1

TheKsbandTullyFisherRelationADeterminationoftheHubble Parameterfrom218ScIand16Clusters DavidG.Russell OwegoFreeAcademy,Owego,NY13827USA [email protected] Abstract

The value of the Hubble Parameter (H 0)isdeterminedusingthemorphologicallytype dependent Ksband TullyFisher Relation (KTFR). The slope and zero point are determinedusing36calibratorgalaxieswithScImorphology.Calibrationdistancesare adoptedfromdirectCepheiddistances,andgrouporcompaniondistancesderivedwith theSurfaceBrightnessFluctuationMethodorTypeIaSupernova.Itisfoundthatasmall morphological type effect is present in the KTFR such that ScI galaxies are more luminousatagivenrotationalvelocitythanSa/SbgalaxiesandSbc/Scgalaxiesoflater classes.Distancesaredeterminedto16galaxyclustersand218ScIgalaxies withminimumdistancesof40.0Mpc.Fromthe16galaxy clusters aweightedmean 1 1 HubbleParameterofH 0=84.2+/6kms Mpc isfound.Fromthe218ScIgalaxiesa 1 1 HubbleParameterofH 0=83.4+/8kms Mpc isfound.WhenthezeropointoftheK TFRiscorrectedtoaccountforrecentresultsthatfindaLargeMagellanicClouddistance modulus of 18.39 +/ 0.05 a Hubble Parameter of 88.0 +/ 6 km s 1 Mpc 1 is found. EffectsfromMalmquistbiasareshowntobenegligibleinthissampleasgalaxiesare restricted to a minimum rotational velocity of 150 km s 1.Itisalsoshownthatthe results of this study are negligibly affected by the adopted slope for the KTFR, inclinationbinning,anddistancebinning.AcomparisonwiththeresultsoftheHubble KeyProject(Freedmanetal2001)ismade.DiscrepanciesbetweentheKTFRdistances andtheHKPITFRdistancesarediscussed.ImplicationsforΛCDMcosmologyare 1 1 consideredwithH 0=84kms Mpc .Itisconcludedthatitisverydifficulttoreconcile thevalueofH 0foundinthisstudywithagesoftheoldestglobularclustersandmatter densityofthederivedfromgalaxyclustersinthecontextofΛCDMcosmology. Keywords:distancescale–galaxies:distancesand 2

Introduction Hubble (1929) discovered the existence of a linear relationship between the radial velocity (cz) of a galaxy and the distance to the galaxy estimated from absolute magnitudecriteria.TheHubbleLawisakeycomponentofcosmologicaltheoryandthe current value of the Hubble Parameter (H 0) provides an important constraint on cosmologicalmodels(eg.Spergeletal2003,2006;Hinshawetal2009,Dunkleyetal 2009;Komatsuetal2009). Determination of the Hubble Parameter requires accurate independent distancestoalargenumberofgalaxiesorclustersofgalaxies.TheHubbleKeyProject (Freedman et al 2001 and references therein – hereafter HKP) utilized several dozen galaxieswithCepheiddistancestocalibratefivesecondarydistanceindicators–TypeIa SN,TypeIISN,theFundamentalPlane(FP),theSurfaceBrightnessFluctuationMethod (SBF),andtheTullyFisherRelation(TFR).FromthesefivemethodstheHKPfound 1 1 H0=72kms Mpc .ThisvalueissupportedbytherecentWMAPresults(Spergeletal 2003,2006;Hinshawetal2009;Dunkleyetal2009;Komatsuetal2009). 1 1 WhilethereisgeneralagreementthatH 0=~70to74+/8kms Mpc ,therehavebeen recent large studies that suggest higher or lower values for the Hubble Parameter. 1 1 Sandageetal(2006)findH 0=62+/5kms Mpc .Tully&Pierce(2000)foundH 0=77 +/8 km s 1 Mpc 1 from 12 galaxy clusters with the Iband TFR. The Tully&Pierce (TP00)studypredatesthefinalHKPCepheiddistances(Freedmanetal2001).Utilizing theHKPCepheiddistanceswiththe24zeropointcalibratorsintheTP00studyresultsin a downward revision of their Iband zero point from 21.56 to 21.50 with a resulting 1 1 increaseinH 0to79kms Mpc .ThisvalueisclosertothevaluetheHKPfoundwith 1 1 1 1 theFP(H 0=82+/9kms Mpc )thanthefinaladoptedvalueofH 0=72kms Mpc . RecentworkalsoarguesforashorterdistancetotheLargeMagellanicCloud(LMC) thanthevalueadoptedbytheHKP(Macrietal2006;vanLeeuwenetal2007;Benedict etal2007;Anetal2007;Grocholskietal2007;Catelan&Cortes2008;Feastetal2008). These studies suggest a LMC distance modulus of 18.39+/ 0.05 whereas the HKP adoptedaLMCdistancemodulusof18.50+/0.10.ThenewerLMCdistancemodulus resultsinanincreaseofH 0of~5%. 3

In this work, the value of H 0 is reevaluated using the Ksband TFR and taking advantageofrecentimprovementsindataavailableforTullyFisherstudies.TheTwo MicronAllSkySurvey(2MASS–Strutskieetal2006)hasprovidednearinfraredKs bandphotometryforamuchlargersampleofgalaxiesthanwasavailableforthestudyof TP00.TheuseoftheKbandTFRisadvantageousbecauseextinctioncorrectionsare significantlysmallerintheKbandthanintheBbandorIband.Recently,Springobet al(2007)hascorrectedforsystematicdifferencesbetweenrotationalvelocitiesmeasured from 21cm emission and rotational velocities measured from optical rotation curves (Mathewson&Ford 1996) and provided a large database of uniformly corrected spiral galaxyrotationalvelocitiesforTullyFisherstudies. UtilizingthesedatasourcesandthemorphologicallytypedependentTFR(Russell 2004)strictselectioncriteriaareappliedtoprovideahighlyaccuratesetofdistancesto 16galaxyclustersandover200ScIgalaxieswithdistancesgreaterthan40Mpc.From 1 1 thegalaxyclusterstheHubbleparameterisfoundtobeH 0=84.2+/6kms Mpc .The 1 1 ScIgalaxysamplegivesH 0=83.4+/8kms Mpc . This paper is organized as follows: Section 2 describes the calibration of the morphologicallytypedependentKbandTFR.Section3describesthesampleselection fordeterminationoftheHubbleParameter.Section4discussesthevalueoftheHubble

Parameter found in this study and considers possible influences on the value of H 0. Section 5 compares the results of this study with those of the HKP. Section 6 is a 1 1 discussionofimplicationsforcosmologyifH 0=84kms Mpc andabriefconclusionis providedinsection7. 2. Calibration, sample selection, and scatter of the K-band TFR for ScI galaxies

2.1 Calibration of K s-Band TFR TheaccuracyofresultsderivedfromTFRdistanceestimatesdependscriticallyupona largecalibrationsamplefordeterminationoftheslopeandzeropointandstrictselection criteriathateliminategalaxiesfromthesamplewhicharemostlikelytohavelargeTFR errors.Thefollowingsectionsdescribetheselectioncriteriautilizedinthecalibration

oftheK sTFRforthisanalysis. 4

2.1.1 Morphological Type effect in the TFR Russell (2004, 2005a) found evidence that the Bband TFR may be split into two morphologicalgroupswithidenticalslopebutazeropointoffsetof0.57mag.Thefirst morphological group (ScI group)includes galaxiesclassifiedasScI,ScIII,ScII,SbcI, SbcIII,SbcIIandSeyfertgalaxieswithspiralmorphology.Thesecondmorphological group (Sb/ScIII group) includes Sab/Sb/Sbc/Sc galaxies that do not have ScI group morphology.ScIgroupgalaxiesaremoreluminousatagivenrotationalvelocitythan Sb/ScIIIgroupgalaxies(Russell2004).Failuretoaccountforthistypeeffectresultsin overestimatedBbandTFRdistancesforSb/ScIIIgroupgalaxies,underestimatedBband TFRdistancesforScI groupgalaxies,andaTFRslopethatistoosteep.Whilethe morphologicaltypeeffectislargestintheBband,itpersistsintheIbandandKsband (Giovanellietal1997b;Mastersetal2008)

ForcalibrationoftheK sbandTFR(hereafterKTFR)inthisanalysistheScIgroup calibratorswererestrictedtogalaxieswithHubbleTtypesrangingfrom3.1to6.0and withluminosityclassesrangingfrom1.0to3.9asclassifiedinHyperLeda(Patureletal 2003).TheScIgroupwascalibrated,andthenclustersampleswereusedtodetermine thezeropointoffsetfortheSb/ScIIIgroupasdiscussedinsection2.2.TheScIgroup calibratorsampleincludes10galaxieswithdirectdistancedeterminationsfromCepheid variables(Freedmanetal2001);1galaxy(NGC2903)withadirectdistancedetermined fromphotometryofbright(Drozdovsky&Karachentsev2000);18galaxiesthatare members of groups or companions of galaxies from the SBF survey of Tonry et al (2001);and7galaxiesthatarecompanionsofgalaxieswithTypeIaSNdistancesfrom Freedmanetal2001.AsfoundbyAjharetal(2001),theSBFdistancemodulifrom Tonryetal(2001)arereducedby0.06maginordertoalignthemwiththefinalHKP Cepheiddistancescale.ThecalibratorsampleislistedinTables1and2. 2.1.2 Rotational velocities ThegreatestsourceofuncertaintyinTFRdistancesisfoundinthemeasurementand correctionofrotationalvelocitiesderivedfromHIlinewidthsandopticalrotationcurves (Haynesetal1999).Inadditiontouncertaintyinraw21cmlinewidths,correctionsmust 5 bemadeforinclinationandturbulence.Inclinationcorrectionsarelargerandsubjectto greateruncertaintyasgalaxiesapproachfaceonorientation.Forthisreason,calibrator galaxies selected for this analysis were restrictedtoinclinations>30°and≤80°.An inclinationlimitof80°waschosenbecauseluminosityclasscannotbeassignedforedge on galaxies and therefore edge on galaxies cannot be accurately classified as ScI or Sb/ScIIIgroup. Theinfluenceofturbulencecorrectionsisgreateratsmallerlinewidths(Giovanlliet al1997b).ItisalsonowwellestablishedthatslowerrotatinggalaxieshavelargerTFR scatter than faster rotators (Federspiel et al 1994; Giovanelli 1996; Giovanelli et al 1997b;Mastersetal2006,2008).ForexampleFederspieletalfoundthatTFRscatter decreasesfrom+/0.90magfortheslowestrotatorstoonly+/0.43magforthefastest rotators.Giovanelli(1996)alsofoundthatthefastestrotatorshadascatteraboutafactor of2smallerthantheslowestrotators. InordertoavoidtheproblemsassociatedwiththelargeTFRscatteroftheslowest rotators,calibratorswerealsorestrictedtogalaxieswithrotationalvelocities≥150km s1intheSpringobetal(2007)rotationalvelocitydatabase. 2.1.3 Ks-band magnitudes and corrections

