Synthetic Construction of the Hopf Fibration in a Double Orthogonal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mostly Surfaces Richard Evan Schwartz
Mostly Surfaces Richard Evan Schwartz Department of Mathematics, Brown University Current address: 151 Thayer St. Providence, RI 02912 E-mail address: [email protected] 2010 Mathematics Subject Classification. Primary Key words and phrases. surfaces, geometry, topology, complex analysis supported by N.S.F. grant DMS-0604426. Contents Preface xiii Chapter 1. Book Overview 1 1.1. Behold, the Torus! 1 § 1.2. Gluing Polygons 3 § 1.3.DrawingonaSurface 5 § 1.4. Covering Spaces 8 § 1.5. HyperbolicGeometryandtheOctagon 9 § 1.6. Complex Analysis and Riemann Surfaces 11 § 1.7. ConeSurfacesandTranslationSurfaces 13 § 1.8. TheModularGroupandtheVeechGroup 14 § 1.9. Moduli Space 16 § 1.10. Dessert 17 § Part 1. Surfaces and Topology Chapter2. DefinitionofaSurface 21 2.1. A Word about Sets 21 § 2.2. Metric Spaces 22 § 2.3. OpenandClosedSets 23 § 2.4. Continuous Maps 24 § v vi Contents 2.5. Homeomorphisms 25 § 2.6. Compactness 26 § 2.7. Surfaces 26 § 2.8. Manifolds 27 § Chapter3. TheGluingConstruction 31 3.1. GluingSpacesTogether 31 § 3.2. TheGluingConstructioninAction 34 § 3.3. The Classification of Surfaces 36 § 3.4. TheEulerCharacteristic 38 § Chapter 4. The Fundamental Group 43 4.1. A Primer on Groups 43 § 4.2. Homotopy Equivalence 45 § 4.3. The Fundamental Group 46 § 4.4. Changing the Basepoint 48 § 4.5. Functoriality 49 § 4.6. Some First Steps 51 § Chapter 5. Examples of Fundamental Groups 53 5.1.TheWindingNumber 53 § 5.2. The Circle 56 § 5.3. The Fundamental Theorem of Algebra 57 § 5.4. The Torus 58 § 5.5. The 2-Sphere 58 § 5.6. TheProjectivePlane 59 § 5.7. A Lens Space 59 § 5.8. -
Maps That Take Lines to Circles, in Dimension 4
Maps That Take Lines to Circles, in Dimension 4 V. Timorin Abstract. We list all analytic diffeomorphisms between an open subset of the 4-dimen- sional projective space and an open subset of the 4-dimensional sphere that take all line segments to arcs of round circles. These are the following: restrictions of the quaternionic Hopf fibrations and projections from a hyperplane to a sphere from some point. We prove this by finding the exact solutions of the corresponding system of partial differential equations. 1 Introduction Let U be an open subset of the 4-dimensional real projective space RP4 and V an open subset of the 4-dimensional sphere S4. We study diffeomorphisms f : U → V that take all line segments lying in U to arcs of round circles lying in V . For the sake of brevity we will always say in the sequel that f takes all lines to circles. The purpose of this article is to give the complete list of such analytic diffeomorphisms. Remark. Given a diffeomorphism f : U → V that takes lines to circles, we can compose it with a projective transformation in the preimage (which takes lines to lines) and a conformal transformation in the image (which takes circles to circles). The result will be another diffeomorphism taking lines to circles. Example 1. For example, suppose that S4 is embedded in R5 as a Euclidean sphere and take an arbitrary hyperplane and an arbitrary point in R5. Obviously, the pro- jection of the hyperplane to S4 form the given point takes all lines to circles. -
Villarceau Circles
Villarceau Circles by Marcel Berger, Mathematician & former director of IHÉS (Institut des Hautes Études scientifiques) Figure 1: Villarceau Circles on a torus. For me, it is a great pleasure to write a text about Villarceau Circles1, because they are doubly and strongly linked to my personal life. Here is why. My first encounter with these exotic circles came about like this. In my final year of high school in 1943-1944, in addition to the typically recommended maths books, I had at hand the work that my father had had in the very same class, the exact title of these two great volumes being Traité de Géométrie by authors Rouché and de Comberousse. Certainly, they fully treated the geometry programme of final year science, but they were also filled with out of programme appendices (at that time important because they were linked to posterior geometry). Slightly obsessed with geometry, leafing through the second volume, I discovered in an appendix this surprising fact (an understatement), at least for me but probably for you too, dear reader, that a torus (always understood at the time as a torus of revolution), contained many other circles than meridian and parallel circles. I was so surprised that, instead of watching the demonstration, and in great laziness, my first reaction was to try a physical demonstration, namely to saw a ring from a wooden curtain rod. With primitive handsaws, and mainly with a ring that was ultimately too thin, the operation proved inconclusive. Regarding an elementary demonstration, and others at all levels, whose data of this result in preparatory class still remains spectacular, see 1. -
