26Al Nuclide Inventories in the Central and Eastern Pyrenees Y
Cirques have growth spurts during deglacial and interglacial periods: Evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees Y. Crest, M Delmas, Regis Braucher, Y. Gunnell, M Calvet, A.S.T.E.R. Team To cite this version: Y. Crest, M Delmas, Regis Braucher, Y. Gunnell, M Calvet, et al.. Cirques have growth spurts during deglacial and interglacial periods: Evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees. Geomorphology, Elsevier, 2017, 278, pp.60 - 77. 10.1016/j.geomorph.2016.10.035. hal-01420871 HAL Id: hal-01420871 https://hal-amu.archives-ouvertes.fr/hal-01420871 Submitted on 21 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geomorphology 278 (2017) 60–77 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Cirques have growth spurts during deglacial and interglacial periods: Evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees Y. Crest a,⁎,M.Delmasa,R.Braucherb, Y. Gunnell c,M.Calveta, ASTER Team b,1: a Univ Perpignan Via-Domitia, UMR 7194 CNRS Histoire Naturelle de l'Homme Préhistorique, 66860 Perpignan Cedex, France b Aix-Marseille Université, CNRS–IRD–Collège de France, UMR 34 CEREGE, Technopôle de l'Environnement Arbois–Méditerranée, BP80, 13545 Aix-en-Provence, France c Univ Lyon Lumière, Department of Geography, UMR 5600 CNRS Environnement Ville Société, 5 avenue Pierre Mendès-France, F-69676 Bron, France article info abstract Article history: Cirques are emblematic landforms of alpine landscapes. -
The Turtles from the Upper Eocene, Osona County (Ebro Basin, Catalonia, Spain): New Material and Its Faunistic and Environmental Context
Foss. Rec., 21, 237–284, 2018 https://doi.org/10.5194/fr-21-237-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. The turtles from the upper Eocene, Osona County (Ebro Basin, Catalonia, Spain): new material and its faunistic and environmental context France de Lapparent de Broin1, Xabier Murelaga2, Adán Pérez-García3, Francesc Farrés4, and Jacint Altimiras4 1Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements (CR2P: MNHN, CNRS, UPMC-Paris 6), Muséum national d’Histoire naturelle, Sorbonne Université, 57 rue Cuvier, CP 38, 75231 Paris CEDEX 5, France 2Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, UPV/EHU, Sarrienea s/n, 48940 Leioa, Spain 3Grupo de Biología Evolutiva, Facultad de Ciencias, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain 4Museu Geològic del Seminari de Barcelona, Diputacio 231, 08007 Barcelona – Geolab Vic, Spain Correspondence: France de Lapparent de Broin ([email protected]) Received: 8 November 2017 – Revised: 9 August 2018 – Accepted: 16 August 2018 – Published: 28 September 2018 Abstract. Eochelone voltregana n. sp. is a new marine 1 Introduction cryptodiran cheloniid found at the Priabonian levels (latest Eocene) of the Vespella marls member of the Vic–Manlleu 1.1 The cycle of Osona turtle study marls formation. It is the second cheloniid from Santa Cecília de Voltregà (Osona County, Spain), the first one being Os- The present examination closes a study cycle of turtle ma- onachelus decorata from the same formation. Shell parame- terial from the upper Eocene sediments of the area of Vic ters indicate that the new species belongs to a branch of sea in the Osona comarca (county) (Barcelona province, Catalo- turtles including the Eocene Anglo–Franco–Belgian forms nia, Spain) (Fig.