2MASStotalK sbandmagnitudes(Strutskieetal2006)wereextractedfromNEDand corrected for galactic and internal extinction followingTullyetal(1998)andasmall cosmological kcorrection was added following Poggianti (1997). The galactic and internal extinction corrections were made for each galaxy using the Bband extinction correctionsprovidedinHyperleda(Patureletal2003).Thecorrectionsareasfollows: thegalacticBbandextinction(aginHyperLeda)wasmultipliedby0.086toderivethe

extinctionin the K sbandandtheinternalabsorptioncorrection(aiin HyperLeda) was multipliedby0.15toderivetheextinctionintheK sband.Finallythekcorrectionwas approximated as 1.52z as per Poggianti (1997). Thus the total corrected K sband

magnitudes (Ktc) in this study were derived from uncorrected 2MASS total K sband magnitudesaccordingtothefollowing: Ktc=Ktot–0.086ag–0.15ai–1.52z(1) 6

2.1.4 Slope and zero point of the ScI group K s-band TFR

Figure1isaplotoftheabsoluteK sbandmagnitude(M K)versusthelogarithmofthe rotationalvelocityforthe36ScIgroupcalibratorslistedinTables1and2.Allrotational velocitiesusedinthisstudyaredrawnfromthesampleofSpringobetal(2007).The solidlineinFigure1isaleastsquaresfitandhasaslopeof8.22+/0.37.Thevalueof theslopedoesnotsignificantlychangewhendeterminedindependentlyforthevarious subsamplesfromwhichthecalibrationdistancesweredrawn.The11Table1calibrators withdirectdistanceestimates,18Table2calibratorswithSBFdistanceestimates,and7 Table2calibratorswithTypeIaSNdistanceestimatesgiveslopesof7.78,8.51,and 8.16respectively.

26

25.5

25

24.5

MK 24

23.5

23

22.5

22 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 log Vrot Figure 1 – Calibration of the K-TFR with 36 calibrators from Tables 1 and 2. Solid line is a slope of -8.22 and error bars represent typical uncertainty in log Vrot and M K.

7

Table1:Calibratorswithdirectdistancemeasurements Galaxy logVrot +/ incl º Ktc mM zpK s N1365 2.459 .088 39 6.33 31.27 22.81 N1425 2.254 .021 62 8.24 31.70 23.02 N2903 2.319 .012 60 5.96 29.75 22.81 N3198 2.190 .009 71 7.64 30.70 23.14 N3351 2.267 .036 44 6.61 30.01 22.85 N4321 2.357 .079 32 6.56 30.91 23.06 N4414 2.340 .038 51 6.88 31.24 23.21 N4535 2.285 .037 45 7.36 30.99 22.93 N4548 2.333 .040 35 7.08 31.05 22.87 N4725 2.324 .030 63 6.11 30.46 23.33 N7331 2.431 .006 65 5.91 30.84 23.03 Usingtheslopeof8.22derivedfromthefullsampleofcalibrators,ameanzeropoint of23.01+/0.14isfoundforthe36calibratorgalaxies.Withtheslopeof8.22,thevalue ofthezeropointisnotaffectedbythemethodfromwhichthecalibrationdistancewas determined.The11galaxieswithdirectdistancedeterminationsinTable1,18galaxies withSBFdistancedeterminationsinTable2,and7galaxieswithTypeIaSNdistance determinations in Table 2 give mean zero points of 23.01 +/0.17, 23.01+/0.14, and 23.02+/0.06respectively. KTFRdistancemoduliforScIgroupgalaxiesinthisanalysisarecalculatedusingthe followingequation: mMK=Ktc+8.22(logVrot2.2)+23.01(2) Itisimportanttonotethatequation2shouldnotbeviewedastheglobalKbandTFR. Thesamplehasalowerrotationalvelocitylimitof150kms 1,morphologicalrestriction toHubbleTtypes3.1to6.0,andluminosityclassrestrictiontoluminosityclassesI,III, II, and IIIII. Caution should be used in applying the calibration developed here to galaxiesthatfalloutsidetheseranges. 8

Table2:CalibratorswithcompanionSBForSNIadistancemeasurements Galaxy logVrot +/ incl º Ktc mM zpK s Companion N3089 2.246 0.019 52 9.24 32.60 22.98 N3095 2.313 0.043 55 8.58 32.60 23.09 Antlia N3223 2.438 0.021 47 7.49 32.60 23.15 Antlia N3318 2.310 0.034 58 8.86 32.60 22.84 Antlia N3347 2.338 0.048 69 8.34 32.60 23.13 Antlia I2560 2.311 0.016 64 8.57 32.60 23.12 Antlia I2522 2.276 0.043 48 9.22 32.60 22.76 Antlia N4575 2.224 0.027 51 9.24 32.58 23.14 Cen30 N4603 2.345 0.007 51 8.25 32.58 23.14 Cen30 N1255 2.204 0.038 45 8.33 31.47 23.11 N1201 N3054 2.366 0.017 54 8.25 32.67 23.06 N3078 N5011a 2.192 0.037 57 10.02 33.05 23.10 N5011 N5033 2.365 0.019 63 6.87 31.03 22.80 N5273 N7610 2.176 0.039 52 10.94 33.56 22.82 N7619 I4538 2.208 0.016 39 9.41 32.59 23.11 N5903 E58212 2.211 0.020 56 9.10 32.26 23.07 N5898 E37731 2.230 0.015 60 10.17 33.24 22.82 N3557 E28713 2.249 0.017 78 9.17 32.49 22.92 N7097 E47149 2.521 0.013 60 9.80 35.39 22.95 E47127 E47151 2.322 0.036 53 11.40 35.39 22.99 E47127 E4712 2.355 0.012 71 11.13 35.39 22.99 E47127 E5771 2.294 0.024 71 11.28 35.05 23.00 E50867 N4541 2.421 0.019 64 10.01 34.93 23.10 N4493 E44431 2.338 0.020 50 11.11 35.34 23.10 I4232 A530465 2.207 0.021 67 12.27 35.34 23.01 I4232 2.2 Morphological Type dependence in the K-band TFR Russell(2004)foundthatScIgroupgalaxieshaveazeropoint0.57maglargerthan Sb/ScIIIgalaxies.Theeffectofmorphologicaltypedependenceisknowntobesmaller inthe Ibandwhere Giovanellietal (1997a)found a0.32magsmaller zeropointfor Sa/Sabgalaxiesand0.10magsmallerzeropointforSbgalaxiesrelativetoSbcandlater typespirals.Ithasgenerallybeenthoughtthatanytypeeffectsshoulddisappearinthe nearinfraredbands.However,Mastersetal(2008)recentlyfoundevidencethatthereis asmalltypeeffectintheJ,H,andKbandTullyFisherrelations. 9

TheMastersetal(2008)sampleincludesamuch broader range of morphological types (eg. extreme late type and early type spirals) and slower rotators that have been excludedfromthisstudy.InordertotestforamorphologicaltypeeffectintheKband wedefinetheSbgroupgalaxiesasallnonSeyfertgalaxiesofmorphologicalTtypes1.0 to3.0andasfoundbyRussell(2004)includeintheSbgrouplatertypespiralsofHubble Ttypes3.16.0andluminosityclasses≥4.0asclassifiedinHyperLeda. IfatypeeffectsimilartothatfoundintheBbandTFR(Russell2004)existsinthe KTFR, then Sb galaxies within clusters should have larger mean distances than ScI groupgalaxieswhenSbgroupdistancesarecalculatedusingtheScIgroupzeropoint.To test for this effect, clusters were selected from the template sample of Springob et al (2007).Theselectioncriteriaadoptedforthegalaxieswithintheclusterswasconsistent with that utilized for the ScI group calibrator sample. Specifically, galaxies were requiredtohaveinclinationsbetween35°and80°,rotationalvelocities≥150kms 1,and HubbleTtypesfrom1.0to6.0.Clustersusedforestimatingthesizeofthetypeeffect intheKbandallhadatleast12membergalaxiesfromtheSpringobetalsamplemeeting theabovecriteriaandaminimumof4galaxiesinboththeScIandtheSbmorphological groups. For the Abell 400 cluster the sample was also restricted to galaxies with redshiftsrangingfrom6500kms 1to8000kms 1. At larger distances, fewer galaxies in the HyperLeda database are assigned luminosityclasses.Forthisreason,beforecalculatingdistancestheHyperLedaimageof each candidate galaxy meeting all other criteria was visually inspected in order to determine if the morphology of the galaxy is ScI group morphology or Sb group morphology.ForexampleNGC551(Figure2a)inthePiscessuperclusterisclassifiedas SBbcinHyperLeda,butnoluminosityclassisprovided.VisualinspectionoftheDSS imageinHyperLedaconfirmsNGC551hasarmstructureofScIgroupmorphologyand thusisincludedintheScIgroupsample. Visualinspectionalsoservesasanindependentcheckontheinclinationestimates providedbySpringobetal(2007).Forexample,Springobetalreportaninclinationof 51°forNGC2582intheCancercluster.However,visualinspectionoftheNGC2582 image(Figure2b)clearlyindicatesaninclinationmuchclosertofaceonorientationthan 51°.UGC1695inthePiscessuperclusterhasaninclinationof76°intheSpringobetal 10

