Molecular Insights Into PCARE-Associated Retinal Disease Julio César Corral Serrano 2018-13
Total Page:16
File Type:pdf, Size:1020Kb
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/197551 Please be advised that this information was generated on 2021-09-28 and may be subject to change. Molecular insights into Molecular insights into PCARE PCARE- associated -associated retinal disease retinal disease Julio César Corral Serrano 2018-13 RIMLS Julio César Corral Serrano Molecular insights into PCARE-associated retinal disease Julio César Corral Serrano This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 317472 (EyeTN). The work presented in this thesis was carried out within the Radboud Institute for Molecular Life Sciences (RIMLS). The publication of this thesis was financially supported by the Radboud University Nijmegen, the Stichting Blindenhulp, the Landelijke Stichting voor Blinden en Slechtzienden, the Stichting Ooglijders and the Rotterdamse Stichting Blindenbelangen. ISBN: 978-94-6380-031-0 Cover and chapter covers designed by M. Eugenia Castejón Lorite Print and cover adaptation by Proefschrift Maken, proefschriftmaken.nl © Julio César Corral Serrano, 2018 No part of this book may be reproduced or transmitted, in any form or by any means, without written permission of the author or the publisher holding the copyright of the published articles. Molecular insights into PCARE-associated retinal disease Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, volgens besluit van het college van decanen in het openbaar te verdedigen op maandag 3 december 2018 om 12.30 uur precies door Julio César Corral Serrano geboren op 17 oktober 1989 te Madrid, Spanje Promotoren Dr. Rob W.J. Collin Prof. dr. ir. Ronald Roepman Copromotor Dr. Alejandro Garanto Manuscriptcommissie Prof. dr. Anneke I. den Hollander Prof. dr. Colin A. Johnson (University of Leeds, Verenigd Koninkrijk) Prof. dr. Nine V.A.M. Knoers (Rijksuniversiteit Groningen) Paranimfen Daniel Lôpo Polla Laura Lorés de Motta Marc Pauper Molecular insights into PCARE-associated retinal disease Doctoral Thesis to obtain the degree of doctor from Radboud University Nijmegen on the authority of the Rector Magnificus prof. dr. J.H.J.M. van Krieken, according to the decision of the Council of Deans to be defended in public on Monday, December 3, 2018 at 12:30 hours by Julio César Corral Serrano Born on October 17, 1989 in Madrid, Spain Supervisors Dr. Rob W.J. Collin Prof. dr. ir. Ronald Roepman Co-supervisor Dr. Alejandro Garanto Doctoral thesis committee Prof. dr. Anneke I. den Hollander Prof. dr. Colin A. Johnson (University of Leeds, UK) Prof. dr. Nine V.A.M. Knoers (University of Groningen) Paranymphs Daniel Lôpo Polla Laura Lorés de Motta Marc Pauper a Popó Table of contents List of abbreviations .................................................................................................................... 11 Chapter 1 General introduction ........................................................................................... 17 Chapter 2 The photoreceptor-specific protein PCARE interacts with WASF3 to deploy a ciliary actin dynamics module ................................................................ 59 Chapter 3 Clinical and genetic overview of PCARE-associated retinal disease ..................... 101 Chapter 4 C2orf71a/pcare1 is important for photoreceptor outer segment morphogenesis and visual function in zebrafish ................................................. 119 Chapter 5 Generation and transcriptome analysis of PCARE-deficient iPSC-derived photoreceptor-like cells ................................................................. 143 Chapter 6 Generation and characterization of an adeno-associated virus (AAV) vector containing full-length PCARE cDNA ....................................... 171 Chapter 7 General discussion ............................................................................................. 191 Summary .................................................................................................................................. 213 Samenvatting ............................................................................................................................ 216 Resumen ................................................................................................................................... 220 Data management ..................................................................................................................... 225 Acknowledgements ................................................................................................................... 