Water Quality Knowledge

Total Page:16

File Type:pdf, Size:1020Kb

Water Quality Knowledge 2019 issue 2 Aquatic Sciences Chronicle ASCaqua.wisc.edu/chronicle UNIVERSITY OF WISCONSIN SEA GRANT INSTITUTE UNIVERSITY OF WISCONSIN WATER RESOURCES INSTITUTE INSIDE: WATER RESOURCES INSTITUTE pg.5 Water Seeking Balance in Community Conservation Quality Knowledge pg.6 Hidden Danger pg.8 Aquaculture Conference Page 3 UNIVERSITY OF WISCONSIN Aquatic Sciences Chronicle FEATURED WEB University of Wisconsin Aquatic Sciences Center 1975 Willow Drive Madison, WI 53706-1177 David Nevala 608-263-3259 Email: [email protected] Web: seagrant.wisc.edu, wri.wisc.edu The Aquatic Sciences Center is the administrative home of the University of Wisconsin Sea Grant Institute and the University of Wisconsin Water Resources Institute. ASSISTANT DIRECTOR FOR COMMUNICATIONS Moira Harrington EDITOR Elizabeth A. White WRITERS Moira Harrington, Jennifer A. Smith, Elizabeth A. White, Morgan Witte and Marie Zhuikov Fishing for ART DIRECTOR Yael Gen Information? DESIGNER eatwisconsinfish.org Yael Gen CIRCULATION MANAGER In recent years, the “eat local” food movement has really taken root, with many Linda Campbell consumers striving to purchase produce, meat and other foods grown and raised near where they live. Eating local reduces the distance food must travel, bol- The University of Wisconsin Sea Grant Institute is part of a national network of 33 university- sters local economies and often builds a personal connection between the home based programs funded through the National cook whipping up dinner and the farmers who make that meal possible through Sea Grant College Program, National Oceanic & their efforts. Atmospheric Administration, U.S. Department of But what about fish? It, too, can be a part of eating local. To share that important Commerce, and through matching contributions message with consumers, Wisconsin Sea Grant launched the Eat Wisconsin Fish from participating states and the private sector. campaign in 2014, and it’s getting some renewed attention this year. The University of Wisconsin Water Resources Eat Wisconsin Fish educates consumers about local, healthy and delicious Institute is one of 54 Water Resources Research Wisconsin fish — both wild-caught and farm-raised. Tasty recipes feature promi- Institutes nationwide authorized by the federal nently on the website, from “spring salad with miso-maple Arctic char” to “smoked Water Resources Research Act and administered rainbow trout frittata.” through the U.S. Geological Survey. Website visitors can also find information about producers, where to buy SUBSCRIBE Wisconsin fish and why selecting fish farmed or caught locally is a smart choice Email [email protected] to request that supports sustainability and Wisconsin jobs. a free subscription to the “Aquatic Sciences Follow us on Facebook. Take a look, and you just might be inspired to cook some- Chronicle,” a quarterly publication. Please specify thing new for tonight’s dinner! — JAS whether you prefer a mailed print edition or electronic delivery. GET ASC NEWS ALERTS BY EMAIL Sign up to receive email notices about ASC news at the sign up for enews link from the News tab on seagrant.wisc.edu or wri.wisc.edu. MAKE A GIFT Support the University of Wisconsin Sea Grant and Water Resources institutes by making a financial gift at supportuw.org/giveto/seagrant. 2 UNIVERSITY OF WISCONSIN WATER RESOURCES INSTITUTE Water Quality Knowledge While University of Wisconsin-Madison Associate (DBPs). Some of these byproducts, such as chlo- Professor Christina Remucal may be thousands of roform, can be cancer causing or otherwise detri- miles from home right now — she’s on sabbatical mental to human health. It is a complex problem, in Switzerland — she’s busy investigating an issue and scientists have not identified all possible DBPs. that has implications for the water Wisconsinites “It’s a trade-off when we disinfect our water,” drink every day. said Remucal. “It means inactivating pathogens Through funding from the Water Resources that will make us sick, and also forming these Institute, Remucal is studying the impact that the harmful compounds, which are of course regulated composition of dissolved organic matter has on the and generally present in low concentrations.” formation of disinfection byproducts in ground- Remucal’s research will expand understanding water when that water is treated for use. of the chemical