Figure 2a Figure 2b Figure 2c database and thus would meet the selection criteria of this study. However, visual inspectionoftheUGC1695image(Figure2c)revealsaninclinationverycloseto90° anditisthereforeimpossibletodeterminetheluminosityclassofthisgalaxy.Galaxies for which visual inspection of the image indicated an unambiguous problem with the reportedinclinationwererejectedfromthesample. ThePiscesSupercluster(Abell262,NGC507,andNGC383clusters),Abell400, Coma,Cancer,Abell1367,andHydraclustershadenoughgalaxiesmeetingtheselection criteria above to estimate the size of the morphological type effect in the Kband. Distancestoallgalaxiesnotremovedfromthesamplebytheselectioncriteriadescribed abovewerecalculatedforthese6clustersusingequation2.Theresultingmeandistances totheSbgroupandScIgroupgalaxiesineachclusterareprovidedinTable3.Itcanbe seenthatforeachclusterthemeanSbgroupdistancetotheclusterisgreaterthanthe meanScIgroupdistancetotheclusterby+0.06to+0.40mag.Themeandifferencefor the56SbgroupgalaxiesinTable3is+0.19+/0.10mag.Thisindicatesthatasmaller but still detectable type effect remains in the KbandTFR.AlldistancestoSbgroup galaxies will therefore be calculated using equation 2, but with a zeropoint of 22.82 ratherthanthezeropointof23.01foundforScIgroupgalaxies. Table3:TypeEffectintheKbandTFR Cluster NSb mMSb NScI mMScI SbScI Pisces 13 34.02 17 33.87 +0.15 A400 10 34.84 6 34.58 +0.26 Coma 9 34.65 6 34.59 +0.06 Cancer 9 34.21 6 33.81 +0.40 A1367 11 34.72 4 34.60 +0.12 Hydra 4 33.84 8 33.49 +0.35 11

2.3 Comparison with other K-band TFR studies OneofthelargestpotentialsourcesofasystematicbiasinTFRdistancesariseswhen anincorrectTFRslopeisappliedtotheTFRsample.Forthisreasonitisimportantthat theTFRderivedinthisstudyisonlyappliedtogalaxiesmeetingtheselectioncriteria utilizedtocalibratethetypedependentKbandTFR. Karachentsev et al (2002), Noordermeer and Verheijen (2007), and Masters et al (2008) developed Kband TullyFisher relations from 2MASS photometry that are suitableforcomparisonwiththisstudy.KarachentsevetalfoundaKTFRslopeof 9.02 +/0.25 using Hubble distances for 436 galaxies. No corrections for morphological type dependence are applied and the sample includes galaxies with rotational velocities as small as 75 km s 1. Noordmeer & Verheijen found a KTFR slopeof8.65+/0.19fromasampleof48spiralswithrotationalvelocitiesassmallas 83kms 1.Nocorrectionsformorphologicaltypedependencewereapplied.Masterset al used a “basket of clusters” technique to create a KTFR template with 888 spiral galaxies including galaxies with rotational velocities smaller than 75 km s 1. The Masters et al sample provides a global KTFR corrected for several types of bias (see section3ofMastersetal)withadirectslopeof8.85forthefullsample. It is interesting to note that these studies utilize different samples and calibration techniquesandyetfindconsistentslopesinthesmallrangeof8.65to9.02forthedirect KbandTFR.Theseslopesareslightlysteeperthantheslopeof8.22foundinthisstudy for a sample restricted to galaxies with ScI group morphology and with rotational velocities≥150kms 1.Mastersetal(2008)alsoappliedallbiascorrectionsandthe direct TFR to 374 “High mass” galaxies in their template sample with rotational velocities in excess of 160 km s 1 and found a shallower slope of 8.06 which is consistentwiththeslopefoundwiththe36calibratorsinTables1and2.Thissuggests thattheshallowerslopefoundinthisstudyresultsfromtheexclusionofslowerrotators fromthesample. TheslopefortheScIcalibratorsamplewasalsodeterminedusingonlythe33ScI galaxieswithrotationalvelocities≥160kms 1andwasfoundtoremainunchanged.Itis reassuringtonotethattheslopederivedfrom36ScIgroupcalibratorsisonlyslightly 12 steeperthantheslopeMastersetalfoundfrom374comparablegalaxiesafterapplying theircompletesetofbiascorrections.Theslopefoundinthisstudyisunbiasedaslong as it is applied to galaxies meeting the selection criteria utilized in compiling the calibratorsample.Inclusionofslowerrotatinggalaxieswouldrequireasteeperslope. Mastersetal(2008)alsocalibratedtheKTFRusingabivariatefitandfoundan evensteeperslopeof10.02fortheircompletesampleof888galaxies.Inordertotest forthepossibleinfluenceoftheslopeonthe results of this study the zero point was calculatedforthe36ScIgroupcalibratorsusingaslopeof10.02.Theresultingzero pointisreducedfrom23.01+/0.14to22.84+/0.20withthesteeperslope.Keepinga 0.19magtypeeffect,Sbgroupgalaxydistanceswillbecalculatedusingazeropointof 22.65whentheslopeof10.02isutilized. Inthisanalysis,theHubbleParameterwillbederivedfromtheslopeandzeropoints foundinsections2.1.4and2.2.However,asatestoftheeffectoftheKTFRslopeon theHubbleParameter,thedistancestogalaxiesintheclustersample(section3.1)will alsobecalculatedusingtheslopeof10.02andthezeropointsof22.84and22.65forthe ScIandSbgrouprespectively(section4.2). 2.4 Scatter in the Type dependent K-band TFR The subject of scatter in the TFR has been widely studied (Bernstein et al 1994,Willick 1996, Raychaudhury et al 1997, Giovanelli et al 1997b, Tully&Pierce 2000,Sakaietal2000,Kannappanetal2002,Russell2005b,Mastersetal2008).For thepurposesofthisstudyitisimportanttonotethatthescatterobservedwiththissample isonlyapplicabletotheselectioncriteriautilizedincreatingtheTullyFisherrelations discussed in sections 2.1 and 2.2. Larger intrinsic scatter will occur with a less restrictive set of sample selection criteria. The RMS scatter for the 36 ScI group calibratorsinTables1and2is+/0.14magrelativetothecalibrationdistancemoduli.

Most2MASSK sbandmagnitudesforgalaxiesinthesamplehaveanuncertaintyof only+/0.03to+/0.10mag.However,Noordermeer&Verheijen(2007)pointtoreasons forsuspectingthatthe2MASSuncertaintyestimatesareoverlyoptimisticandsuggesta more realistic estimate of +/0.11 mag for the typical Kband uncertainty – which is 13 adoptedforthisstudy.Themeanuncertaintyoflogarithmoftherotationalvelocities (Springobetal2007)usedforthe36calibratorsis+/0.030.Thusthegreatestsourceof uncertaintyintheKbandTFRdistancesshouldbeexpectedtoarisefromtheeffectof inclinationuncertaintyonthecorrectionoftherotationalvelocitytoedgeonorientation. Sincevisualinspectionofimageseliminatedgalaxieswithgrosslyinaccurateoruncertain inclinations(section2.2),thegalaxiesinthefinalsamplehaveinclinationsthatshouldbe accurateto5˚orbetter. Withaslopeof8.22thetypicaldistancemodulusuncertaintyis+/0.247mag.from theuncertaintyintherotationalvelocitiesasreportedbySpringobetal(2007).This maybe addedinquadraturewithaKsband magnitude uncertainty of +/0.11 mag to yieldatotalexpecteddistancemodulusuncertaintyof+/0.27mag.TheRMSscatterof theScIgroupcalibratorzeropointisonly+/0.14magwhichissignificantlysmaller thanthescatterexpectedfromtherotationalvelocities.Thismaybeanindicationthat theuncertaintyintherotationalvelocitiesisoverestimatedbySpringobetal.Themean uncertainty Springob et al reported for the rotational velocities is of the magnitude expectedfora+/6°inclinationuncertainty.Thesmallobservedscattersuggeststhat inclinations are actually accurate to ~+/ 3° in most cases. In any case, the small observedscatterintheKTFRzeropointindicatesthatthereisnegligibleintrinsicscatter intheKTFRforgalaxiesmeetingtheselectioncriteriaadoptedinthisstudy. 3. Samples for determination of the Hubble Parameter 3.1 Springob et al sample Table4liststhe10clustersfromthetemplatesampleofSpringobetal(2007)that had at least 5 galaxies meeting the selection criteria utilized to define the calibration samplesasdiscussedinsections2.1and2.2.Column1isthecluster.Column2isthe numberofclustermembersinthefullSpringobetalsample.Columns3,4,and5arethe numberof galaxieswithineachcluster rejected fornotmeetingtherotationalvelocity, inclination,andHubbleTtypecriteriarespectively.Column6isthenumberofgalaxies 14 rejectedforhavingKTFRdistancesthatfalloutsidetheprimarydistributionofKTFR distances for the cluster. Column 7 provides notes on several rejections specific to individualclustersorgalaxies.Column8isthefinalsampleof acceptedgalaxiesfor eachcluster.Inordertoreducetheeffectofmotionswithinthelocalvelocityfieldand cluster depth effects, the cluster sample was also restricted to those clusters with a minimumdistanceof40.0Mpc. In addition to the criteria discussed in section 2, galaxies were restricted to the redshiftrangeof65008000kms 1fortheAbell400clusterand800010000kms 1for theAbell2197/99cluster.Sixofthe10clustershadmembergalaxiesmeetingallother criteriarejectedbaseduponthedistancedistributionoftheclustermembers(Column6of Table4).WiththeexceptionofUGC8229intheComa cluster which has a KTFR distancemodulus2.3σlessthantheComaclustermean, all galaxies rejected as being outsidetheprimaryclusterdistancedistributionwereatleast+/2.5σfromthemeanof theacceptedgalaxies. ThelargestsampleofgalaxiesfromtheSpringobetaltemplatesampleisfoundinthe PiscessuperclusterwhichiscomprisedofgalaxiesintheAbell262,NGC507,andNGC 383clusters.Theselectioncriteriautilizedinthisstudyisillustratedusingthissample of 95 galaxies (Table 4). As indicated in Table 4, 23 galaxies from the Pisces superclustermetallselectioncriteriaapplied.These23galaxieshaveameandistance modulusof33.77+/0.21andallhavedistancemoduliwithintherange33.35to34.19. Table4:Clustertemplatesamplerejectionreasons Cluster N logVrot i t Distance other Final Distribution Sample Pisces 95 39 197 7 23 A400 50 13 7 2 4 3declinationrejected 12 9redshiftrangerejected Cancer 49 20 131 5 10 Coma 43 14 95 4 11 A136733 6 66 3 12 Hydra 31 9 9 0 2 1uncertain2MASSk s 10 A3574 29 12 8 0 0 1noks;1R.A.rejected 7 A2197/99 22 1 8 0 0 4redshiftrangerejected 9 A263422 9 32 0 8 A779 17 7 24 0 5 15