227 List of publications .................................................................................................................... 231 Curriculum vitae ........................................................................................................................ 233 RIMLS Portfolio ......................................................................................................................... 235 List of abbreviations * Stop codon 3D Three-dimensional aa Amino acid AAV Adeno-associated virus ABCA4 ATP binding cassette subfamily A member 4 ACTN1 α-actinin ad Autosomal dominant ar Autosomal recessive AON Antisense oligonucleotide Arp2/3 Actin-related protein 2/actin-related protein 3 Ax Axoneme BB Basal body BBS Bardet-Biedl syndrome bGHpA Bovine growth hormone polyadenylation signal BODIPY Boron-dipyrromethene C2ORF71 Chromosome 2 open reading frame 71 CaP Calyceal processes Cap Capsid gene CC Connecting cilium CCT Chaperonin containing TCP-1 CD Cone dystrophy CEN3 Centrin-3 CEP250 Centrosomal protein 250 kDa CEP290 Centrosomal protein 290 kDa cDNA Complementary deoxyribonucleic acid cGMP Cyclic guanosine monophosphate CHM Choroideremia CJ Connecting junctions CR Ciliary rootlet CRD Cone-rod dystrophy CRISPR Clustered regularly interspaced short palindromic repeat CRX Cone-rod homeobox CP Ciliary pocket 11 DA Distal appendages dC Daughter centriole DCTN2 Dynactin subunit 2 DNA Deoxyribonucleic acid dpf Days post fertilization dup Duplication ENA/VASP Enabled/vasodilator-stimulated phosphoprotein ER Endoplasmic reticulum ESC Embryonic stem cell FBS Fetal bovine serum FDA US Food and drug administration FL Fiber links Gli Glioma-associated oncogene GMP Guanosine monophosphate GT335 Polyglutamylated tubulin HDR Homology-directed repair HEK293T Human embryonic kidney 293T hpf Hours post fertilization hTERT RPE-1 Human telomerase-immortalized retinal pigmented epithelial-1 IFT Intraflagellar transport IFT57 Intraflagellar transport 57 kDa ins Insertion iPSC Induced pluripotent stem cell IRD Inherited retinal disease IS Inner segment ITR Inverted terminal repeat JBS Joubert syndrome kb Kilobase kDa Kilodalton KIF17 Kinesin family member 17 LCA Leber congenital amaurosis LCA5 Leber congenital amaurosis 5 LIMA1 LIM domain and actin binding 1 MI Mitochondria 12 mIMCD-3 Mouse inner medullary collecting duct-3 MKS Meckel-Gruber syndrome mpf Months post fertilization mRNA Messenger ribonucleic acid MT Microtubules NHEJ Non-homologous end joining NR Neural retina OFD1 Oral-facial-digital syndrome 1 OS Outer segment PCARE Photoreceptor cilium actin regulator PCM1 Pericentriolar material 1 PDE Phosphodiesterase PolyA Polyadenylation signal PRA Progressive retinal atrophy PRPH2 Peripherin 2 rd Retinal degeneration Rep Replication gene RHO Rhodopsin RK Rhodopsin kinase RNA Ribonucleic acid RNA-Seq RNA sequencing ROM1 Retinal outer segment membrane protein 1 RP Retinitis Pigmentosa RP1 Retinitis Pigmentosa 1 RP1L1 Retinitis Pigmentosa 1-Like 1 RP2 Retinitis Pigmentosa 2 RP54 Retinitis pigmentosa type 54 RPE Retinal pigment epithelium RPGR Retinitis Pigmentosa GTPase Regulator RPGRIP1L RPGR-interacting protein 1-like protein SA Sub-distal appendages Shh Sonic hedgehog SPATA7 Spermatogenesis associated 7 ST Synaptic terminal 13 SV40 Simian vacuolating virus 40 intron TAP Tandem affinity purification TZ Transition zone USH2A Usher syndrome type IIa WASF3 Wiskott-Aldrich syndrome protein family member 3 WAVE WASP-family verprolin-homologous protein family WPRE Woodchuck hepatitis virus (WHP) post-transcriptional regulatory element WRC WAVE regulatory complex Y2H Yeast two-hybrid YL Y-linkers 14 15 Chapter 1 General introduction CHAPTER 1 “We were born into a mystery, one that has haunted us since at least as long as we've been human.” (Quote from Cosmos: A Spacetime Odyssey, 2014, s01e03). Our world is filled with an infinite amount of colors and shapes. Sight enables us to perceive actions, while vision allows us to make assessments about those actions. Animals have been sensing brightness for a very long time. ‘’The ‘race’ between predator and prey and the need ‘to see’ and ‘to be seen’ or ‘not to be seen’ were drivers for the origin and subsequent evolution of efficient visual systems’’ (quote from Schoenemann et al., 2017).1 The oldest eye recorded dates from the Cambrian period, about 530 million years ago, and belongs to a hard-shelled species, the trilobite.1 The first light-sensing cell would have evolved much earlier, and since then, evolution of light-sensing organs has come a long way. In this introductory chapter, we will give a general overview of the process of human vision and