Hindawi Discrete Dynamics in Nature and Society Volume 2017, Article ID 6490903, 5 pages https://doi.org/10.1155/2017/6490903

Research Article On Subdirect Decompositions of Finite Distributive Lattices

Yizhi Chen,1 Jing Tian,2 and Zhongzhu Liu1

1 School of and Big Data, Huizhou University, Huizhou, Guangdong 516007, China 2School of Economics and Finance, Xiโ€™an International Studies University, Xiโ€™an, Shaanxi 710128, China

Correspondence should be addressed to Yizhi Chen; [email protected]

Received 18 January 2017; Accepted 2 April 2017; Published 27 April 2017

AcademicEditor:J.R.Torregrosa

Copyright ยฉ 2017 Yizhi Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Subdirect decomposition of algebra is one of its quite general and important constructions. In this paper, some subdirect decompositions (including subdirect irreducible decompositions) of finite distributive lattices and finite chains are studied, and some general results are obtained.

1. Introduction and Preliminaries An embedding ๐œ™:๐‘…โ†’ฮ ๐‘–โˆˆ๐ผ๐‘…๐‘– is subdirect if ๐‘…๐œ™ is asubdirectproductof๐‘…๐‘–.Atthistime,wealsosaythat๐‘… ๐‘… (๐‘…,+,โ‹…) A semiring is an algebraic structure consisting of has subdirect decomposition of ๐‘…๐‘– or ๐‘… is isomorphic to the ๐‘… a nonempty set together with two binary operations + and subdirect product of {๐‘…๐‘–}๐‘–โˆˆ๐ผ. โ‹… ๐‘… (๐‘…, +) (๐‘…, โ‹…) on such that and are semigroups connected A semiring ๐‘… is called subdirectly irreducible if for every ๐‘Ž(๐‘ + ๐‘) = ๐‘Ž๐‘ +๐‘Ž๐‘ (๐‘ + ๐‘)๐‘Ž = by distributivity, that is, and subdirect embedding ๐œ™:๐‘…โ†’ฮ ๐‘–โˆˆ๐ผ๐‘…๐‘–,thereisan๐‘–โˆˆ๐ผsuch ๐‘๐‘Ž+๐‘๐‘Ž ๐‘Ž, ๐‘, ๐‘โˆˆ๐‘… ๐‘… ,forall [1, 2]. A semiring is called a partially that ๐œ™โˆ˜๐œ‹๐‘– :๐‘…โ†’๐‘…๐‘– is an isomorphism. From the above โ‰ค ordered semiring if it admits a compatible ordering ,thatis, definition, it is easy to see that any two-element semiring is โ‰ค ๐‘… is a partial order on satisfying the following condition: subdirectly irreducible. ๐‘Ž, ๐‘, ๐‘, ๐‘‘โˆˆ๐‘… ๐‘Žโ‰ค๐‘ ๐‘โ‰ค๐‘‘ ๐‘Ž+๐‘ โ‰ค ๐‘+๐‘‘ for any ,if and ,then and From [4โ€“7] we know that the subdirect product is a quite ๐‘Ž๐‘ โ‰ค ๐‘๐‘‘ ๐‘… . A partially ordered semiring is said to be a totally general construction. As for as semirings concerned, there ordered semiring if the imposed partial order is a total order are several ways of approaching subdirect decompositions of [1, 2]. semirings. In most cases they can be obtained from various A is a lattice which satisfies the dis- semirings theoretical constructions. Another way is based ๐ฟ= tributive laws [3]. In the following, we will denote on the famous Birkhoff representation theorem. Formulated โŸจ๐ฟ,+,โ‹…,0,1โŸฉ 0 1 as a finite distributive lattice, where and are in terms of semirings, it asserts that every semiring can be ๐ฟ theleastandthegreatestelementsof ,respectively,andthe represented as a subdirect product of subdirectly irreducible ๐ฟ addition and the multiplication on are defined as follows: semirings, and it can often reduce studying the structure ๐‘Ž+๐‘=๐‘Žโˆจ๐‘=max {๐‘Ž,} ๐‘ , of semirings from a given class to studying subdirectly irreducible members of this class. Also, there is a third way ๐‘Žโ‹…๐‘=๐‘Žโˆง๐‘=min {๐‘Ž,} ๐‘ (1) of approaching subdirect decompositions which is based on โˆ€๐‘Ž, ๐‘ โˆˆ ๐ฟ. another Birkhoff theorem verified in [4], which, in terms of semirings, says that a semiring ๐‘… isasubdirectproductofa Also, we denote ๐ฟ = {0,1,...,๐‘š}as a finite chain with usual family of semirings {๐‘…๐‘–}๐‘–โˆˆ๐ผ if and only if there exists a family ordering [4]. Clearly, both the finite distributive lattices and of factor congruences {๐œŒ๐‘–}๐‘–โˆˆ๐ผ on ๐‘… such that โ‹‚๐‘–โˆˆ๐ผ ๐œŒ๐‘– =๐œ€๐‘… and the finite chains are partially ordered semirings. ๐‘…/๐œŒ๐‘– =๐‘…๐‘– for each ๐‘–โˆˆ๐ผ;here,๐œ€๐‘… is the identity congruence A semiring ๐‘… issaidtobeasubdirectproductofan on ๐‘…. indexed family ๐‘…๐‘– (๐‘– โˆˆ ๐ผ) ofsemiringsifitsatisfies๐‘…โ‰คฮ ๐‘–โˆˆ๐ผ๐‘…๐‘– The main aim of this paper is to investigate the subdirect and ๐‘…๐œ‹๐‘– =๐‘…๐‘– for each ๐‘–โˆˆ๐ผ. decompositions of a special class of semirings called finite 2 Discrete Dynamics in Nature and Society

๐‘š distributive lattices. Although some subdirect decomposi- and ๐‘โ‰คโ‹๐‘–=1๐‘ฅ๐‘– (๐‘ฅ๐‘– โˆˆ๐ฝ,1โ‰ค๐‘–โ‰ค๐‘š), then there exists ๐‘–0, 1โ‰ค๐‘– โ‰ค๐‘š ๐‘โ‰ค๐‘ฅ . tions of a finite distributive lattice are discussed in [8], and 0 ,suchthat ๐‘–0 the subdirect decompositions of a finite chain are studied in [2], the results in this paper will be more general. We By Lemmas 6 and 7, we immediately obtain the following will investigate some subdirect decompositions (including corollary. subdirect irreducible decompositions) of finite distributive Corollary 8. ๐ฟ ๐ฝ lattices and finite chains, whose proofs are also different from Let be a finite distributive lattice and be the set of all the join irreducible elements of ๐ฟ.If๐‘โˆˆ๐ฝand ๐‘โ‰ค [8]. ๐‘˜ For notations and terminologies occurred but not men- โ‹๐‘–=1๐‘ฅ๐‘– (๐‘ฅ๐‘– โˆˆ๐ฟ,1โ‰ค๐‘–โ‰ค๐‘˜), then there exists ๐‘–0, 1โ‰ค๐‘–0 โ‰ค๐‘˜, ๐‘โ‰ค๐‘ฅ tioned in this paper, the readers are referred to [1, 4]. such that ๐‘–0 .