Note that 39 of the 95 galaxies in the Pisces supercluster template sample had rotationalvelocitieslessthan150kms 1.For27ofthesegalaxiesitwaspossibleto calculateKTFRdistances.The27slowrotatorshadameandistancemodulusof34.06 with a substantially larger RMS scatter of +/0.87 mag when compared with the 23 acceptedgalaxies.Infactonly8ofthe27slowrotatorshaveKTFRdistancemoduli thatfallwithinthedistancemodulusrangeofthe 23 accepted galaxies. This situation doesnotimproveiftheslopeof10.02isadopted as the mean distance for the slow rotatorsisthendecreasedto33.57+/0.90.Thesignificantlylargerscatterfoundforthe slowrotatorsjustifiestheexclusionofslowerrotatorsfromthesampleandisconsistent withthefindingsofFederspieletal(1994)whofoundascatterof+/0.90magforslow rotatorsbutonly+/0.40magforfasterrotators.ItwasalsosuggestedbyGiovanelli (1996)thatthesafestmeansofobtainingthetightestpossibleTFRistoexcludelower luminositygalaxies. The Pisces supercluster sample had 7 galaxies (listed in Table 5) rejected for a distancemodulusthatdeviatedfromthemeanofthe accepted galaxies by +/ 2.5σ or greater.Acceptingthese7galaxieswouldslightlyincreasethemeandistancemodulus to33.86butsignificantlyincreasetheobservedRMSscatteraboutthemeanto+/0.45 mag.TheacceptedgalaxieshaveKTFRdistancesrangingfrom47to69Mpc.Itseems prudentthentorejectfromthePiscessuperclustersampleagalaxysuchasUGC1416 whichhasaKTFRdistanceof104MpcandthereforepotentiallyalargeerrorintheK TFRdistance.InfactUGC1416maybeagenuinebackgroundgalaxyasthe2MASS totalKbandangulardiameterofUGC1416(rotationalvelocity=209kms 1)isonly 1.00′whereastheacceptedPiscessuperclustergalaxyUGC1676(Vrot=214kms 1)has a Kband angular diameter of 2.19′. However, whether UGC 1416 is a genuine backgroundgalaxyoragalaxywithanextremelylargeKTFRdistanceerror,itwouldbe inappropriatetouseUGC1416incalculatingthemeandistancetothePiscessupercluster asitisclearlynotrepresentativeofthenormaldistancedistributionofclustermembers. The10Springobetaltemplateclustersweresupplementedwith6additionalclusters orgroupsfromthenontemplatesampleofSpringobetalwhichhadatleast5galaxies meetingtheselectioncriteriaofthisstudy.ThevalueoftheHubbleParameterderived fromthese16clustersisdiscussedinsection4. 16

Table5:Piscessuperclustergalaxiesrejectedfordistancedistribution Galaxy mMKTFR Vcmb ∆mM Mpc NGC688 34.36 3894 +0.59 74.5 UGC1744 34.67 4578 +0.90 85.9 U1416 35.08 5222 +1.31 103.8 U1257 34.59 4404 +0.82 82.8 U724 34.63 4880 +0.86 84.3 U1493 33.05 3895 0.72 40.8 U1672 32.96 4367 0.81 39.1 3.2 ScI galaxies from the Mathewson&Ford Sample Mathewson&Ford(1996–MF96)providedacatalogof2447galaxiesmostwith rotational velocities derived from optical rotation curves. Springob et al (2007) corrected the rotational velocities from MF96 to standardize them with rotational velocitiesderivedfromhydrogenlinewidthsandhaveincludedtheMF96sampleintheir nontemplate catalog. The MF96 catalog was searched for all ScI group galaxies meeting the rotational velocity, inclination, and morphology selection criteria of this study.Thisyielded140galaxieswithScIgroupmorphologyasclassifiedinHyperLeda anddistancesofatleast40.0Mpcbutnogreaterthan140.0Mpc. TheimageofeachgalaxyfromtheMF96samplewithHubbleTtypesfrom3.16.0 but for which the luminosity class was not provided was visually inspected. An additional 78 ScI group galaxies were identified by examining arm structure in the imagesbringingthetotalsampleto218ScIgroupgalaxies with distances in the 40.0 Mpcto140.0Mpcrange.Notethatthese78galaxies were identified visually before determiningtheKTFRdistanceandthereforethedecisionofwhetherornottoinclude thesegalaxiesinthesamplewasnotinfluencedbypriorknowledgeofthedistanceto eachgalaxy. Intheprocessofidentifyingthe218ScIgroupgalaxies,12galaxieswereidentified forwhichtherewasa15degreeorgreaterdiscrepancybetweentheHyperLedaandthe MF96inclination,orforwhichtheinclinationprovidedinMF96washighlyuncertain. Insomecasestheinclinationuncertaintyresultsfromunusualelongatedarmstructure thatproducesaninclinationclosertoedgeonorientationthanvisualinspectionofthe imageindicates.Forexample,ESO3849hasa59degreeinclinationinSpringobetal 17 butthevisualappearancesuggestsaninclinationcloserto40degreeswitharmsthatare significantly elongated. Visual inspection of the 218 accepted ScI group galaxies confirmedthattheSpringobetalinclinationsfortheacceptedgalaxiesarereasonable. Forthese218ScIgalaxies,rotationalvelocitiesweretakenfromSpringobetaland 2MASSKsbandmagnitudeswerecorrectedasdiscussedinsection2.1.3.Thevalueof theHubbleParameterderivedfromthe218ScIgalaxiesisdiscussedinthenextsection. 4. The Hubble Parameter 4.1 The value of the Hubble Parameter from 16 galaxy clusters and 218 ScI galaxies Table 6 lists the mean distances, redshifts and the value of the Hubble parameter indicatedforeachofthe16galaxyclustersdiscussedinsection3.1.ThemeanRMS scatterofthedistancemoduliofclustermembersaroundtheclustermeanis+/0.26mag. NotethattheintrinsicKTFRscattermustbesmallerthanthisbecauseofanexpected contributiontotheobservedscatterfromclusterdeptheffects.The10templateclusters give anunweightedmeanfortheHubbleParameterof 85.1 +/5 km s 1 Mpc 1.The weightedmeanis85.0+/5kms 1Mpc 1.Theindividualtemplateclustersgivevaluesof 1 1 theHubbleParameterwithintheremarkablysmallrangefromH 0=82.9kms Mpc to 1 1 H0=86.9kms Mpc .The6nontemplateclustersgenerallyhavesmallernumbersof acceptedclustermembersandhavealargerrangeinH 0values(H 0=70.1to93.3).The 1 1 unweightedmeanforthefullsampleof16clustersisH 0=84.9+/5kms Mpc andthe 1 1 weightedmeanisH 0=84.2+/5kms Mpc .Theredshiftvelocity–distancerelationfor the16clustersisshowninFigure3.

Table 7 lists the mean values of H 0 grouped into 5 distance bins for the 218 ScI

galaxiesdiscussedinsection3.2.ThemeanvalueofH 0forthe218ScIgalaxiesis83.4 +/8 km s 1 Mpc 1 which is very close to the weighted mean value found for the 16 clustersinTable6.ThetwosamplesthereforeindicateaHubbleParameterof84+/6 kms 1Mpc 1usingthemorphologicallytypedependentKTFR. ItisimportanttonotethatifMalmquistbiassignificantlyaffectsthesample,thenthe valueoftheHubbleParameterisexpectedtoincreasesignificantlywithdistance 18

Table6:ClusterHubbleParameter Cluster N mM +/ Mpc Vcmb H0 +/ Template Pisces 23 33.77 0.21 56.8 4794 84.4 7.7 A1367 12 34.49 0.22 79.1 6559 82.9 7.9 A400 12 34.60 0.18 83.2 7227 86.9 7.0 Coma 11 34.70 0.26 87.1 7563 86.8 9.8 Cancer 10 33.61 0.34 52.7 4523 85.8 12.5 Hydra 10 33.43 0.19 48.4 4080 84.3 7.0 A2197/99 9 35.26 0.21 112.7 9479 84.1 7.8 A2634 8 35.00 0.22 100.0 8689 86.9 8.4 A3574 7 33.80 0.29 57.6 4903 85.1 10.6 A779 5 34.76 0.43 89.5 7532 84.2 15.2 NonTemplate A548 8 35.64 0.43 134.3 12062 89.8 16.1 A114 7 36.52 0.26 201.4 17810 88.4 9.9 A1736 7 35.57 0.22 130.0 11585 89.1 8.6 A3716 7 35.94 0.28 154.2 14382 93.3 11.3 ESO596 6 34.85 0.23 93.3 7043 75.5 7.6 ESO471 5 35.40 0.21 120.2 8429 70.1 6.4