composition of dissolved organic REMUCAL’S RESEARCH FURTHERS KNOWLEDGE Source photos: Reid Milstead ABOUT DRINKING WATER SAFETY, PARTICULARLY FROM GROUNDWATER “This project is related to drinking water matter (DOM) and how that composition can quality,” explained Remucal. “When we have affect the types of disinfection byproducts that treated drinking water, one of the most important are formed during water treatment. While DOM steps is doing disinfection to inactivate pathogens is present in both groundwater and surface waters like viruses and bacteria. Most utilities in the U.S. like lakes and rivers, its composition varies widely. and in Wisconsin use chlorine for disinfection.” She’ll place a special focus on groundwater, While chlorine is highly effective, it also reacts which is the source of most drinking water in with naturally present compounds that are found Wisconsin and not well studied with regard to this in all waters, and this can result in the formation of issue. “We’re looking at dissolved organic matter harmful chemicals called disinfection byproducts in groundwater, and how that compares to surface continued next page >> SEA GRANT INSTITUTE WATER RESOURCES INSTITUTE 3 & wisconsinwaterlibrary WATER RESOURCES INSTITUTE continued from page 3 Climate Change Water Quality Knowledge and Humanity Conversations about climate change are often filled with scien- tific data, facts and figures. Of course this scientific information is water, and then we’re looking at how that organic matter important, but it can be difficult to relate to on an individual level. The books below discuss how climate change affects humanity on global, — again in groundwater versus surface water — reacts with local and individual scales for a more personal look at the impacts chlorine to form disinfection byproducts.” of climate. The project was selected for WRI funding in 2018 and runs through 2020. It is made up of three main stages. The first is STORMING THE WALL: CLIMATE CHANGE, collecting water samples from various Wisconsin water utili- MIGRATION, AND HOMELAND SECURITY ties and running analyses. Reid Milstead, a graduate student By Todd Miller. San Francisco: City Lights Publishers, 2017. of Remucal’s in the Environmental Chemistry and Technology An intriguing piece of investigative journalism, this book explores Program within the Department of Civil and Environmental connections between corporate crashes, environmental injustices Engineering, is assisting with this process, and the Wisconsin and the militarization of borders by juxtaposing stories of hope Rural Water Association has helped connect Remucal and and desperation. Milstead with local water utilities. “We’re using traditional chemical FIELD NOTES FROM A CATASTROPHE: approaches, but we’re also using MAN, NATURE, AND CLIMATE CHANGE some really state-of-the-art By Elizabeth Kolbert. London: Bloomsbury Publishing PLC, 2007. high-resolution mass spec- From scientific evidence to personal stories, Kolbert investigates the impacts of climate change with a focus on the already-altered north trometry approaches to look pole communities. at dissolved organic matter,” said Remucal. CLIMATE REFUGEES Phase two entails sorting By Collectif Argos. Cambridge, Mass.: The MIT Press, 2010. through vast amounts of The journalists at Collectif Argos met with climate refugees, people data and identifying trends “forced into exile by global warming’s detrimental effects.” Nine geo- that are related to water in graphical locations, each facing disaster due to climate change, are Wisconsin but are also more explored through personal interviews with and photography of those broadly applicable. who have been displaced. The third and final phase is an ambitious one that takes a SCIENCE OF THE EARTH, CLIMATE AND ENERGY predictive approach. “The direction we’re moving in is to be By Milton W. Cole, Angela D. Lueking and David L. Goldstein. able to predict — if this is my water sample, and this is its Hackensack, N.J.: World Scientific Publishing Co., 2018. basic chemistry — how big of a problem disinfection byprod- The authors begin with a discussion of the basics of what science is ucts are going to be,” said Remucal. and how it works as a field of study. They then build upon this to dis- She will share research results with organizations like the cuss the Earth in a way that focuses on steps individuals and societies Wisconsin Rural Water Association and the