Now, we can give some subdirect irreducible decomposi- 2. Subdirect Decompositions of tions of a finite distributive lattice ๐ฟ. Finite Distributive Lattices Theorem 9. Let ๐ฟ be a finite distributive lattice with ๐‘š+1 To obtain our main results in this section, we will also need elements where ๐‘šโ‰ฅ1and ๐ฝ={0,๐‘1,๐‘2,...,๐‘โ„Ž}(๐‘šโ‰ฅโ„Žโ‰ฅ1) the following lemmas and concepts. are the set of all the join irreducible elements of ๐ฟ.Then๐ฟ is isomorphic to a subdirect product of subdirect irreducible Lemma 1 (see [4]). In the equational class of distributive elements ๐ฟ๐‘– ={0,๐‘๐‘–} (๐‘–=1,2,...,โ„Ž). lattices the only nontrivial subdirectly irreducible algebra is the two-element chain. Proof. For ๐‘–=1,2,...,โ„Ž, define ๐œ™๐‘– :๐ฟโ†’๐ฟ๐‘– by ๐‘… ๐‘… Let be a semiring and Con be the set of all congruences {๐‘ ,๐‘Žโ‰ฅ๐‘, on ๐‘….ByLemma8.2in[4],wehavethefollowinglemma. ๐‘– ๐‘– ๐‘Ž๐œ™๐‘– = { (4) 0, . ๐‘š { otherwise Lemma 2. If ๐œŒ๐‘– โˆˆ Con๐‘… for ๐‘–โˆˆ๐ผand โˆฉ๐‘–=1๐œŒ๐‘– =๐œ€๐‘…, then the natural homomorphism Then, it is a routine way to verify that ๐œ™๐‘– (๐‘–= 1,2,...,โ„Ž)is a homomorphism. ๐›ผ:๐‘…โ†’ฮ ๐‘–โˆˆ๐ผ๐‘…๐‘– (2) Firstly, ๐œ™๐‘– (๐‘–=1,2,...,โ„Ž)is clearly a mapping. Secondly, for any ๐‘Ž, ๐‘,wewillshowthat โˆˆ๐ฟ (๐‘Ž โˆจ ๐‘)๐œ™๐‘– = defined by ๐‘Ž๐œ™๐‘– โˆจ๐‘๐œ™๐‘– (๐‘–=1,2,...,โ„Ž). ๐‘Ž (๐‘–)(๐‘Ž) ๐›ผ= (i) If ๐‘Žโˆจ๐‘โ‰ฅ๐‘๐‘–,then,byCorollary8,๐‘Žโ‰ฅ๐‘๐‘– or ๐‘โ‰ฅ๐‘๐‘–, ๐œŒ (3) ๐‘– andthenweget(๐‘Ž โˆจ ๐‘)๐œ™๐‘– =๐‘๐‘– =๐‘Ž๐œ™๐‘– โˆจ๐‘๐œ™๐‘–. ๐‘Žโˆจ๐‘โ‰ฅ๐‘ฬธ ๐‘Žโ‰ฅ๐‘ ฬธ ๐‘โ‰ฅ๐‘ ฬธ (๐‘Ž โˆจ is a subdirect embedding. (ii) If ๐‘–,then ๐‘– and ๐‘–,andthen ๐‘)๐œ™๐‘– =0=0โˆจ0=๐‘Ž๐œ™๐‘– โˆจ๐‘๐œ™๐‘–. In the following, we will discuss the subdirect decompo- (๐‘Žโˆง๐‘)๐œ™ =๐‘Ž๐œ™โˆง๐‘๐œ™ (๐‘–=1,2,...,โ„Ž) sitions of a finite distributive lattice. Thirdly, we show that ๐‘– ๐‘– ๐‘– for any ๐‘Ž, ๐‘. โˆˆ๐ฟ Definition 3 (see [4]). Let ๐ฟ be a lattice. The element ๐‘Žโˆˆ๐ฟis (i) If ๐‘Žโˆง๐‘โ‰ฅ๐‘๐‘–,then๐‘Žโ‰ฅ๐‘๐‘– and ๐‘โ‰ฅ๐‘๐‘–.Thus,wehave called join irreducible of ๐ฟ if for ๐‘ฅ, ๐‘ฆ, โˆˆ๐ฟ ๐‘Ž=๐‘ฅโˆจ๐‘ฆimplies (๐‘Ž โˆง ๐‘)๐œ™๐‘– =๐‘๐‘– =๐‘๐‘– โˆง๐‘๐‘– =๐‘Ž๐œ™๐‘– โˆง๐‘๐œ™๐‘–. ๐‘ฅ=๐‘Žor ๐‘ฆ=๐‘Ž. (ii) If ๐‘Žโˆง๐‘ โ‰ฅ๐‘ฬธ ๐‘–,then๐‘Žโ‰ฅ๐‘ ฬธ ๐‘– or ๐‘โ‰ฅ๐‘๐‘–,andthen(๐‘Žโˆง๐‘)๐œ™๐‘– = 0=๐‘Ž๐œ™ โˆง๐‘๐œ™. Example 4. Let ๐ฟ36 denote the divisible lattice which is ๐‘– ๐‘– generated by all the positive factor of 36; then the set ๐ฝ of all Summing up all the discussions above, we have shown the join irreducible of ๐ฟ36 is {1,2,3,4,9}. that ๐œ™๐‘– (๐‘–=1,2,...,โ„Ž)is a homomorphism. ๐œŒ = ๐œ™ ๐œŒ=โˆฉโ„Ž ๐œŒ =๐œ€ Definition 5 (see [4]). Let ๐ฟ be a finite distributive lattice Now, let ๐‘– Ker ๐‘–. Next, we show that ๐‘–=1 ๐‘– ๐ฟ. ๐‘Ž, ๐‘ โˆˆ๐ฟ (๐‘Ž, ๐‘) โˆˆ๐œŒ and ๐‘Žโˆˆ๐ฟ. If there exist join irreducible elements ๐‘ฅ๐‘– (๐‘– = Assume that and ,thenwehave ๐‘  (๐‘Ž, ๐‘) โˆˆ๐œŒ (๐‘– = 1,2,...,โ„Ž) 1,2,...,๐‘ )such that ๐‘Ž=โ‹๐‘–=1๐‘ฅ๐‘–,where๐‘ฅ๐‘– โฉฝ๐‘ฅยก ๐‘— for any 1โ‰ค๐‘– ฬธ= ๐‘– . By Lemma 6, there exist the ๐‘  join irreducible decompositions of ๐‘Ž and ๐‘. Assume that ๐‘—โ‰ค๐‘ ,thenwecallโ‹๐‘–=1๐‘ฅ๐‘– the join irreducible decomposition ๐‘Ž=๐‘๐‘— โ‹๐‘๐‘— โ‹โ‹…โ‹…โ‹…โ‹๐‘๐‘— and ๐‘=๐‘๐‘– โ‹๐‘๐‘– โ‹โ‹…โ‹…โ‹…โ‹๐‘๐‘– , of ๐‘Ž. 1 2 ๐‘  1 2 ๐‘ก where ๐‘๐‘— ,๐‘๐‘— ,...,๐‘๐‘— ,๐‘๐‘– ,๐‘๐‘– ,...,๐‘๐‘– โˆˆ๐ฝ.Thenweget๐‘Žโ‰ฅ ๐‘ ,๐‘ ,...,๐‘1 2 ๐‘ ๐‘โ‰ฅ๐‘1 2 ,๐‘ ,...,๐‘๐‘ก (๐‘Ž, ๐‘) โˆˆ Lemma 6 (see [4]). Let ๐ฟ be a finite distributive lattice and ๐‘—1 ๐‘—2 ๐‘—๐‘  and ๐‘–1 ๐‘–2 ๐‘–๐‘ก .Since ๐œŒ (๐‘– = 1,2,...,โ„Ž) ๐‘โ‰ฅ๐‘,๐‘ ,...,๐‘ ๐‘Žโ‰ฅ ๐ฝ be the set of all the join irreducible elements of ๐ฟ.Thenfor ๐‘– ,wehave ๐‘—1 ๐‘—2 ๐‘—๐‘  , ๐‘Žโˆˆ๐ฟ,๐‘Ž ๐‘ ,๐‘ ,...,๐‘ ๐‘Ž=๐‘ โ‹๐‘ โ‹โ‹…โ‹…โ‹…โ‹๐‘ โ‰ค๐‘๐‘= any has a unique join irreducible decomposition and ๐‘–1 ๐‘–2 ๐‘–๐‘ก ,andthen ๐‘—1 ๐‘—2 ๐‘—๐‘  , ๐‘Ž=โ‹ ๐‘ ๐‘ โ‹๐‘ โ‹โ‹…โ‹…โ‹…โ‹๐‘ โ‰ค๐‘Ž ๐‘Ž=๐‘ ๐‘โˆˆ๐ฝ,๐‘โ‰ค๐‘Ž . ๐‘–1 ๐‘–2 ๐‘–๐‘ก .Hence,weobtain . Now, by Lemmas 1 and 2, we immediately verify that ๐ฟ Lemma 7 (see [4]). Let ๐ฟ be a finite distributive lattice and is isomorphic to a subdirect product of subdirect irreducible ๐ฝ be the set of all the join irreducible elements of ๐ฟ.If๐‘โˆˆ๐ฝ elements ๐ฟ๐‘– (๐‘–=1,2,...,โ„Ž). Discrete Dynamics in Nature and Society 3