20000

18000

16000

14000

12000

Vcmb 10000

8000

6000

4000

2000

0 25 50 75 100 125 150 175 200 225 Distance (Mpc) Figure 3 – Hubble plot for 16 galaxy clusters in Table 6. Filled triangles are template clusters and open circles are non-template clusters. Solid line represents H 0=84. 19

(Bottinellietal1986,1988;Federspieletal1994).TheeffectsofMalmquistbiasarenot observedinTable7asthereisverylittlevariation in H 0fromonedistancebintothe next.Itisalsoworthnotingthatthetwomostdistantdistancebinshavethelowestmean

H0valuesandthusruncountertowhatisexpectedwhenthereisasignificantMalmquist bias. The lack of a signature from Malmquist bias is not surprising given that the observedscatteroftheKTFRinthisstudyisverysmallandthatMastersetal(2008) concluded that the effects of Malmquist bias are negligible in a sample that included manymuchslowerrotatorstheoreticallymoresusceptibletointroducingMalmquistbias effectsthanthefastrotatorsusedinthisstudy. Table7:MF96ScIHubbleparameter Distancerange N logVrot H0 4059.9 52 2.306 82.9 60.079.9 63 2.298 83.3 80.099.9 52 2.326 86.5 100.0119.9 28 2.336 82.1 120.0139.9 23 2.368 79.5 Total 218 83.4 4.2 Effect of the slope of the K-TFR Itisworthinvestigatingwhetherornottheresultswouldchangeifasteeperslopeis adoptedfortheKTFR.Asdiscussedinsection2.3whileMastersetal(2008)finda slopeforfastrotatorsconsistentwiththatfoundfromthe36calibratorsinTables1and2, they found a slope of 10.02 for the KTFR from a bivariate fit that includes slower rotators.UsingthisglobalKTFRslopeof10.02andthemeanzeropointsforScI groupandSbgroupgalaxiescalculatedinsection2.3,distancestoall16clusterswere recalculated(Table8).TheunweightedmeanvaluesfortheHubbleparameterare83.9 +/7 km s 1 Mpc 1 forthe10templateclustersand83.7+/7kms 1 Mpc 1 for the full sampleof16clusters.ThereforethevalueoftheHubbleparameterderivedinthisstudy isnotsignificantlyaffectedbytheadoptedKTFRslope. 20

Itisimportanttonotethatthesteeperslopeproducesmeandistancestoindividual clustermembersthatarerotationalvelocitydependent.ForexampleintheA400cluster the6fastestand6slowestrotatorshavemeandistancemoduliof34.84+/0.16and34.55 +/0.27respectivelywithaslopeof10.02.Withtheslopeof8.22themeandistance moduli of the fastest and slowest rotators are 34.65 +/0.15 and 34.55 +/0.21 respectivelysuggestingthattheshallowerslopeusedinthisstudyismoreappropriatefor asamplerestrictedtofasterrotators.Thediscrepancybetweenfastandslowrotatorsis smallerthanA400forthePiscessupercluster(+0.12mag)butevenlargerthanA400for theComacluster(+0.45mag). Table8:ClusterHubbleParameterwithKTFRslopeof10.02 Cluster mMKTFR H0 Pisces 33.81 82.9 A1367 34.47 83.8 A400 34.69 83.4 Coma 34.77 84.0 Cancer 33.61 85.8 Hydra 33.35 87.2 A2197/99 35.33 81.4 A2634 35.08 83.7 A3574 33.80 85.1 A779 34.82 81.8 A548 35.65 89.4 A114 36.53 88.1 A1736 35.47 93.3 A3716 36.05 88.7 ESO596 34.82 76.5 ESO471 35.59 64.2 4.3 Effect of inclinations

InordertotestthepossibleeffectsofgalaxyinclinationsonthederivedvalueofH 0, the218ScIgalaxiesweregroupedinto4inclinationbins(Table9).Itcanbeseenin Table9thattheinclinationbinsfrom5069degrees giveameanHubbleparameterof 84.3 km s 1 Mpc 1 –consistentwiththeweightedmeanvaluefoundfor the 16 galaxy clusters. The galaxieswith inclinations from 5069 degrees are especially important 21 because they comprise twothirds of the ScI sample and are least susceptible to the problemsassociatedwithloworhighinclinations.Thegalaxieswithinclinationsfrom 1 1 3549 degrees give H 0=79.7 km s Mpc which is mildly discrepant when compared withtheotherinclinationbins.Thisdiscrepancyisnotunexpectedasuncertaintyin correctedrotationalvelocitiesincreasesforgalaxiesclosertofaceonorientation.

Table9:HubbleParameterfor218ScIgalaxiesgroupbyinclinationbins Inclinationrange(°) N H0 3549 38 79.7 5059 75 84.3 6069 70 84.3 7080 35 83.1 Total 218 83.4

4.4 Effect of Visual inspection of images Asdescribedinsection2,imagesofcandidategalaxiesforthissamplewerevisually inspectedtoverifyinclinationestimatesfromaxialratiosandmorphologicalluminosity classification. For the cluster sample, galaxies not assigned a luminosity class in HyperLeda were in some cases found to have ScI group morphology (Fig 2a) and thereforehaddistancescalculatedwiththeScIgroupzeropointratherthantheSbgroup zeropoint.Thuswithintheclusterstheeffectofvisualinspectionofimagesleadstoa slightincreaseinclustersdistancesifgalaxieswereincorrectlyjudgedtohaveScIgroup morphology. FortheScIsample140ofthe218galaxieswereclassifiedasScIgroupgalaxiesin HyperLeda. The remaining 78 galaxies were classified as ScI group galaxies from visual inspection of images. A sample of these galaxies is provided in Figure 4 to illustratetheidentificationofScImorphology.Notsurprisingly61ofthese78additions wereatdistancesbeyond80.0Mpc.The78addedgalaxiesseemtohavetheeffectof

slightlyincreasingtheoverallvalueofH 0.ThevalueofH 0forthe140galaxiesclassified asScIgroupinHyperLedais82.2+/8kms 1Mpc 1whereasthe78galaxiesaddedfrom 1 1 visualinspectiongiveH 0=85.7+/8kms Mpc . 22

Figure4aESO57816Figure4bESO38526Figure4cESO32816

HoweverbothsubsetsareveryclosetotheweightedmeanH 0valuefoundfromthe 1 1 16clusters(H 0=84.2kms Mpc )andthereforesupportthehighervalueofH 0foundin thisstudy.ItisalsoimportanttorecognizethatthegalaxiesaddedtotheScIsample fromvisualinspectionofimageswouldhaveevencloserdistancesiftheSbzeropoint

wasutilizedandthereforewouldgiveanevenlargervalueforH 0. 4.5 Effect of distance distribution rejection for clusters Table10liststhedistancestothe16clusters when the galaxies rejected as having anomalousKTFRdistancesrelativetotheclustermeanareincluded.Theunweighted 1 1 mean H 0 value then is 84.5 +/5 km s Mpc which may be compared with an 1 1 unweightedmeanH 0valueof84.9+/5kms Mpc foundwhen25galaxiesarerejected from the clusters due to large discrepancies in their distances relative to the accepted galaxies.Therejectionofindividualgalaxieswithintheclustersbaseduponthedistance distributionoftheclustermembersthereforehasanegligibleeffectonthevalueofH 0. 4.6 The Large Magellanic Cloud Distance Modulus Insection4.1aHubbleparameterof84kms 1 Mpc 1 wasfound.Thezeropoint calibrationfortheKTFRassumesadistancemodulustotheLMCof18.50+/0.10as adoptedbytheHKP(Freedmanetal2001).However,recentstudiessuggesttheLMC distancemodulusiscloserto18.39+/0.05(Table11).Macrietal(2006)demonstrated an important metallicity effect in the Cepheid PL relation and concluded that LMC 23 distance modulus is 18.41 +/ 0.10. A number of subsequent studies have adopted metallicitycorrectionsfortheCepheidPLrelation.Benedictetal(2007)providednew trigonometricparallaxestoGalacticCepheidsandfoundadistancemodulusof18.50+/ 0.03 without metallicity corrections but 18.40+/0.05 when applying the metallicity correction of Macri et al (2006). van Leeuwen et al (2007) used revised Hipparcos parallaxes and found the distance modulus to the LMC is 18.52 +/0.03 without metallicity corrections or 18.39 +/0.05 with metallicity corrections. An et al (2007) constructedtheCepheidPLrelationfrom7GalacticclusterswithCepheidsandfounda distance to the LMC of 18.48 without metallicity corrections and 18.34 +/0.06 with metallicitycorrections.Fouqueetal(2007)didnotstudytheeffectsofmetallicityonthe PLrelationbutconcludedthattheLMCdistancemodulusmustbesmallerthan18.50 aftercorrectingformetallicityeffects. Table10:Clusterswithdistancedistributionrejectedgalaxiesincluded Cluster N mM Mpc Vcmb H0 Template Pisces 30 33.86 59.1 4716 79.8 A1367 15 34.55 81.3 6618 81.4 A400 16 34.62 83.9 7291 87.3 Coma 15 34.51 79.8 7402 92.8 Cancer 12 33.79 57.3 4534 79.1 Hydra 12 33.54 51.1 4144 81.1 A2197/99 9 35.26 112.7 9479 84.1 A2634 8 35.00 100.0 8689 86.9 A3574 7 33.80 57.6 4903 85.1 A779 5 34.76 89.5 7532 84.2 NonTemplate A548 8 35.64 134.3 12062 89.8 A114 7 36.52 201.4 17810 88.4 A1736 7 35.57 130.0 11585 89.1 A3716 7 35.94 154.2 14382 93.3 ESO596 6 34.85 93.3 7043 75.5 ESO471 5 35.40 120.2 8429 70.1 24