Wisconsin section can take to mitigate the impacts of climate change. of the American Water Resources Association. While Remucal is enjoying her sabbatical year in Switzerland Please visit the Wisconsin Water Library online at (she completed a postdoc there and is now splitting her time waterlibrary.aqua.wisc.edu for more information between two research institutes), she likes knowing that her about the library’s resources on climate. Water Resources Institute study will benefit Wisconsinites by Anyone in Wisconsin can borrow these books. furthering what we know about drinking water safety. Just email [email protected]. “The work we’re doing is pretty fundamental, and so it has broader implications for drinking water everywhere,
Recommended publications
  • Nearshore Currents and Safety to Swimmers in Xai-Xai Beach Correntes Costeiras E Segurança De Banhistas Na Praia De Xai-Xai
    Antonio Mubango Hoguane et al. Journal of Integrated Coastal Zone Management / Revista de Gestão Costeira Integrada 19(4):209-220 (2019) http://www.aprh.pt/rgci/pdf/rgci-n148_Hoguane.pdf | DOI:10.5894/rgci-n148 Nearshore currents and safety to swimmers in Xai-Xai Beach Correntes costeiras e segurança de banhistas na Praia de Xai-Xai Antonio Mubango Hoguane1, @, Tor Gammelsrød2, Kai H. Christensen3, Noca Bernardo Furaca1, Bilardo António da Silva Nharreluga1, Manuel Victor Poio4 @ Corresponding author, [email protected], Tel: +258823152860 1 Centre for Marine Research and Technology, Eduardo Mondlane University, Mozambique 2 Geophysical Institute, University of Bergen, Bergen, Norway, [email protected] 3 Research and Development Department, Norwegian Meteorological Institute, Oslo, Norway, [email protected] 4 Centre for Sustainable Development for Coastal Zone, Xai-Xai, Mozambique, [email protected], Tel: +258843110000 ABSTRACT: Xai-Xai Beach is a shallow semi-enclosed lagoon, about 2,000m long, 200m wide and 3m average depth, protected from ocean swell by a reef about 0.75m above the Mean Sea Level, with small gaps along its extension. Despite being protected from ocean waves, the lagoon, which is popular with tourists, is a dangerous place to swim, with an average of 8-9 drownings each year. The present paper examines the longshore and rip currents in the lagoon as the potential cause for these fatalities. Drifters were deployed for measuring the magnitude and direction of the nearshore currents. Unidirectional, northwards, longshore currents, with velocity up to 1.4ms-1 and strong rip currents, with velocity up to 3.4ms-1, 5-10m width and duration of less than 5 minutes, were observed.
    [Show full text]
  • Meteotsunami Generation, Amplification and Occurrence in North-West Europe
    University of Liverpool Doctoral Thesis Meteotsunami generation, amplification and occurrence in north-west Europe Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by David Alan Williams November 2019 ii Declaration of Authorship I declare that this thesis titled “Meteotsunami generation, amplification and occurrence in north-west Europe” and the work presented in it are my own work. The material contained in the thesis has not been presented, nor is currently being presented, either wholly or in part, for any other degree or qualification. Signed Date David A Williams iii iv Meteotsunami generation, amplification and occurrence in north-west Europe David A Williams Abstract Meteotsunamis are atmospherically generated tsunamis with characteristics similar to all other tsunamis, and periods between 2–120 minutes. They are associated with strong currents and may unexpectedly cause large floods. Of highest concern, meteotsunamis have injured and killed people in several locations around the world. To date, a few meteotsunamis have been identified in north-west Europe. This thesis aims to increase the preparedness for meteotsunami occurrences in north-west Europe, by understanding how, when and where meteotsunamis are generated. A summer-time meteotsunami in the English Channel is studied, and its generation is examined through hydrodynamic numerical simulations. Simple representations of the atmospheric system are used, and termed synthetic modelling. The identified meteotsunami was partly generated by an atmospheric system moving at the shallow- water wave speed, a mechanism called Proudman resonance. Wave heights in the English Channel are also sensitive to the tide, because tidal currents change the shallow-water wave speed.