1 1

c

c b

a

ab

0

Figure 2 0

Figure 1 1

Example 10. Let ๐ฟ={0,๐‘Ž,๐‘,๐‘,1}be a finite distributive lattice d as the Hasse diagram shown in Figure 1. Clearly, ๐ฝ={0,๐‘Ž,๐‘,1}.Now,wecantake๐ฟ1 ={0,๐‘Ž}, ๐ฟ2 = b c {0, ๐‘},and๐ฟ3 = {0, 1} and define

3 a ๐œ™:๐ฟ๓ณจ€โ†’โˆ๐ฟ๐‘–, ๐‘–=1 0 0 ๓ณจƒ๓ณจ€โ†’ (0, 0, 0) , Figure 3 ๐‘Ž ๓ณจƒ๓ณจ€โ†’ (๐‘Ž, 0, 0) , (5) ๐‘ ๓ณจƒ๓ณจ€โ†’ (0, ๐‘, 0) ,

satisfying 0=๐‘๐‘– <๐‘๐‘– <โ‹…โ‹…โ‹…<๐‘๐‘– , ๐‘ 1 +๐‘ 2 +โ‹…โ‹…โ‹…+๐‘ ๐‘Ÿ =โ„Ž,and ๐‘ ๓ณจƒ๓ณจ€โ†’ (๐‘Ž, ๐‘,) 0 , 0 1 ๐‘ ๐‘– ๐ฟ๐‘– โ‹‚ ๐ฟ๐‘˜ ={0}if ๐‘–=๐‘˜ ฬธ .Notethatthemaximalchainfrom0toa 1 ๓ณจƒ๓ณจ€โ†’ (๐‘Ž, ๐‘,) 1 . maximal element of ๐ฝ may be not unique, and the expression ๐‘Ÿ โ‹ƒ๐‘–=๐‘™ ๐ฟ๐‘– may be not unique in general. Then it is a routine way to check that ๐œ™ is a subdirect ๐‘™ 3 Further, we can take ๐ฟ๐‘– = โ‹ƒ๐‘—=๐‘™ ๐ฟ๐‘–๐‘— (1โ‰ค๐‘–โ‰ค๐‘Ÿ), where embedding homomorphism from ๐ฟ to โˆ๐‘–=1๐ฟ๐‘–.Hence,๐ฟ is ๐ฟ๐‘–๐‘— ={0,๐‘๐‘–๐‘— ,...,๐‘๐‘–๐‘— } is a more than 2 elements subchain isomorphic to a subdirect product of subdirect irreducible 1 ๐‘ก๐‘— ๐ฟ (๐‘– = 1, 2, 3) ๐ฟ ๐ฟ 0=๐‘ < elements ๐‘– . of ๐‘– (and also a subchain of )andsatisfying ๐‘–๐‘—0 ๐‘๐‘–๐‘— < โ‹…โ‹…โ‹… < ๐‘๐‘–๐‘— , ๐‘ก1 +๐‘ก2 +โ‹…โ‹…โ‹…+๐‘ก๐‘™ =๐‘ ๐‘–,and๐ฟ๐‘–๐‘— โ‹‚ ๐ฟ๐‘–๐‘˜ ={0} In general, if we replace the finite distributive lattice 1 ๐‘ก๐‘— ๐‘—=๐‘˜ ฬธ ๐ฝ=โ‹ƒ๐‘Ÿ ๐ฟ =โ‹ƒ๐‘Ÿ โ‹ƒ๐‘™ ๐ฟ ๐ฟ with a finite lattice, we cannot get the corresponding if . Clearly, we have ๐‘–=๐‘™ ๐‘– ๐‘–=๐‘™ ๐‘—=๐‘™ ๐‘–๐‘— ,where ๐ฟ ๐ฟ๐‘–๐‘— ={0,๐‘๐‘–๐‘— ,...,๐‘๐‘–๐‘— } is a subchain of ๐ฟ and constructed as subdirect irreducible decomposition of . 1 ๐‘ก๐‘— above. Example 11. Let ๐ฟ={0,๐‘Ž,๐‘,๐‘,1}be a finite lattice as the Hasse diagram shown in Figure 2. Example 12. Let ๐ฟ be a finite distributive lattice whose Hasse ๐ฝ = {0,๐‘Ž,๐‘,๐‘} ๐ฟ ={0,๐‘Ž} Clearly, .Now,ifwetake 1 , diagram given as shown in Figure 3. Clearly, ๐ฝ={0,๐‘Ž,๐‘,๐‘,1}, ๐ฟ2 ={0,๐‘},and๐ฟ3 ={0,๐‘}, then there is not any existing and we can take ๐ฝ=๐ฟ1 โ‹ƒ ๐ฟ2,where๐ฟ1 = {0, ๐‘Ž, ๐‘, 1} and ๐œ™ ๐ฟ โˆ3 ๐ฟ subdirect embedding homomorphism from to ๐‘–=1 ๐‘–. ๐ฟ2 ={0,๐‘}(also, we can take ๐ฟ1 = {0, ๐‘Ž, ๐‘, 1} and ๐ฟ2 ={0,๐‘}). ๐ฟ Hence, is not isomorphic to a subdirect product of subdirect If we take ๐ฟ11 = {0, ๐‘Ž, ,๐‘} ๐ฟ12 = {0, 1},and๐ฟ21 ={0,๐‘}, ๐ฟ (๐‘–=1,2,3) irreducible elements ๐‘– . then ๐ฝ=๐ฟ11 โ‹ƒ๐ฟ12 โ‹ƒ๐ฟ21.Ifwetake๐ฟ11 ={0,๐‘Ž}, ๐ฟ12 = {0, ๐‘}, ๐ฟ13 = {0, 1},and๐ฟ21 ={0,๐‘},thenwecanget๐ฝ= Next, we will discuss more general subdirect decomposi- ๐ฟ11 โ‹ƒ๐ฟ12 โ‹ƒ๐ฟ13 โ‹ƒ๐ฟ21. tions of a finite distributive lattice. ๐ฟ ๐‘š+1 Let be a finite distributive lattice with elements Theorem 13. Let ๐ฟ be a finite distributive lattice with ๐‘š+1 ๐‘šโ‰ฅ1 ๐ฝ={0,๐‘,๐‘ ,...,๐‘ }(๐‘šโ‰ฅ โ„Ž โ‰ฅ 1) where and 1 2 โ„Ž are elements where ๐‘šโ‰ฅ1and ๐ฝ={0,๐‘1,๐‘2,...,๐‘โ„Ž}(๐‘šโ‰ฅโ„Žโ‰ฅ1) the set of all the join irreducible elements of ๐ฟ.Then๐ฝ can be ๐ฟ ๐ฟ ๐‘Ÿ are the set of all the join irreducible elements of .Then is expressed as โ‹ƒ๐‘–=๐‘™ ๐ฟ๐‘–;here๐ฟ๐‘– ={0,๐‘๐‘– ,...,๐‘๐‘– } is a more than ๐ฟ (1โ‰ค๐‘–โ‰ค๐‘Ÿ,1โ‰ค๐‘—โ‰ค๐‘™) 1 ๐‘ ๐‘– isomorphic to a subdirect product of ๐‘–๐‘— 2 elements maximal subchain of ๐ฝ (and also a subchain of ๐ฟ) which is constructed as above. 4 Discrete Dynamics in Nature and Society