UsingTypeIICepheid’sandRRLyraevariablesFeastetal(2008)findaLMC distancemodulusof18.37+/0.09.CatelanandCortesprovidearevisedtrigonometric parallaxtoRRLyraeandderiveaLMCdistancemodulusof18.44+/0.11.FromtheK bandluminosityoftheredclumpin17LMCclustersGrocholskietal(2007)findthe LMCdistancemodulustobe18.40+/0.04. Itisclearlyseenfromtheseresultsthatthelateststudiesindicatethebestvaluefor LMCdistancemodulusis~0.10magsmallerthanthevalueadoptedbytheHKPwhen therequiredmetallicitycorrectionsareappliedtotheCepheidPLrelation.Therecent studieslistedinTable11giveanunweightedmean forthe LMCdistancemodulusof 18.39+/0.05andrequireadownwardrevisionof0.11magforthezeropointsoftheK TFRcalibratorsinTables1and2.ApplyingthiscorrectiontotheKTFRdistancesof thisstudyincreasesthederivedvalueoftheHubbleParameterfromtheTypeDependent KTFRto88+/6kms 1Mpc 1. Table11:LMCdistancemodulus Study mMLMC +/ Macrietal2006 18.41 0.10 Benedictetal2007 18.40 0.05 vanLeeuwenetal2007 18.39 0.05 Grocholskietal2007 18.40 0.04 Anetal2007 18.34 0.06 Catelan&Cortes2008 18.44 0.11 Feastetal2008 18.37 0.09 5. Comparison with the results of the Hubble Key Project SincethevalueoftheHubbleParameterfoundinthisanalysisissignificantlyhigher thanthevaluefoundbyFreedmanetal(2001)fromtheITFR,SBF,FP,TypeIaSN,and TypeIISNmethods,theHKPresultsarereconsideredinthefollowingsections.Itis importanttonotethattheHKPreportedaHubbleparameterof82+/9from11clusters withFundamentalPlanedistances–consistentwiththeresultfoundinthisstudyfrom16 clustersand218ScIgalaxiesusingthemorphologicallytypedependent KTFR. The remaining4methodsusedbytheHKPgiveH 0=~71. 25

5.1 The HKP I-TFR The HKP Iband TFR was calibrated by Sakai et al (2000). Final adjustments to clusterdistanceswerepresentedinFreedmanetal(2001)inordertoaccountforthefinal 1 1 Cepheidcalibratordistances.FromtheITFRtheHKPfoundH 0=71+/7kms Mpc – significantly smaller than the value found in this study. Table 12 compares the distancestothe8clustersincommonwiththisstudyandFreedmanetal(2001).In everyclusterexceptComa,theHKPclusterdistancesarelargerthantheKTFRdistances foundinthisstudywithameandistancemodulusdifferenceof+0.28mag.

Figure5isaplotoftheabsolutemagnitude(M K)versusthelogarithmoftherotational velocity(logVrot)fortheScIgroupgalaxiesintheclustersample(opencircles)ofthis studyattheITFRclusterdistancesdeterminedbytheHKP.AlsoplottedinFigure5are the36ScIgroupcalibratorsfromthisstudy(filledcircles).ItisclearlyseeninFigure5 thattheclustergalaxieswouldbesystematicallyoverluminousrelativetothecalibrators iftheywereattheITFRdistancesfoundbytheHKP.

26

25.5

25

24.5

MK 24

23.5

23

22.5

22 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 log Vrot Figure 5 – K-TFR plot for ScI galaxies in the cluster sample at the I-TFR distances reported by Freedman et al (2001). Filled circles are the 36 calibrators from Tables 1 and 2 and solid line is a slope of -8.22. Open circles are the ScI’s in the cluster sample at the I-TFR distances of the HKP. 26

ThereisindependentevidencethattheproblemisnottheKTFRdistancestothe clusters found in this study, but rather the ITFR distances found by the HKP. For example,theHKPfoundanITFRdistancetoCen30of43.2Mpc.However,aCepheid distancetotheCen30galaxyNGC4603wasdeterminedbyNewmanetal(1999)andthe galaxywasfoundtobeat33.3Mpc–10MpccloserthantheHKPITFR.Tonryetal (2001)foundadistancetotheCentaurusclusterof32.8Mpcfrom9earlytypegalaxies with SBF distances a value in excellent agreement with the NGC 4603 Cepheid distance. TheHKPITFRdistancetotheAntliaclusteris45.1Mpc.Fourgalaxiesinthe AntliaclusterwithSBFdistancesinTonryetalgiveadistanceof33.1Mpc.Recently Bassinoetal(2008)determinedthedistancestothegiantellipticalsNGC3258and3268 inAntliafromtheglobularclusterluminosityfunction(GCLF).Themeandistanceofthe twogiantellipticalsis33.4Mpc–inexcellentagreement with the SBF distances. It should also be noted that 7 galaxies from the Antlia cluster were included in the calibrationsamplefortheKTFRofScIgalaxiesusingtheTonryetalSBFdistancesto Antlia(Table2).Themeanzeropointofthese7galaxiesisinexactagreement(23.01 +/0.16)withtheoverallmeanfoundfromthefullsampleof36ScIcalibrators.Inorder fortheHKPITFRdistancetoAntliatobecorrect,theKTFRzeropointwouldneedto beincreasedby0.67mag–whichis4.8σlargerthantheobservedscatterintheKTFR zeropoint. TheexplanationforthediscrepancyintheHKPprojectITFRdistancesisbeyond thescopeofthispaper.However,theaboveevidencestronglyarguesforaproblemwith theHKPITFRdistancesratherthantheKTFRdistancesfoundinthisstudy. Table12:ComparisonwithHKPITFRdistances Cluster mMKTFR mMHKPITFR ITFR–KTFR Pisces 33.77 34.01 +0.24 A1367 34.49 34.75 +0.26 A400 34.60 34.73 +0.13 Coma 34.70 34.66 0.04 Cancer 33.61 34.35 +0.74 Hydra 33.43 33.83 +0.40 A3574 33.80 33.97 +0.17 A2634 35.00 35.30 +0.30 27

5.2 The HKP SBF distances 1 1 The HKP found H 0=70 +/6 km s Mpc from 6 galaxies with Surface Brightness Fluctuationdistances.ForeachofthesegalaxiesitispossibletocomparetheHKPSBF distancewithclusterorgroupFP,SBF,orKTFRdistanceestimatesfromthisorother studies. NGC 4881 isamemberoftheComaclusterandforthisgalaxytheHKPfindsaSBF distanceof102.3Mpc.TheHKPFPdistancetoComais85.8MpcandtheKTFR distanceis87.1Mpc.TheSBFdistancemodulustoNGC4881istherefore+0.35mag largerthanfoundfromothermethods.ConsideringthattheFPdistanceisderivedfrom 81galaxiesandtheKTFRdistanceisderivedfrom11galaxies,itwouldbereasonable to conclude that NGC 4881 is simply on the backside of the Coma cluster and not representativeofthemeanComaclusterdistance.Inaddition,Ferrarreseetal(2000) notethatthereisalargeuncertaintyintheNGC4881SBFdistancebecausethegalaxy wasnotobservedintheVband. NGC 4373 (ESO3226)isamemberoftheCen30clusterandtheHKPfoundaSBF distanceof36.3Mpcforthisgalaxy.Thisdistance is in exact agreement with NGC 4373’snearbycompanionESO3228forwhichTonryetal(2001)findaSBFdistanceof 36.3Mpc. NGC 708 isamemberoftheAbell262clusterandtheHKPreportsaSBFdistanceof 68.2Mpc.TheKTFRdistancetoA262is56.5Mpcfrom10galaxiesinA262meeting theScIorSb/ScIIIgroupselectioncriteriaofthisstudy.TheNGC708SBFdistance modulusis0.41maglargerthantheKTFRdistancemodulus. NGC 5193 islistedasamemberoftheAbell3560clusterinFerrareseetal(2000). However,Abell3560isactuallyabackgroundclusterwithcz=~15000kms 1.NGC 5193 is coincident with coordinate distribution of the Abell 3574 cluster sample of Springobetal(2007).TheHKPreportsaSBFdistanceof51.5MpcforNGC5193in excellent agreement with the HKP FP distance to A3574 of 51.6 Mpc. The KTFR distancetoAbell3574is57.6MpcsomewhatlargerthantheSBFandFPdistance. Corrected to the Cosmic Microwave Background reference frame the redshift of NGC 5193is3991kms 1whichisconsistentwiththelowerredshiftmembersofAbell3574. 28

IC4296isalsocoincidentwiththeAbell3574clusterandhasaSBFdistanceof55.5 Mpc–veryclosetothevaluefoundwiththeKTFRandconsistentwiththeHKPFP distance. NGC 7014 hasaSBFdistanceof67.3Mpc.TheScIgalaxyESO28679isthe closestneighbortoNGC7014forwhichaKTFRdistancecanbecalculated.Usingthe rotationalvelocityprovidedbyMF96(logVrot=2.468)andacorrected2MASSKband magnitudeof8.71,theKTFRdistancetoESO28679is60.8Mpc.TheNGC7014 SBFdistancemodulusislargerby+0.22mag.