    [Show full text]
  • James T. Kirby, Jr
    James T. Kirby, Jr. Edward C. Davis Professor of Civil Engineering Center for Applied Coastal Research Department of Civil and Environmental Engineering University of Delaware Newark, Delaware 19716 USA Phone: 1-(302) 831-2438 Fax: 1-(302) 831-1228 [email protected] http://www.udel.edu/kirby/ Updated September 12, 2020 Education • University of Delaware, Newark, Delaware. Ph.D., Applied Sciences (Civil Engineering), 1983 • Brown University, Providence, Rhode Island. Sc.B.(magna cum laude), Environmental Engineering, 1975. Sc.M., Engineering Mechanics, 1976. Professional Experience • Edward C. Davis Professor of Civil Engineering, Department of Civil and Environmental Engineering, University of Delaware, 2003-present. • Visiting Professor, Grupo de Dinamica´ de Flujos Ambientales, CEAMA, Universidad de Granada, 2010, 2012. • Professor of Civil and Environmental Engineering, Department of Civil and Environmental Engineering, University of Delaware, 1994-2002. Secondary appointment in College of Earth, Ocean and the Environ- ment, University of Delaware, 1994-present. • Associate Professor of Civil Engineering, Department of Civil Engineering, University of Delaware, 1989- 1994. Secondary appointment in College of Marine Studies, University of Delaware, as Associate Professor, 1989-1994. • Associate Professor, Coastal and Oceanographic Engineering Department, University of Florida, 1988. • Assistant Professor, Coastal and Oceanographic Engineering Department, University of Florida, 1984- 1988. • Assistant Professor, Marine Sciences Research Center, State University of New York at Stony Brook, 1983- 1984. • Graduate Research Assistant, Department of Civil Engineering, University of Delaware, 1979-1983. • Principle Research Engineer, Alden Research Laboratory, Worcester Polytechnic Institute, 1979. • Research Engineer, Alden Research Laboratory, Worcester Polytechnic Institute, 1977-1979. 1 Technical Societies • American Society of Civil Engineers (ASCE) – Waterway, Port, Coastal and Ocean Engineering Division.
    [Show full text]
  • A High-Amplitude Atmospheric Inertia–Gravity Wave-Induced
    A high-amplitude atmospheric inertia– gravity wave-induced meteotsunami in Lake Michigan Eric J. Anderson & Greg E. Mann Natural Hazards ISSN 0921-030X Nat Hazards DOI 10.1007/s11069-020-04195-2 1 23 Your article is protected by copyright and all rights are held exclusively by This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Natural Hazards https://doi.org/10.1007/s11069-020-04195-2 ORIGINAL PAPER A high‑amplitude atmospheric inertia–gravity wave‑induced meteotsunami in Lake Michigan Eric J. Anderson1 · Greg E. Mann2 Received: 1 February 2020 / Accepted: 17 July 2020 © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020 Abstract On Friday, April 13, 2018, a high-amplitude atmospheric inertia–gravity wave packet with surface pressure perturbations exceeding 10 mbar crossed the lake at a propagation speed that neared the long-wave gravity speed of the lake, likely producing Proudman resonance.
    [Show full text]
  • Assessment of Tsunami Hazard to the U.S. Atlantic Margin
    Marine Geology 353 (2014) 31–54 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Review article Assessment of tsunami hazard to the U.S. Atlantic margin U.S. ten Brink a,⁎,J.D.Chaytora, E.L. Geist b,D.S.Brothersa,1, B.D. Andrews a a U.S. Geological Survey, 384 Woods Hole Rd., Woods Hole, MA 02543, USA b U.S. Geological Survey, 345 Middlefield Rd., Menlo Park, CA 94025, USA article info abstract Article history: Tsunami hazard is a very low-probability, but potentially high-risk natural hazard, posing unique challenges to Received 23 May 2013 scientists and policy makers trying to mitigate its impacts. These challenges are illustrated in this assessment Received in revised form 19 February 2014 of tsunami hazard to the U.S. Atlantic margin. Seismic activity along the U.S. Atlantic margin in general is low, Accepted 22 February 2014 and confirmed paleo-tsunami deposits have not yet been found, suggesting a very low rate of hazard. However, Available online 22 March 2014 the devastating 1929 Grand Banks tsunami along the Atlantic margin of Canada shows that these events continue Communicated by: D.J.W. Piper to occur. Densely populated areas, extensive industrial and port facilities, and the presence of ten nuclear power plants along the coast, make this region highly vulnerable to flooding by tsunamis and therefore even low- Keywords: probability events need to be evaluated. submarine landslides We can presently draw several tentative conclusions regarding tsunami hazard to the U.S. Atlantic coast. Land- meteo-tsunami slide tsunamis likely constitute the biggest tsunami hazard to the coast.