Proof. For 1โ‰ค๐‘–โ‰ค๐‘Ÿ, 1โ‰ค๐‘—โ‰ค๐‘™, define ๐œ™๐‘–๐‘— :๐ฟโ†’๐ฟ๐‘–๐‘— by In general, the subdirect decomposition manners of a finite chain into the subdirect irreducible elements can be ๐‘Ž๐œ™๐‘–๐‘— various. ๐ฟ = {0,1,...,๐‘š} {๐‘๐‘–๐‘— ,๐‘Žโ‰ฅ๐‘๐‘–๐‘— , (6) Example 15. Let be a finite chain. By the ๐‘ก๐‘— ๐‘ก๐‘— = { abovecorollary,wehaveshownthat๐ฟ is isomorphic to a ๐‘๐‘–๐‘— ,๐‘Žโ‰ฅ๐‘๐‘–๐‘— ,๐‘Žโ‰ฅ๐‘ฬธ ๐‘–๐‘— (0 โ‰ค ๐‘ก๐‘˜ โ‰ค๐‘ก๐‘— โˆ’1). ๐ฟ { ๐‘ก๐‘˜ ๐‘ก๐‘˜ ๐‘ก๐‘˜+1 subdirect product of subdirect irreducible elements ๐‘–,where ๐ฟ๐‘– = {0,๐‘–}(๐‘–= 1,2,...,๐‘š). On the other hand, we can also ๐œ™ (1โ‰ค๐‘–โ‰ค๐‘Ÿ,1โ‰ค ๓ธ€  Then, it is a routine way to verify that ๐‘–๐‘— take ๐ฟ๐‘– ={๐‘–โˆ’1,๐‘–}(๐‘–=1,2,...,๐‘š)and define ๐‘—โ‰ค๐‘™)is a homomorphism. ๐œ™ (1โ‰ค๐‘–โ‰ค๐‘Ÿ,1โ‰ค๐‘—โ‰ค๐‘™) ๐‘š Firstly, ๐‘–๐‘— is clearly a mapping. ๐œ™๓ธ€  :๐ฟโ†’โˆ๐ฟ๓ธ€ , ๐‘Ž, ๐‘ โˆˆ๐ฟ (๐‘Ž โˆจ ๐‘)๐œ™ = ๐‘– Secondly, for any ,wewillshowthat ๐‘–๐‘— ๐‘–=1 ๐‘Ž๐œ™๐‘– โˆจ๐‘๐œ™๐‘–๐‘— (1โ‰ค๐‘–โ‰ค๐‘Ÿ,1โ‰ค๐‘—โ‰ค๐‘™). 0 ๓ณจƒ๓ณจ€โ†’ (0,1,2,...,๐‘šโˆ’2,๐‘šโˆ’1) , (i) If ๐‘Žโˆจ๐‘โ‰ฅ๐‘๐‘–๐‘— ,then,byCorollary8,๐‘Žโ‰ฅ๐‘๐‘–๐‘— or ๐‘โ‰ฅ ๐‘ก๐‘— ๐‘ก๐‘— 1 ๓ณจƒ๓ณจ€โ†’ (1,1,2,...,๐‘šโˆ’2,๐‘šโˆ’1) , ๐‘๐‘–๐‘— ,andthenweget(๐‘Ž โˆจ ๐‘)๐œ™๐‘–๐‘— =๐‘๐‘–๐‘— =๐‘Ž๐œ™๐‘–๐‘— โˆจ๐‘๐œ™๐‘–๐‘— . ๐‘ก๐‘— ๐‘ก๐‘— 2 ๓ณจƒ๓ณจ€โ†’ (1,2,2,...,๐‘šโˆ’2,๐‘šโˆ’1) , (ii) If ๐‘Žโˆจ๐‘โ‰ฅ๐‘๐‘–๐‘— ๐‘Žโˆจ๐‘โ‰ฅ๐‘ฬธ ๐‘–๐‘— (0 โ‰ค ๐‘ก๐‘˜ โ‰ค๐‘ก๐‘— โˆ’1),then, ๐‘ก๐‘˜ ๐‘ก๐‘˜+1 (7) by Corollary 8, ๐‘Žโ‰ฅ๐‘๐‘–๐‘— or ๐‘โ‰ฅ๐‘๐‘–๐‘— ,andalsowehave 3 ๓ณจƒ๓ณจ€โ†’ (1,2,3,...,๐‘šโˆ’2,๐‘šโˆ’1) , ๐‘ก๐‘˜ ๐‘ก๐‘˜ ๐‘Žโ‰ฅ๐‘ ฬธ ๐‘โ‰ฅ๐‘ ฬธ (๐‘Ž โˆจ ๐‘)๐œ™ =๐‘ = ๐‘–๐‘—๐‘ก +1 and ๐‘–๐‘—๐‘ก +1 .Thus, ๐‘– ๐‘–๐‘—๐‘ก ๐‘˜ ๐‘˜ ๐‘˜ . ๐‘Ž๐œ™๐‘–๐‘— โˆจ๐‘๐œ™๐‘–๐‘— . .