The Hopf Fibration
THE HOPF FIBRATION The Hopf fibration is an important object in fields of mathematics such as topology and Lie groups and has many physical applications such as rigid body mechanics and magnetic monopoles. This project will introduce the Hopf fibration from the points of view of the quaternions and of the complex numbers. n n+1 Consider the standard unit sphere S ⊂ R to be the set of points (x0; x1; : : : ; xn) that satisfy the equation 2 2 2 x0 + x1 + ··· + xn = 1: One way to define the Hopf fibration is via the mapping h : S3 ! S2 given by (1) h(a; b; c; d) = (a2 + b2 − c2 − d2; 2(ad + bc); 2(bd − ac)): You should check that this is indeed a map from S3 to S2. 3 (1) First, we will use the quaternions to study rotations in R . As a set and as a 4 vector space, the set of quaternions is identical to R . There are 3 distinguished coordinate vectors{(0; 1; 0; 0); (0; 0; 1; 0); (0; 0; 0; 1){which are given the names i; j; k respectively. We write the vector (a; b; c; d) as a + bi + cj + dk. The multiplication rules for quaternions can be summarized via the following: i2 = j2 = k2 = −1; ij = k; jk = i; ki = j: Is quaternion multiplication commutative? Is it associative? We can define several other notions associated with quaternions. The conjugate of a quaternionp r = a + bi + cj + dk isr ¯ = a − bi − cj − dk. The norm of r is jjrjj = a2 + b2 + c2 + d2. -
Surfaces Containing Two Circles Through Each Point
Surfaces containing two circles through each point M. Skopenkov, R. Krasauskas Abstract We find all analytic surfaces in 3-dimensional Euclidean space such that through each point of the surface one can draw two transversal circular arcs fully contained in the surface (and analyti- cally depending on the point). The search for such surfaces traces back to the works of Darboux from XIXth century. We prove that such a surface is an image of a subset of one of the following sets under some composition of inversions: 3 - the set f p + q : p 2 α; q 2 β g, where α; β are two circles in R ; p×q 2 - the set f 2 jp+qj2 : p 2 α; q 2 β; p + q 6= 0 g, where α; β are circles in the unit sphere S ; 2 2 2 - the set f (x; y; z): Q(x; y; z; x + y + z ) = 0 g, where Q 2 R[x; y; z; t] has degree 2 or 1. The proof uses a new factorization technique for quaternionic polynomials. Keywords: Moebius geometry, circle, quaternion, Pythagorean n-tuple, polynomials factorization 2010 MSC: 51B10, 13F15, 16H05 1 Introduction Dedicated to the last real scientists, searching only for the truth, not career, not glory, not pushing forward their own field or students For which surfaces in 3-dimensional Euclidean space, through each point of the surface one can draw two transversal circular arcs fully contained in the surface? This is a question which simply must be answered by mathematicians because of a natural statement and obvious architectural moti- vation — recall Shukhov’s hyperboloid structures. -
Oriented Projective Geometry for Computer Vision
Oriented Projective Geometry for Computer Vision St~phane Laveau Olivier Faugeras e-mall: Stephane. Laveau@sophia. inria, fr, Olivier.Faugeras@sophia. inria, fr INRIA. 2004, route des Lucioles. B.R 93. 06902 Sophia-Antipolis. FRANCE. Abstract. We present an extension of the usual projective geometric framework for computer vision which can nicely take into account an information that was previously not used, i.e. the fact that the pixels in an image correspond to points which lie in front of the camera. This framework, called the oriented projective geometry, retains all the advantages of the unoriented projective geometry, namely its simplicity for expressing the viewing geometry of a system of cameras, while extending its adequation to model realistic situations. We discuss the mathematical and practical issues raised by this new framework for a number of computer vision algorithms. We present different experiments where this new tool clearly helps. 