    [Show full text]
  • Meteotsunami Occurrence in the Gulf of Finland Over the Past Century Havu Pellikka1, Terhi K
    https://doi.org/10.5194/nhess-2020-3 Preprint. Discussion started: 8 January 2020 c Author(s) 2020. CC BY 4.0 License. Meteotsunami occurrence in the Gulf of Finland over the past century Havu Pellikka1, Terhi K. Laurila1, Hanna Boman1, Anu Karjalainen1, Jan-Victor Björkqvist1, and Kimmo K. Kahma1 1Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland Correspondence: Havu Pellikka (havu.pellikka@fmi.fi) Abstract. We analyse changes in meteotsunami occurrence over the past century (1922–2014) in the Gulf of Finland, Baltic Sea. A major challenge for studying these short-lived and local events is the limited temporal and spatial resolution of digital sea level and meteorological data. To overcome this challenge, we examine archived paper recordings from two tide gauges, Hanko for 1922–1989 and Hamina for 1928–1989, from the summer months of May–October. We visually inspect the recordings to 5 detect rapid sea level variations, which are then digitized and compared to air pressure observations from nearby stations. The data set is complemented with events detected from digital sea level data 1990–2014 by an automated algorithm. In total, we identify 121 potential meteotsunami events. Over 70 % of the events could be confirmed to have a small jump in air pressure occurring shortly before or simultaneously with the sea level oscillations. The occurrence of meteotsunamis is strongly connected with lightning over the region: the number of cloud-to-ground flashes over the Gulf of Finland were on 10 average over ten times higher during the days when a meteotsunami was recorded compared to days with no meteotsunamis in May–October.
    [Show full text]
  • Numerical Modeling of Meteotsunami–Tide Interaction in the Eastern Yellow Sea
    atmosphere Article Numerical Modeling of Meteotsunami–Tide Interaction in the Eastern Yellow Sea Ki-Young Heo 1, Jae-Seon Yoon 2, Jae-Seok Bae 3 and Taemin Ha 4,* 1 Marine Disaster Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Korea 2 Rural Research Institute, Korea Rural Community Corporation, Ansan 15634, Korea 3 Emergency Management Office, Korea Hydro & Nuclear Power Co., Ltd., Gyeongju 38120, Korea 4 Department of Civil Engineering, Kangwon National University, Samcheok 25913, Korea * Correspondence: [email protected]; Tel.: +82-033-570-6514 Received: 24 May 2019; Accepted: 1 July 2019; Published: 2 July 2019 Abstract: Meteotsunamis originating from atmospheric pressure disturbances have frequently occurred in oceans worldwide and their destructive long waves have recently threatened local coastal communities. In particular, meteotsunamis occurring in the Yellow Sea caused unexpected casualties and property damage to local communities on the western coast of the Korean Peninsula in 2007 and 2008. These events attracted the attention of many engineers and scientists because abrupt extreme waves have struck several coasts and ports even under fine weather conditions. Furthermore, the Yellow Sea has the highest tide and most powerful tidal currents in the world, and consequently, meteotsunami events there could be more destructive and harmful to local coastal communities when such events occur during high tide or a critical phase with strong tidal currents. In this study, numerical experiments were conducted to identify the qualitative effect of the interaction between a meteotsunami and the tide on the generation and amplification mechanisms of meteotsunamis occurring in the Yellow Sea. In general, small-scale meteotsunamis, such as those that occur in the Yellow Sea, should be analyzed using a high-resolution modeling system because water motions can be affected by local terrain.