Thirdly, we show that (๐‘Ž โˆง ๐‘)๐œ™๐‘–๐‘— =๐‘Ž๐œ™๐‘–๐‘— โˆง๐‘๐œ™๐‘–๐‘— (1 โ‰ค ๐‘– โ‰ค ๐‘šโˆ’1๓ณจƒ๓ณจ€โ†’ (1,2,3,...,๐‘šโˆ’1,๐‘šโˆ’1) , ๐‘Ÿ, 1 โ‰ค ๐‘— โ‰ค ๐‘™) for any ๐‘Ž, ๐‘. โˆˆ๐ฟ ๐‘š ๓ณจƒ๓ณจ€โ†’ (1,2,3,...,๐‘šโˆ’1,๐‘š) ; (i) If ๐‘Žโˆง๐‘โ‰ฅ๐‘๐‘–๐‘— ,then๐‘Žโ‰ฅ๐‘๐‘–๐‘— and ๐‘โ‰ฅ๐‘๐‘–๐‘— .Thus,we ๐‘ก๐‘— ๐‘ก๐‘— ๐‘ก๐‘— ๓ธ€  then it is not hard to check that ๐œ™ is also a subdirect have (๐‘Ž โˆง ๐‘)๐œ™๐‘–๐‘— =๐‘๐‘–๐‘— =๐‘๐‘–๐‘— โˆง๐‘๐‘–๐‘— =๐‘Ž๐œ™๐‘–๐‘— โˆง๐‘๐œ™๐‘–๐‘— . ๐‘š ๐‘ก๐‘— ๐‘ก๐‘— ๐‘ก๐‘— ๓ธ€  embedding homomorphism from ๐ฟ to โˆ๐‘–=1๐ฟ๐‘–.Andso๐ฟ is (ii) If ๐‘Žโˆง๐‘โ‰ฅ๐‘๐‘–๐‘— , ๐‘Žโˆง๐‘โ‰ฅ๐‘ฬธ ๐‘–๐‘— (0 โ‰ค ๐‘ก๐‘˜ โ‰ค๐‘ก๐‘— โˆ’1),then isomorphic to a subdirect product of subdirect irreducible ๐‘ก๐‘˜ ๐‘ก๐‘˜+1 ๓ธ€  ๐‘Žโ‰ฅ๐‘ ๐‘โ‰ฅ๐‘ ๐‘Žโ‰ฅ๐‘ ฬธ elements ๐ฟ๐‘– (๐‘–= 1,2,...,๐‘š).Obviously,thetwomannersof we have ๐‘–๐‘—๐‘ก and ๐‘–๐‘—๐‘ก ,andalso ๐‘–๐‘—๐‘ก or ๐‘˜ ๐‘˜ ๐‘˜ subdirect decomposition of ๐ฟ into the subdirect irreducible ๐‘โ‰ฅ๐‘๐‘–๐‘— .Hence,(๐‘Ž โˆง ๐‘)๐œ™๐‘–๐‘— =๐‘๐‘–๐‘— =๐‘Ž๐œ™๐‘–๐‘— โˆง๐‘๐œ™๐‘–๐‘— . ๐‘ก๐‘˜ ๐‘ก๐‘˜ elements are different. Summing up all the discussions above, we have shown ๐œ™ (1โ‰ค๐‘–โ‰ค๐‘Ÿ,1โ‰ค๐‘—โ‰ค๐‘™) Next, we will denote โ„Ž = โŒˆ๐‘š/2โŒ‰,whichistheleastinteger that ๐‘–๐‘— is a homomorphism. ๐‘š/2 ๐ฟ = {0, 2๐‘– โˆ’ 1, 2๐‘–} (๐‘–= ๐œŒ = ๐œ™ ๐œŒ=โˆฉ = greaterthanorequalto ,andtake ๐‘– Now, let ๐‘–๐‘— Ker ๐‘–๐‘— .Next,weshowthat 1โ‰ค๐‘–โ‰ค๐‘Ÿ,1โ‰ค๐‘—โ‰ค๐‘™ 1,2,...,โ„Žโˆ’1) ๐ฟ = {0, 2โ„Ž โˆ’ 1, 2โ„Ž} ๐‘š=2โ„Ž ๐ฟ = ๐œ€ and โ„Ž ,when , โ„Ž ๐ฟ. {0, 2โ„Ž โˆ’ 1} ๐‘š=2โ„Žโˆ’1 Assume that ๐‘Ž, ๐‘ โˆˆ๐ฟ and (๐‘Ž, ๐‘) โˆˆ๐œŒ;thenwehave when . Also, we have the following theorem. (๐‘Ž, ๐‘)๐‘–๐‘— โˆˆ๐œ™ (1โ‰ค๐‘–โ‰ค๐‘Ÿ,1โ‰ค๐‘—โ‰ค๐‘™). By Lemma 6, there ๐‘Ž ๐‘ exist the join irreducible decompositions of and . Assume Theorem 16. ๐ฟ = {0,1,...,๐‘š} ๐‘Ž=๐‘ โ‹ ๐‘ โ‹ โ‹…โ‹…โ‹…โ‹ ๐‘ ๐‘=๐‘ โ‹ ๐‘ โ‹ โ‹…โ‹…โ‹…โ‹ ๐‘ Let be a finite chain. Then that ๐œ† ๐œ† ๐œ† ๓ธ€  and ๐œ‡ ๐œ‡ ๐œ‡ ๓ธ€  , 1 2 ๐‘  1 2 ๐‘ก ๐ฟ is isomorphic to a subdirect product of ๐ฟ๐‘– (๐‘– = 1,2,...,โ„Ž) where ๐‘๐œ† ,๐‘๐œ† ,...,๐‘๐œ† ,๐‘๐œ‡ ,๐‘๐œ‡ ,...,๐‘๐œ‡ โˆˆ๐ฝ.Thenweget 1 2 ๐‘ ๓ธ€  1 2 ๐‘ก๓ธ€  constructed above. ๐‘Žโ‰ฅ๐‘ ,๐‘ ,...,๐‘ ๐‘โ‰ฅ๐‘ ,๐‘ ,...,๐‘ (๐‘Ž, ๐‘) โˆˆ ๐œ†1 ๐œ†2 ๐œ† ๓ธ€  and ๐œ‡1 ๐œ‡2 ๐œ‡ ๓ธ€  .Since ๐‘  ๐‘ก ๐‘–=1,2,...,โ„Ž ๐œ™ :๐ฟโ†’๐ฟ ๐œŒ๐‘–๐‘— (1โ‰ค๐‘–โ‰ค๐‘Ÿ,1โ‰ค๐‘—โ‰ค๐‘™) ๐‘โ‰ฅ๐‘๐œ† ,๐‘๐œ† ,...,๐‘๐œ† Proof. For , define ๐‘– ๐‘– by ,wehave 1 2 ๐‘ ๓ธ€  and ๐‘Žโ‰ฅ๐‘ ,๐‘ ,...,๐‘ ๐‘Ž=๐‘ โ‹ ๐‘ โ‹ โ‹…โ‹…โ‹…โ‹ ๐‘ โ‰ค๐‘ ๐œ‡1 ๐œ‡2 ๐œ‡ ๓ธ€  and then ๐œ†1 ๐œ†2 ๐œ† ๓ธ€  2๐‘–, ๐‘Ž โ‰ฅ 2๐‘–, ๐‘ก ๐‘  { ๐‘=๐‘๐œ‡ โ‹ ๐‘๐œ‡ โ‹ โ‹…โ‹…โ‹…โ‹ ๐‘๐œ‡ โ‰ค๐‘Ž ๐‘Ž=๐‘ { and 1 2 ๐‘ก๓ธ€  .Hence,weobtain . ๐ฟ ๐‘Ž๐œ™๐‘– = {2๐‘–โˆ’1, 2๐‘–>๐‘Žโ‰ฅ2๐‘–โˆ’1, (8) Now, by Lemma 2, we immediately verify that is { ๐ฟ (1โ‰ค๐‘–โ‰ค๐‘Ÿ,1โ‰ค isomorphic to a subdirect product of ๐‘–๐‘— {0, otherwise. ๐‘—โ‰ค๐‘™). Then, we can check that ๐œ™๐‘– (๐‘– = 1,2,...,โ„Ž) is a homomor- In the following, we will discuss the subdirect product phism by a routine way. Now, let ๐œŒ๐‘– = Ker๐œ™๐‘–.Also,wecan ๐ฟ={0,1,...,๐‘š} โ„Ž decomposition of the finite chain . show that โˆฉ ๐œŒ๐‘– =๐œ€๐ฟ.ByLemma2,๐ฟ is isomorphic to a ๐ฟ={0,1,...,๐‘š} ๐ฝ ๐‘–=1 Since for a finite chain ,theset of all the subdirect product of ๐ฟ๐‘– (๐‘–=1,2,...,โ„Ž). join irreducible elements of ๐ฟ is just equal to ๐ฟ, and also note that a finite chain must be a finite distributive lattice, then we Further, denote โ„Ž = โŒˆ๐‘š/(๐‘˜โˆ’1)โŒ‰,whichistheleastinteger immediately obtain the following corollary by Theorem 9. greater than or equal to ๐‘š/(๐‘˜ ,andtakeโˆ’ 1) ๐ฟ๐‘– ={0,...,(๐‘˜โˆ’ 1)๐‘–โˆ’1,(๐‘˜โˆ’1)๐‘–}(๐‘–=1,2,...,โ„Žโˆ’1)and ๐ฟโ„Ž ={0,...,(๐‘˜โˆ’1)โ„Žโˆ’ Corollary 14. Let ๐ฟ = {0,1,...,๐‘š} be a finite chain and 1, (๐‘˜ โˆ’ 1)โ„Ž} when โ„Ž = โŒˆ๐‘š/(๐‘˜ โˆ’ 1)โŒ‰ = ๐‘š/(๐‘˜; โˆ’1) ๐ฟโ„Ž = {0, (๐‘˜ โˆ’ ๐ฟ๐‘– ={0,๐‘–}(๐‘–=1,2,...,๐‘š).Then๐ฟ is isomorphic to a subdirect 1)(โ„Žโˆ’1),...,๐‘š}when โŒˆ๐‘š/(๐‘˜โˆ’1)โŒ‰>๐‘š/(๐‘˜โˆ’1). Generally, product of subdirect irreducible elements ๐ฟ๐‘– (๐‘–=1,2,...,๐‘š). we will have the following theorem. Discrete Dynamics in Nature and Society 5