1 Introduction Projective geometry is now established as the correct and most convenient way to de- scribe the geometry of systems of cameras and the geometry of the scene they record. The reason for this is that a pinhole camera, a very reasonable model for most cameras, is really a projective (in the sense of projective geometry) engine projecting (in the usual sense) the real world onto the retinal plane. Therefore we gain a lot in simplicity if we represent the real world as a part of a projective 3-D space and the retina as a part of a projective 2-D space. But in using such a representation, we apparently loose information: we are used to think of the applications of computer vision as requiring a Euclidean space and this notion is lacking in the projective space. -
Single Digits
...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library -
Correlators of Wilson Loops on Hopf Fibrations
UNIVERSITA` DEGLI STUDI DI PARMA Dottorato di Ricerca in Fisica Ciclo XXV Correlators of Wilson loops on Hopf fibrations in the AdS5=CFT4 correspondence Coordinatore: Chiar.mo Prof. PIERPAOLO LOTTICI Supervisore: Dott. LUCA GRIGUOLO Dottorando: STEFANO MORI Anno Accademico 2012/2013 ויאמר אלהיM יהי אור ויהי אור בראשׂיה 1:3 Io stimo pi`uil trovar un vero, bench´edi cosa leggiera, che 'l disputar lungamente delle massime questioni senza conseguir verit`anissuna. (Galileo Galilei, Scritti letterari) Contents 1 The correspondence and its observables 1 1.1 AdS5=CFT4 correspondence . .1 1.1.1 N = 4 SYM . .1 1.1.2 AdS space . .2 1.2 Brane construction . .4 1.3 Symmetries matching . .6 1.4 AdS/CFT dictionary . .7 1.5 Integrability . .9 1.6 Wilson loops and Minimal surfaces . 10 1.7 Mixed correlation functions and local operator insertion . 13 1.8 Main results from the correspondence . 14 2 Wilson Loops and Supersymmetry 17 2.1 BPS configurations . 17 2.2 Zarembo supersymmetric loops . 18 2.3 DGRT loops . 20 2.3.1 Hopf fibers . 23 2.4 Matrix model . 25 2.5 Calibrated surfaces . 27 3 Strong coupling results 31 3.1 Basic examples . 31 3.1.1 Straight line . 31 3.1.2 Cirle . 32 3.1.3 Antiparallel lines . 33 3.1.4 1/4 BPS circular loop . 33 3.2 Systematic regularization . 35 3.3 Ansatz and excited charges . 36 3.4 Hints of 1-loop computation . 37 v 4 Hopf fibers correlators 41 4.1 Strong coupling solution . 41 4.1.1 S5 motion . -
Descriptive Geometry 2 by Pál Ledneczki Ph.D
Descriptive Geometry 2 By Pál Ledneczki Ph.D. Table of contents 1. Intersection of cone and plane 2. Perspective image of circle 3. Tangent planes and surface normals 4. Intersection of surfaces 5. Ellipsoid of revolution 6. Paraboloid of revolution 7. Torus 8. Ruled surfaces 9. Hyperboloid of one sheet 10. Hyperbolic paraboloid 11. Conoid 12. Developable surfaces 13. Helix and helicoid Intersection of Cone and Plane: Ellipse The intersection of a cone of revolution and a plane is an ellipse if the plane (not passing through the vertex of the cone) intersects all generators. Dandelin spheres: spheres in a cone, tangent to the T2 cone (along a circle) and also tangent to the plane of F2 intersection. Foci of ellipse: F1 and F2, points of contact of plane of intersection and the Dadelin spheres. P P: piercing point of a generator, point of the curve of F 1 intersection. T1 and T2, points of contact of the generator and the Dandelin sphere. T1 PF1 = PT1, PF2 = PT2 (tangents to sphere from an external point). PF1 + PF2 = PT1 + PT2 = T1T2 = constant http://www.clowder.net/hop/Dandelin/Dandelin.html Descriptive Geometry 2 Intersection of cone and plane 2 Construction of Minor Axis α ” Let the plane of intersection α” second projecting A” plane that intersects all generators. L”=C”=D” The endpoints of the major axis are A and B, the β ” K” piercing points of the leftmost and rightmost generators respectively. B” The midpoint L of AB is the centre of ellipse. C’ Horizontal auxiliary plane β” passing through L intersects the cone in a circle with the centre of K. -
Visualization of Quaternions with Clifford Parallelism
Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015) Visualization of quaternions with Clifford parallelism Yoichi Maeda [email protected] Department of Mathematics Tokai University Japan Abstract: In this paper, we try to visualize multiplication of unit quaternions with dynamic geometry software Cabri 3D. The three dimensional sphere is identified with the set of unit quaternions. Multiplication of unit quaternions is deeply related with Clifford parallelism, a special isometry in . 1. Introduction The quaternions are a number system that extends the complex numbers. They were first described by William R. Hamilton in 1843 ([1] p.186, [3]). The identities 1, where , and are basis elements of , determine all the possible products of , and : ,,,,,. For example, if 1 and 23, then, 12 3 2 3 2 3. We are very used to the complex numbers and we have a simple geometric image of the multiplication of complex numbers with the complex plane. How about the multiplication of quaternions? This is the motivation of this research. Fortunately, a unit quaternion with norm one (‖‖ 1) is regarded as a point in . In addition, we have the stereographic projection from to . Therefore, we can visualize three quaternions ,, and as three points in . What is the geometric relation among them? Clifford parallelism plays an important role for the understanding of the multiplication of quaternions. In section 2, we review the stereographic projection. With this projection, we try to construct Clifford parallel in Section 3. Finally, we deal with the multiplication of unit quaternions in Section 4. 2. Stereographic projection of the three-sphere The stereographic projection of the two dimensional sphere ([1, page 260], [2, page 74]) is a very important map in mathematics. -
How to Make a Torus Laszlo C
DO THE MATH! How to Make a Torus Laszlo C. Bardos sk a topologist how to make a model of a torus and your instructions will be to tape two edges of a piece of paper together to form a tube and then to tape the ends of the tube together. This process is math- Aematically correct, but the result is either a flat torus or a crinkled mess. A more deformable material such as cloth gives slightly better results, but sewing a torus exposes an unexpected property of tori. Start by sewing the torus The sticky notes inside out so that the stitching will be hidden when illustrate one of three the torus is reversed. Leave a hole in the side for this types of circular cross purpose. Wait a minute! Can you even turn a punctured sections. We find the torus inside out? second circular cross Surprisingly, the answer is yes. However, doing so section by cutting a yields a baffling result. A torus that started with a torus with a plane pleasing doughnut shape transforms into a one with perpendicular to different, almost unrecognizable dimensions when turned the axis of revolu- right side out. (See figure 1.) tion (both such cross So, if the standard model of a torus doesn’t work well, sections are shown we’ll need to take another tack. A torus is generated Figure 2. A torus made from on the green torus in sticky notes. by sweeping a figure 3). circle around But there is third, an axis in the less obvious way to same plane as create a circular cross the circle. -
Hopf Fibration and Clifford Translation* of the 3-Sphere See Clifford Tori
Hopf Fibration and Clifford Translation* of the 3-sphere See Clifford Tori and their discussion first. Most rotations of the 3-dimensional sphere S3 are quite different from what we might expect from familiarity with 2-sphere rotations. To begin with, most of them have no fixed points, and in fact, certain 1-parameter subgroups of rotations of S3 resemble translations so much, that they are referred to as Clifford translations. The description by formulas looks nicer in complex notation. For this we identify R2 with C, as usual, and multiplication by i in C 0 1 represented in 2 by matrix multiplication by . R 1 −0 µ ∂ Then the unit sphere S3 in R4 is given by: 3 2 2 2 S := p = (z1, z2) C ; z1 + z2 = 1 { ∈ | | | | } 4 2 (x1, x2, x3, x4) R ; (xk) = 1 . ∼ { ∈ } X And for ϕ R we define the Clifford Translation Cϕ : 3 3 ∈ iϕ iϕ S S by Cϕ(z1, z2) := (e z1, e z2). → The orbits of the one-parameter group Cϕ are all great circles, and they are equidistant from each other in analogy to a family of parallel lines; it is because of this behaviour that the Cϕ are called Clifford translations. * This file is from the 3D-XplorMath project. Please see: http://3D-XplorMath.org/ 29 But in another respect the behaviour of the Cϕ is quite different from a translation – so different that it is diffi- cult to imagine in R3. At each point p S3 we have one ∈ 2-dimensional subspace of the tangent space of S3 which is orthogonal to the great circle orbit through p.