    [Show full text]
  • HEC-25 3Rd Ed
    Publication No. FHWA-HIF-19-059 January 2020 Hydraulic Engineering Circular No. 25 Highways in the Coastal Environment Third Edition Page Intentionally Left Blank Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA HIF-19-059 4. Title and Subtitle 5. Report Date HIGHWAYS IN THE COASTAL ENVIRONMENT January 2020 Hydraulic Engineering Circular Number 25 6. Performing Organization Code Third Edition 7. Author(s) 8. Performing Organization Report No. Scott L. Douglass and Bret M. Webb 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) South Coast Engineers PO Box 72 Fairhope, AL 36533 11. Contract or Grant No. DTFH61-16-D-00033 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Office of Bridges and Structures Technical Report Federal Highway Administration November 2017-December 2019 1200 New Jersey Avenue, S.E. 14. Sponsoring Agency Code Washington, D.C. 20590 15. Supplementary Notes Project Manager: Brian Beucler, FHWA Office of Bridges and Structures Technical Reviewers: Joe Krolak, Tina Hodges, Rob Kafalenos, Kornel Kerenyi, Rob Hyman, Paul Sharp, Eric Brown, Jia-Dzan (Jerry) Shen, Stephanie Smallegan, Thomas (Beau) Buhring Technical Editor: Valarie Arms 16. Abstract This manual presents tools for the planning, design, and operation of highways in the coastal environment. It focuses on roads near the coast that are influenced by coastal tides and waves constantly, or occasionally during storms. FHWA estimates that there are more than 60,000 miles of these “coastal highways” in the US. A primary goal is the integration of coastal engineering principles and practices in the planning and design of these roads and bridges to make them more resilient.
    [Show full text]
  • Meteorological Tsunami of 19 March 2017 in the Persian Gulf: Observations and Analyses
    Pure Appl. Geophys. Ó 2019 The Author(s) https://doi.org/10.1007/s00024-019-02263-8 Pure and Applied Geophysics Meteorological Tsunami of 19 March 2017 in the Persian Gulf: Observations and Analyses 1 2 3,4 5 MOHAMMAD HEIDARZADEH, JADRANKA Sˇ EPIC´ , ALEXANDER RABINOVICH, MOHAMMADREZA ALLAHYAR, 6 7 ALI SOLTANPOUR, and FAROKH TAVAKOLI Abstract—On 19 March 2017, destructive tsunami-like waves is highly vulnerable to extreme, weather-induced tsunami-like impacted the northeast shore of the Persian Gulf (PG). The maxi- waves. mum surveyed runup of about 3 m was observed at Dayyer in southern Iran, where damaging waves inundated the land for a Key words: Persian Gulf, meteotsunami, extreme waves, at- distance of * 1 km and resulted in the deaths of five people. mospheric waves, tide gauge data, wavelet analysis, remote Because the PG has always been considered safe from extreme sensing. oceanic waves, the event was totally unexpected. In this study, we examined sea level data from 12 stations across the PG and a variety of meteorological information, including satellite imagery, high-altitude isohypse maps and high-resolution air pressure records from 47 instruments along the PG. Our results show that 1. Introduction the event was very local, with recorded maximum trough-to-crest wave heights of 197 cm at Dayyer and 234 cm at Asaluyeh, near- field cities in Iran located * 80 km apart. The dominant wave The Persian Gulf (PG) is an extensive inland sea, periods were in the range of 15–20 min. At all distant tide gauges, located between the Arabian Peninsula and Iran, that the observed wave heights were \ 35 cm.
    [Show full text]
  • Downloaded 09/30/21 03:53 AM UTC 1146
    APRIL 2021 W I L L I A M S E T A L . 1145 An 8-yr Meteotsunami Climatology across Northwest Europe: 2010–17 a b c a,c DAVID A. WILLIAMS, DAVID M. SCHULTZ, KEVIN J. HORSBURGH, AND CHRIS W. HUGHES a Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom b Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom c National Oceanography Centre, Liverpool, United Kingdom (Manuscript received 1 August 2020, in final form 29 November 2020) ABSTRACT: Meteotsunamis are shallow-water waves that, despite often being small (;0.3 m), can cause damage, in- 2 juries, and fatalities due to relatively strong currents (.1ms 1). Previous case studies, modeling, and localized climatol- ogies have indicated that dangerous meteotsunamis can occur across northwest Europe. Using 71 tide gauges across northwest Europe between 2010 and 2017, a regional climatology was made to understand the typical sizes, times, and atmospheric systems that generate meteotsunamis. A total of 349 meteotsunamis (54.0 meteotsunamis per year) were identified with 0.27–0.40-m median wave heights. The largest waves (;1 m high) were measured in France and the Republic of Ireland. Most meteotsunamis were identified in winter (43%–59%), and the fewest identified meteotsunamis occurred in either spring or summer (0%–15%). There was a weak diurnal signal, with most meteotsunami identifications between 1200 and 1859 UTC (30%) and the fewest between 0000 and 0659 UTC (23%). Radar-derived precipitation was used to identify and classify the morphologies of mesoscale precipitating weather systems occurring within 6 h of each meteotsunami.