โ„Ž Theorem 17. Let ๐ฟ = {0,1,...,๐‘š} be a finite chain. Then Now, let ๐œŒ๐‘– = Ker๐œ™๐‘–. Next, we show that ๐œŒ=โˆฉ๐‘–=1๐œŒ๐‘– =๐œ€๐ฟ. ๐ฟ is isomorphic to a subdirect product of ๐ฟ๐‘– (๐‘– = 1,2,...,โ„Ž) Assume that ๐‘Ž=๐‘๐‘™ , ๐‘=๐‘๐‘˜ โˆˆ๐ฟ,and(๐‘Ž, ๐‘);then โˆˆ๐œŒ ๐‘ ๐‘— ๐‘ ๐‘ก constructed as above. we have (๐‘Ž, ๐‘)๐‘– โˆˆ๐œŒ (๐‘– = 1,2,...,โ„Ž),clearly,(๐‘Ž, ๐‘)๐‘™ โˆˆ๐œŒ and (๐‘Ž, ๐‘) โˆˆ๐œŒ (๐‘Ž, ๐‘) โˆˆ๐œŒ ๐‘โ‰ฅ๐‘ =๐‘Ž ๐‘˜.By ๐‘™,wehave ๐‘™๐‘  .Similarly,by Proof. For ๐‘–=1,2,...,โ„Ž, define ๐œ™๐‘– :๐ฟโ†’๐ฟ๐‘– by ๐‘— (๐‘Ž, ๐‘)๐‘˜ โˆˆ๐œŒ ,wehave๐‘Žโ‰ฅ๐‘๐‘˜ =๐‘.Hence,weobtain๐‘Ž=๐‘. ๐‘ ๐‘ก {(๐‘˜โˆ’1) ๐‘–, ๐‘Ž โ‰ฅ (๐‘˜โˆ’1) ๐‘–, Now, by Lemma 2, we immediately verify that ๐ฟ is { { isomorphic to a subdirect product of ๐ฟ๐‘– (๐‘–=1,2,...,โ„Ž). ๐‘Ž๐œ™ = ๐‘Ž, (๐‘˜โˆ’1) ๐‘–>๐‘Žโ‰ฅ(๐‘˜โˆ’1)(๐‘–โˆ’1) , ๐‘– { (9) { {0, (๐‘˜โˆ’1)(๐‘–โˆ’1) >๐‘Žโ‰ฅ0. 3. Conclusion