TheHKPSBFestimateforH 0isbasedupononly6galaxiesin6clusters.Thereisa certainamountofriskindeterminingthedistancetoaclusterfromasinglegalaxyasthe selectedgalaxymaybeonthefrontorbacksideofthecluster.Itisthereforereasonable toconcludethatthevalueofH 0foundinthisstudywiththeKTFRusingasampleof16 galaxyclusterswithaminimumof5clustermembersandasampleof218ScIgalaxies providesamorereliablesamplingoftheHubbleflowthanavaluederivedfrom6SBF distances. However, it is interesting to note that the three nearest galaxies in the HKP SBF sample(NGC4373,IC4296andNGC5193)havedistancesinexcellentagreementwith Tonryetal(2001)SBF,HKPFP,andKTFRdistancesfromthisstudy.Thethreemost distantSBFgalaxieshavedistancemoduliamean+0.33maglargerthanthedistance modulifoundfromtheothermethods.Thismayindicateasystematicproblemwiththe applicationoftheSBFmethodatdistancesbeyond~60Mpc,butalargernumberofSBF distanceswillbeneededinordertotestthatpossibilityinanymeaningfulway. 5.3 Type II and Type Ia SN 1 1 TheHKPfoundH 0=72+/9kms Mpc from4TypeIISN.Fourgalaxiesistoo

smallasampletodrawmeaningfulconclusionsaboutthevalueofH 0.Inaddition,only 3galaxieswithCepheiddistanceswereavailableforfixingthezeropointoftheTypeII SN distance scale (Table 11 of Freedman et al 2001). Given these problems with samplesize,theHKPTypeIISNresultisnotconsideredhere. 29

1 1 TheHKPfoundH 0=71+/6kms Mpc from36TypeIaSN.IncompilingtheK TFRcalibratorsampleforthisstudy7ScIgalaxieswereidentifiedasnearbycompanions to4oftheTypeIaSN.Fortheremaining32TypeIaSN,companionScIgalaxiesfor whichKTFRdistancescouldbecalculatedwerenotfound.The7ScI’swithcalibration distancesdefinedbytheTypeIaSNareshownasopendiamondsagainsttheremaining 29 calibrators (filled circles) in Figure 6. Notethatthe7galaxieswithType IaSN distancesfalltightlyonthemeanrelationdefinedbytheother29galaxies(solidline). Itshouldalsoberecalledfromsection2.1thattheslopedefinedbythe7ScI’swithSN calibrationdistancesis8.16whichisinexcellentagreementwiththeslopedefinedby thefullsampleof36calibrators.Inadditionthemeanzeropointofthese7galaxiesis 23.01+/0.06–inexactagreementwiththeoverallmean.

26

25.5

25

24.5

MK 24

23.5

23

22.5

22 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 log Vrot Figure 6 – Comparison of 7 ScI calibrators (open diamonds) that are companions of galaxies with Type Ia SN distances compared with the remaining 29 ScI calibrators (filled circles). Solid line has a slope of -8.22. 30

Whilethecomparisonsampleisanuncomfortablysmallsampleofonly4TypeIaSN distances,thecomparisonsuggeststhatthereisexcellentagreementbetweentheTypeIa SN distances and the KTFR distances of this study. The comparison can only be improvedwhengreaternumbersofTypeIaSNdistancesbecomeavailableinthelocal universe. 5.4 Can the Hubble Parameter be 70 km s -1 Mpc -1?

SupportedbytheresultsoftheHKP(Freedmanetal2001)andWMAP(Spergeletal 2003,2006; Hinshaw etal 2009; Dunkley et al 2009) it is generally accepted that the 1 1 valueofH 0is~70kms Mpc .Sandageetal(2006)findanevensmallervalueforH 0 1 1 of62+/5kms Mpc .Inthisstudy,thevalueofH 0wasfoundtobeH 0=84+/6kms 1 Mpc 1 whenadoptingtheHKPzeropointfortheLMC.Adopting a LMC distance modulusof18.39indicatedfromrecentstudies(section4.6)increasesH 0to88+/6kms 1Mpc 1.Thevaluesfoundinthisstudyaresignificantlylargerthanthosefoundinother studies. Figure 7 is a plot of the Kband absolute magnitudes vs. the logarithm of the rotationalvelocityforthe36calibratorsinTables1and2andtheScIgalaxiesinthe16 clusters.TheKbandabsolutemagnitudesforthecalibratorsarecalculatedforaLMC distance modulus of 18.39 whereas absolute magnitudes of the cluster galaxies are 1 1 derived assuming the mean cluster distances for H 0=70 km s Mpc . A Hubble 1 1 Parameter of 70 km s Mpc isadoptedasareasonableaverageoftheH 0 values the HKPandSandageteamswouldfindusingaLMCdistancemodulusof18.39. ItisevidentinFigure7thattheKTFRdefinedbythecalibratorsisinconsistentwith 1 1 H0=70kms Mpc .TherearereasonsforsuspectingthediscrepancybetweentheHKP resultsandthisstudycouldarisefromproblemswiththeHKPdistancesandsamples.

First,itisimportanttonoteagainthattheHKPvalueofH 0fromtheFundamentalPlane 1 1 was H 0=82 +/9 km s Mpc whichisinexcellentagreementwiththeresultsof this study. 31

26.5

26

25.5

25

24.5 MK 24

23.5

23

22.5

22 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 logVrot Figure 7 – K-TFR plot for ScI galaxies in the 16 clusters (Table 6) at redshift distances -1 -1 using H 0=70 km s Mpc . Open circles are cluster ScI’s at Hubble distances and dashed line is a least squares fit. Filled circles are the 36 calibrators from Tables 1 and 2 with a LMC distance modulus of 18.39 and solid line is a least squares fit. The ScI’s are systematically more luminous than the calibrators at the H 0=70 distances. Itwasshowninsection5.1thattheHKPITFR distances are significantly at odds with SBF, Cepheid, and GCLF distance estimates for the Antlia and Cen 30 clusters whereas the KTFR calibration of this study is an excellent fit to the other distance estimates. In addition the KTFR selection criteria used in this sample eliminates galaxieslikelytocontributetoMalmquistbiasandlargedistanceerrors–whereasamore generoussampleselectioncriteriaisemployedbySakaietal(2000).

The HKP SBF H 0 value was determined from only 6 individual SBF distance estimates and the HKP Type II SN H 0 estimate was determined from only 4 distance estimateswith3zeropointcalibrators.ThesesamplesizesusedtodetermineH 0are69 timessmallerthanthezeropointcalibratorsampleusedinthisstudyanddonotcompare favorablywiththeKTFRsamplesizesusedtocalculateH 0inthisstudy.Inaddition 32 the SBF distances agree well with FP and KTFR distance estimates for the closest galaxies,butaresystematicallytoolargeforthemoredistantgalaxiesintheHKPsample suggestingapossibleproblemwiththeSBFatlargerdistances. Finally,theHKPused36TypeIaSNforwhichasmallcomparisonsamplesuggests excellentagreementbetweentheSNdistancesandtheKTFRcalibrationofthisstudy.

However,theHKPagainfindsamuchsmallervalueofH 0thanfoundinthisstudy.The reasonforthisdiscrepancywillonlyberesolvedwithalargersampleofgalaxieswith bothTypeIaSNandKTFRdistances.However,thediscrepancysuggeststhateither theHKPTypeIaSNsampleortheKTFRsampleofthisstudyinadequatelysamplesthe Hubbleflow.GiventhattheHKPTypeIaSNsampleissignificantlysmaller–and spreadoveramuchlargerdistancerange(58.0to467.0Mpc)thantheScIandcluster samplesofthisstudy(40.0to140.0Mpcrangeforallbut2clusters),itispossiblethat theTypeIaSNdistanceshavenotuniformlysampledtheHubbleflow. 6. Implications for Cosmology ThevalueoftheHubbleConstantprovidesanimportantconstraintuponcosmological

models.TheHKPvalueforH 0hasbeenarguedtosupporttheΛCDMconcordance cosmologymodel(hereafterΛCDM–e.g.Spergeletal2003,2006;Hinshawetal2009; Dunkley et al 2009; Komatsu et al 2009). In this section we briefly consider 1 1 implicationsforcosmologyifH 0=84kms Mpc . AbasicrequirementofanycosmologicalmodelisthattheUniversemustbeolder thantheoldestobjectscontainedwithinit.Currently,theoldestdatedobjectsinthe MilkyWayareglobularclusterswhichhaveagesaslarge as~13Gyr (e.g.Salaris & Weiss2002,Rakos&Schombert2005).IfitisassumedthattheMilkyWayisnearlyas oldastheUniverse,thenanyinternallyconsistentsetofcosmologicalparametersmustbe abletoaccountforaUniversethatisatleast13.5Gyr. RetainingtheprevailingΛCDMparameterswithaflatuniverse,m=0.27andΛ = 0.73 a Hubble constant of 84 km s 1 Mpc 1 results in a universe that is 11.55 Gyr (Wright 2006) younger than the oldest globular clusters. This discrepancy can be resolvedatthecostofalowermatterdensityand higher dark energy density. A flat 33

universewithH 0=84,m=0.14andΛ=0.86wouldhaveanageof13.71Gyr(Wright 2006)andwouldbeconsistentwiththeagesoftheoldestglobularclusters.However,a matterdensityof,m=0.14isonlyatbestmarginallyconsistentwiththematterdensity estimatedfromgalaxyclusterstudies.Carlbergetal(1996)foundm=0.24+/0.05 andmorerecentlyMuzzinetal(2007)findm=0.22+/0.02. ThisdiscrepancyismademoreseriousifothergalaxiesareolderthantheMilkyWay thusrequiringanevenolderagefortheuniverse.Forexample,Leeetal(2001)found that the globular clusters in NGC 1399 may be several billion years older than the Galactic GC system. Bregman, Temi, & Bregman (2006) determined the ages of 29 ellipticalgalaxieswithIRspectralenergydistributionsandfound8galaxies(27.6%of their sample) had ages greater than 15.7 Gyr with the oldest galaxy being 20.6 Gyr. BasedupontheobviousdisagreementwithΛCDMparameters, Bregman et al argued thatthisdiscrepancymightindicateaproblemfortheabsoluteaccuracyoftheiragedates andshiftedtheagesintheirsampleintoarangethataccommodatesthestandardΛCDM model.ItisnotedherethatwithH 0=84,theBregmanetalageswouldrequireamatter density of m = 0.06 to accommodate elliptical galaxies with ages of 16 Gyr. This matterdensityisclearlyinconsistentwiththatfoundfromgalaxyclusters(Carlbergetal 1996;Muzzinetal2007). Itisofconcerntonotethatitisnotpossibletosimultaneouslyreconciletheobserved matterdensityoftheuniverse(m=0.22+/0.02),estimatedagesoftheoldestglobular

clusters(~13Gyr),andvalueoftheHubbleParameterfoundinthisstudy(H 0=84+/6km s1Mpc 1)withΛCDMcosmology.NotethatthediscrepancywithΛCDMexpectations becomes even more severe when the latest results for the LMC distance modulus are

takenintoaccountbecausethevalueofH 0foundinthisstudyisthenraisedto88+/6 km s 1 Mpc 1.Whetherornotthisindicatesaproblemforthe standard cosmological modelwillrequirefurtherinvestigation. 34