    [Show full text]
  • Download File
    The First World Conference on Meteotsunamis Split, Croatia, 8-11 May 2019 Hotel Park, http://www.hotelpark-split.hr Programme Wednesday, 8 May 2019 08:15-09:00 Registration 09:00-09:20 Opening Overview presentations Chair: Chin Wu 09:20-09:50 Alexander B. Rabinovich (solicited): Meteorological tsunamis in the World Ocean: Overview 09:50-10:10 Ivica Vilibić, Jadranka Šepić, Sebastian Monserrat, Alexander B. Rabinovich: Meteorological tsunamis in the Mediterranean region: 40 years of studies 10:10-10:30 Agusti Jansa, Climent Ramis: Pioneering research on Balearic Islands „rissagues” 10.30-11:00 Mirko Orlić (solicited): The great Adriatic flood of 21 June 1978: a continual source of scientific inspiration 11:00-11:30 Coffee break Session 1: Meteotsunami observations Chairs: Alexander B. Rabinovich and Eric J. Anderson 11:30-11:50 Begoña Pérez-Gómez, Javier García-Valdecasas, Rafael Molina, Alberto Rodríguez, David Rodríguez, Álvaro Campos, Pablo Rodríguez Rubio, José María Terrés Nicoli, Enrique Álvarez-Fanjul: Operational tool for characterization of high frequency sea level oscillations at Spanish harbors 11:50-12:10 Jadranka Šepić, Hrvoje Mihanović: Preliminary analysis of 1.5 years of sea level and air pressure measurements at the Adriatic meteotsunami hot spots: Stari Grad (Hvar Island) and Vela Luka (Korčula Island) 12:10-12:30 Havu Pellikka, Hanna Boman, Kimmo K. Kahma, Anu Karjalainen, Terhi Laurila, Ilari Lehtonen, Jenni Rauhala, Jadranka Šepić, Ivica Vilibić: Recent studies on Baltic meteotsunamis 12:30-12:50 Charitha Pattiaratchi, Sarath Wijeratne: Observations of meteotsunamis in Australia 12:50-14:00 Lunch break 14:00-14:20 Emile Okal, Coenaard de Beer, Amir Salaree, Johan Visser, Reza Mansouri: Dwarskersbos, South Africa, and Bandar Dayyer, Iran: Surveys and simulations of two tsunamis of meteorological origin 14:20-14:40 Mohammad Heidarzadeh, Jadranka Šepić, Alexander B.
    [Show full text]
  • Reconstruction of a Meteotsunami in Lake Erie on 27 May 2012
    PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE 10.1002/2015JC010883 Reconstruction of a meteotsunami in Lake Erie on 27 May 2012: Roles of atmospheric conditions on hydrodynamic Key Points: Radar-based velocity allows for response in enclosed basins detection of meteotsunami-inducing front Eric J. Anderson1, Adam J. Bechle2, Chin H. Wu2, David J. Schwab3, Greg E. Mann4, and Wave reflection, focusing, and edge Kirk A. Lombardy5 waves led to meteotsunami conditions 1Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric Administration, Ann Arbor, Enclosed basins can induce temporal 2 lags between storm front and wave Michigan, USA, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, 3 4 response Wisconsin, USA, Water Center, University of Michigan, Ann Arbor, Michigan, USA, National Weather Service, Weather Forecast Office, National Oceanic and Atmospheric Administration, White Lake, Michigan, USA, 5National Weather Service, Supporting Information: Weather Forecast Office, National Oceanic and Atmospheric Administration, Cleveland, Ohio, USA Supporting Information S1 Movie S1 Movie S2 Abstract On 27 May 2012, atmospheric conditions gave rise to two convective systems that generated a Movie S3 series of waves in the meteotsunami band on Lake Erie. The resulting waves swept three swimmers a 0.5 mi offshore, inundated a marina, and may have led to a capsized boat along the southern shoreline. Analysis of Correspondence to: radial velocities from a nearby radar tower in combination with coastal meteorological observation indicates E. J. Anderson, [email protected] that the convective systems produced a series of outflow bands that were the likely atmospheric cause of the meteotsunami.
    [Show full text]