Then, it is a routine way to check that ๐œ™๐‘– (๐‘–= 1,2,...,โ„Ž)is a Subdirect decomposition of algebra is one of its quite general homomorphism. Now, let ๐œŒ๐‘– = Ker๐œ™๐‘–. Also, we can show that and important constructions. In this paper, we investigate โ„Ž โˆฉ๐‘–=1๐œŒ๐‘– =๐œ€๐ฟ. By Lemma 2, we can complete our proof. some subdirect decompositions (including subdirect irre- ducible decompositions) of finite distributive lattices and Finally, we will give a more general subdirect decomposi- finite chains, and give a lot of concrete examples. Actually, tion of a finite chain. โ„Ž the main results in this paper are good complements of the Let ๐ฟ=โ‹ƒ๐‘–=๐‘™ ๐ฟ๐‘– be a finite chain with ๐‘š+1elements where corresponding ones in [8]. ๐‘šโ‰ฅ1.Here๐ฟ๐‘– ={0,๐‘๐‘– ,...,๐‘๐‘– } is a more than 2 elements 1 ๐‘ ๐‘– subchain of ๐ฟ satisfying 0=๐‘๐‘– <๐‘๐‘– < โ‹…โ‹…โ‹… < ๐‘๐‘– , ๐‘ 1 +๐‘ 2 + 0 1 ๐‘ ๐‘– Conflicts of Interest โ‹…โ‹…โ‹…+๐‘ โ„Ž =๐‘š,andalso๐ฟ๐‘– โ‹‚ ๐ฟ๐‘— ={0}if ๐‘–=๐‘— ฬธ . The authors declare that they have no conflicts of interest. โ„Ž Theorem 18. Let ๐ฟ=โ‹ƒ๐‘–=๐‘™ ๐ฟ๐‘– be a chain with ๐‘š+1elements where ๐‘šโ‰ฅ1and ๐ฟ๐‘– ={0,๐‘๐‘– ,...,๐‘๐‘– } are constructed as 1 ๐‘ ๐‘– Acknowledgments above. Then ๐ฟ is isomorphic to a subdirect product of ๐ฟ๐‘– (๐‘– = 1,2,...,โ„Ž). This work is supported by Grants of the NNSF of China (nos. 11501237, 11401246, 11426112, and 61402364); the Proof. For ๐‘–=1,2,...,โ„Ž, define ๐œ™๐‘– :๐ฟโ†’๐ฟ๐‘– by NSF of Guangdong Province (nos. 2014A030310087, 2014A030310119, and 2016A030310099); the Outstanding {๐‘๐‘– ,๐‘Žโ‰ฅ๐‘๐‘–, Young Teacher Training Program in Guangdong Universities ๐‘ ๐‘– ๐‘Ž๐œ™๐‘– = { (10) (no. YQ2015155); and Scientific Research Innovation Team ๐‘๐‘– ,๐‘Žโ‰ฅ๐‘๐‘– ,๐‘Žโ‰ฅ๐‘ฬธ ๐‘– (0 โ‰ค ๐‘ ๐‘— โ‰ค๐‘ ๐‘– โˆ’1). { ๐‘ ๐‘— ๐‘ ๐‘— ๐‘ ๐‘—+1 ProjectofHuizhouUniversity(hzuxl201523). ๐œ™ (๐‘–= 1,2,...,โ„Ž) Then, it is a routine way to verify that ๐‘– References is a homomorphism. ๐œ™ (๐‘–=1,2,...,โ„Ž) Firstly, ๐‘– is clearly a mapping. [1] J. S. Golan, Semirings and Their Applications, Kluwer Academic Secondly, for any ๐‘Ž, ๐‘,wewillshowthat โˆˆ๐ฟ (๐‘Ž โˆจ ๐‘)๐œ™๐‘– = Publishers, Dordrecht, Netherlands, 1999. ๐‘Ž๐œ™ โˆจ๐‘๐œ™ (๐‘–=1,2,...,โ„Ž). ๐‘– ๐‘– [2] Y. Chen, H. Wang, and H. Luo, โ€œDecompositions of matrices over a finite chain,โ€ International Journal of Pure and Applied (i) If ๐‘Žโˆจ๐‘โ‰ฅ๐‘๐‘– ,then,since๐ฟ is a finite chain, we have ๐‘ ๐‘– Mathematics,vol.75,no.2,pp.149โ€“158,2012. ๐‘Žโ‰ฅ๐‘๐‘– or ๐‘โ‰ฅ๐‘๐‘– ,andthenweget(๐‘Ž โˆจ ๐‘)๐œ™๐‘– =๐‘๐‘– = ๐‘ ๐‘– ๐‘ ๐‘– ๐‘ ๐‘– [3] G. Birkhoff, Lattice Theory, XXV, American Mathematical ๐‘Ž๐œ™๐‘– โˆจ๐‘๐œ™๐‘–. Society Colloquium Publications, 1984. ๐‘Žโˆจ๐‘โ‰ฅ๐‘ ๐‘Žโˆจ๐‘โ‰ฅ๐‘ฬธ (0 โ‰ค ๐‘  โ‰ค๐‘ โˆ’1) [4] S. Burris and H. P. Sankappanavar, A Course in Universal Alge- (ii) If ๐‘–๐‘  , ๐‘–๐‘  +1 ๐‘— ๐‘– ,then ๐‘— ๐‘— bra (The Millennium Edition), 2000. ๐‘Žโ‰ฅ๐‘๐‘– or ๐‘โ‰ฅ๐‘๐‘– , ๐‘Žโ‰ฅ๐‘ ฬธ ๐‘– and ๐‘โ‰ฅ๐‘ ฬธ ๐‘– ,andthen ๐‘ ๐‘— ๐‘ ๐‘— ๐‘ ๐‘—+1 ๐‘ ๐‘—+1 [5]T.S.Blyth,Lattices and Ordered Algebraic Structure,Springer- (๐‘Ž โˆจ ๐‘)๐œ™๐‘– =๐‘๐‘– =๐‘Ž๐œ™๐‘– โˆจ๐‘๐œ™๐‘–. ๐‘ ๐‘— Verlat London Limited, London, UK, 2005. [6] G. Birkhoff, โ€œSubdirect unions in ,โ€ Bulletin of (๐‘Žโˆง๐‘)๐œ™ =๐‘Ž๐œ™โˆง๐‘๐œ™ (๐‘–=1,2,...,โ„Ž) Thirdly, we show that ๐‘– ๐‘– ๐‘– the American Mathematical Society,vol.50,pp.764โ€“768,1944. ๐‘Ž, ๐‘ โˆˆ๐ฟ for any . [7] H.-J. Bandelt and M. Petrich, โ€œSubdirect products of rings and distributive lattices,โ€ Proceedings of the Edinburgh Mathematical (i) If ๐‘Žโˆง๐‘โ‰ฅ๐‘๐‘– ,then๐‘Žโ‰ฅ๐‘๐‘– and ๐‘โ‰ฅ๐‘๐‘– ,andthenwe ๐‘ ๐‘– ๐‘ ๐‘– ๐‘ ๐‘– Society. Series II,vol.25,no.2,pp.155โ€“171,1982. get (๐‘Ž โˆง ๐‘)๐œ™๐‘– =๐‘๐‘– =๐‘Ž๐œ™๐‘– โˆง๐‘๐œ™๐‘–. ๐‘ ๐‘– [8] Y. Chen, X. Zhao, and L. Yang, โ€œOn n ร— n matrices over a finite ๐‘Žโˆง๐‘โ‰ฅ๐‘ ๐‘Žโˆง๐‘โ‰ฅ๐‘ฬธ (0 โ‰ค ๐‘  โ‰ค๐‘ โˆ’1) distributive lattice,โ€ Linear and Multilinear Algebra,vol.60,no. (ii) If ๐‘–๐‘  , ๐‘–๐‘  +1 ๐‘— ๐‘– ,then ๐‘— ๐‘— 2,pp.131โ€“147,2012. ๐‘Žโ‰ฅ๐‘๐‘– and ๐‘โ‰ฅ๐‘๐‘– , ๐‘Žโ‰ฅ๐‘ ฬธ ๐‘– or ๐‘โ‰ฅ๐‘ ฬธ ๐‘– ,andthen ๐‘ ๐‘— ๐‘ ๐‘— ๐‘ ๐‘—+1 ๐‘ ๐‘—+1 (๐‘Ž โˆง ๐‘)๐œ™๐‘– =๐‘๐‘– =๐‘Ž๐œ™๐‘– โˆง๐‘๐œ™๐‘–. ๐‘ ๐‘— Summing up all the discussions above, we have shown that ๐œ™๐‘– (๐‘–=1,2,...,โ„Ž)is a homomorphism. Advances in Advances in Journal of Journal of Operations Research Decision Sciences Applied Mathematics Algebra Probability and Statistics Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

The Scientific International Journal of World Journal Di๏ฌ€erential Equations Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Submit your manuscripts at https://www.hindawi.com

International Journal of Advances in Combinatorics Mathematical Physics Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Journal of Journal of Mathematical Problems Abstract and Discrete Dynamics in Complex Analysis Mathematics in Engineering Applied Analysis Nature and Society Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

International Journal of Journal of Mathematics and Mathematical #HRBQDSDฤฎ,@SGDL@SHBR Sciences

Journal of International Journal of Journal of Function Spaces Stochastic Analysis Optimization Hindawi Publishing Corporation Hindawi Publishing Corporation Volume 2014 Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 201 http://www.hindawi.com http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014