7. Conclusion

The morphologically type dependent TullyFisher Relation (Russell 2004) was calibratedintheKsbandforgalaxieswithaminimumrotationalvelocityof150kms 1. Distances were derived for galaxies in 16 galaxy clusters and 218 ScI galaxies using rotationalvelocitiesfromtheSpringobetal(2007)database.Applyingunweightedand weightedmeansaswellasbinningofsamplegalaxiesbydistanceandinclination,the valueoftheHubbleParameterwasconsistentlyfoundtofallintherangeof82to85km s1Mpc 1withapreferredvalueof84+/6kms 1Mpc 1.Ifrecentresultsforthevalue

oftheLMCdistancemodulusareadopted,thevalueofH 0wouldincreaseto88+/6km s1Mpc 1. It is very difficult to fit the observed matter density of the universe derived from galaxyclusters(m=0.22+/0.02–Muzzinetal2007);agesoftheoldestglobular

clusters(~13Gyr–Salaris&Weiss2002);andthevalueofH 0foundinthisstudy(H 0=84 +/6)withstandardΛCDMcosmology.Inordertoreconciletheageoftheuniverse foraflatuniversewithdominantdarkenergycomponent and H 0=84 requires a matter densityofm=0.14–whichis4.8σbelowthevaluefoundbyMuzzinetal(2007). WhileaHubbleParameterof84kms 1Mpc 1issignificantlydifferentfromthevalue foundbyFreedmanetal(2001),itwasshownthattheFreedmanetalITFRdistancesto clustersresultinaKTFRforScIgalaxiesinclustersthatissystematicallyoverluminous by~0.35magrelativetotheKTFRdefinedby36calibratorsinthisstudy.Sincethe HKP ITFRdistancesarealsoinconsistentwithSBF,Cepheid,andGCLFdistancesto theAntliaandCen30clusters,itwasconcludedthattheproblemmostlikelylieswiththe HKP ITFR distances rather than the KTFR distances derived in this study. The discrepancybetweentheHKPITFRresultsandtheKTFRresultsofthisstudymight seempuzzlinginlightofthefactthatthe36calibratorsofthisstudyarefixedtothesame CepheiddistancescaleutilizedbytheHKP.However,sampleselectioncriteriaplayan importantrole,andevidencewaspresentedthatthestrictselectioncriteriaofthisstudy provide more reliable distances – as well as a slope more appropriate for the faster rotatorsusedinthisstudy. 35

A Hubble Parameter of 84 km s 1 Mpc 1 is also inconsistent with the recent best estimatefromWMAP(Hinshawetal2009;Dunkleyet al2009;Komatsuetal2009) 1 1 which finds H 0=71.9 +/2.7 km s Mpc assuming a 6 parameter ΛCDM cosmology withflatgeometry.Theimplicationsofthisdiscrepancy for cosmological modeling

willrequirefurtherstudyanditisconcludedthatthevalueofH 0foundinthisstudydoes notconfirmtheWMAPvalueofH 0. Acknowledgements Iwouldliketothankthemanyresearchersthathavecollectedthedatautilizedinthis research.ThisresearchhasmadeuseoftheNASA/IPACExtragalacticDatabase(NED) whichisoperatedbytheJetPropulsionLaboratory,CaliforniaInstituteofTechnology, undercontractwiththeNationalAeronauticsandSpaceAdministration.Thisresearch hasmadeuseoftheHyperLedadatabase(http://leda.univlyon1.fr ).Figures2and4are images extracted from the Digitized Sky Survey. The Digitized Sky Surveys were producedattheSpaceTelescopeScienceInstituteunderU.S.GovernmentgrantNAG W2166.Theimagesofthesesurveysarebasedonphotographicdataobtainedusingthe OschinSchmidtTelescopeonPalomarMountainandthe UK Schmidt Telescope.This research also makes use of data from Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center,fundedbyNASAandtheNSF.Iwouldliketothankananonymousrefereefor suggestionsthatledtosignificantimprovementsinthepresentationoftheseresults. 36

References Ajhar,E.,Tonry,J.,Blakeslee,J.,Riess,A.,andSchmidt,B.2001,ApJ559,584 An,D.,Terndrup,D.,andPinsonneault,M.2007,ApJ671,1640 Bassino,L.,Richtler,T.,andDirsch,B.2008,MNRAS386,1145 Benedict,F.etal2007,AJ133,1810 Bernstein,G.M., Guhathakurta,P., Raychaudhury,S., Giovanelli,R., Haynes, M.P., Herter,T.,Vogt,N.P.,1994,AJ107,1962 Bregman,J.N.,Temi,P.,Bregman,J.D.2006,ApJ647,265 Bottinelli,L.,Gouguenheim,L.,Paturel,G.,Teerikorpi,P.1986,A&A166,393 Bottinelli,L.,Gouguenheim,L.,Paturel,G.,Teerikorpi,P.1988,ApJ328,4 Catelan,M.andCortes,C.2008,ApJ676,L135 Carlberg,R.,Yee,H.K.,Ellingson,E.,Abraham,R.,Gravel,P.,Morris,S.,Pritchet,C. 1996,ApJ462,32 Drozdovsky,I.,Karachentsev,I.2000,A&AS142,425 Dunkley,J.etal2009,ApJS180,306 Feast,M.,Laney,C.,Kinman,T.,vanLeeuwen,F.,andWhitelock,P.2008,MNRAS 386,2115 Federspiel,M.,Sandage,A.,Tammann,G.A.,1994,ApJ430,29 Ferrarese,L.,Mould,J.R.,Kennicutt,R.C.,Huchra,J.etal,2000,ApJ529,745 Fouque,P.,etal2007,A&A476,73 Freedman,W.L.etal,2001,ApJ553,47 Giovanelli,R.,1996,preprintastroph/9610129 Giovanelli, R., Haynes. M.P., da Costa, L.N., Freudling, W., Salzer, J.J., Wegner, G., 1997a,ApJL477,1 Giovanelli, R., Haynes. M.P., Herter, T., Vogt,N.P., da Costa, L.N., Freudling, W., Salzer,J.J.,Wegner,G.,1997b,AJ113,53 Grocholski,A.,Sarajedini,A.,Olsen,K.,Tiede,G.,andMancone,C.2007,AJ134,680 Haynes,M.,Giovanelli,R.,Chamaraux,P.etal1999,AJ117,2039 Hinshaw,G.,Weiland,J.,Hill,R.etal2009,ApJS180,225 Hubble,E.1929,PNAS15,168 Kannappan,S.J.,Fabricant,D.G.;Franx,M.,2002,PASP114,577 KarachensevI.,Mitronova,S.,Karachentseva,V.,Kudrya,Y.,andJarrett,T.2002,A&A 396,431 Komatsu,E.etal2009,ApJS180,330 Lee,H.,Yoon,S.,Lee,Y.2001,ASPC245,445 Macri,L.,Stanek,K.,Bersier,D.,Greenhill,L.,andReid,M.2006,ApJ652,1133 Masters,K.,Springob,C.,andHuchra,J.2008,AJ135,1738 Masters,K.,Springob,C.,Haynes,M.,andGiovanelli,R.2006,ApJ653,861 Mathewson,D.S.,Ford,V.L.,1996,ApJS107,97MF96 Muzzin,A.,Yee,H.K.,Hall,P.,Lin,H2007,ApJ663,150 Newman,J.,Zepf,S.,Davis,M.,Freeman,W.,Madore,B.,Stetson,P.,Silbermann,N., Phelps,R.1999,ApJ523,506 Noordermeer,E.andVerheijen,M.2007,MNRAS381,1463 Paturel,G.,Petit,C.,Prugniel,P.,Theureau,G.,Rousseau,J.,Brouty,M.,Dubois,P., Cambresy,L.2003,A&A412,45 37

Poggianti,B.M.,1997,A&AS122,399 Rakos,K.andSchombert,J.2005,PASP117,245 Raychaudhury,S.,vonBraun,K.,Bernstein,G.M.,andGuhathakurta,P.,1997,AJ113, 2046 Russell,D.G.,2004,ApJ,607,241 Russell,D.G.,2005a,Ap&SS,298,577 Russell,D.G.,2005b,Ap&SS,299,405 SakaiS.etal,2000,ApJ529,698 Salaris,M.,Weiss,A.,2002,A&A388,492 Sandage,A.,Tammann,G.,Saha,A.,Reindl,B.,Macchetto,F.,andPanagia,N.2006, ApJ653,843 Spergel,D.N.etal,2003,ApJS148,175 Spergel,D.N.etal,2006,ApJS170,377 Springob,C.,Masters,K.,Haynes,M.,Giovanelli,R.,andMarinoni,C.2007,ApJS172, 599 Strutskie,M.F.etal2006;AJ131,1163 Tonry, J.L., Dressler, A., Blakeslee, J.P., Ajhar,E.A., Fletcher, A.B., Luppino, G.A., Metzger,M.R.,Moore,C.B.,2001,ApJ546,641 Tully,R.B.,Pierce,M.J.,Huang,J.,Saunders,W.,Verheijen,M.,Witchalls,P.L.,1998, AJ115,2264 Tully,R.B.,Pierce,M.J.,2000,ApJ533,744 vanLeeuwen,F.,Feast,M.,Whitelock,P.,andLaney,C.2007,MNRAS379,723 Willick,J.A.1996,preprint–astroph/9610200 Wright,E.L.2006,PASP118,1711