A New Look at Exploiting Data Parallelism in Embedded Systems

Total Page:16

File Type:pdf, Size:1020Kb

A New Look at Exploiting Data Parallelism in Embedded Systems A New Look at Exploiting Data Parallelism in Embedded Systems Hillery C. Hunter Jaime H. Moreno Center for Reliable and High-Performance Computing IBM Research Division Department of Electrical and Computer Engineering T.J. Watson Research Center University of Illinois at Urbana-Champaign Yorktown Heights, NY [email protected] [email protected] ABSTRACT 1. INTRODUCTION This paper describes and evaluates three architectural meth- Demand for personal device functionality and performance ods for accomplishing data parallel computation in a pro- has made the ability to perform multiple computations per grammable embedded system. Comparisons are made be- cycle essential in the digital signal processing (DSP) and tween the well-studied Very Long Instruction Word (VLIW) embedded domains. These computations can be gleaned and Single Instruction Multiple Packed Data (SIM pD) from multiple forms of program parallelism. Instruction- paradigms; the less-common Single Instruction Multiple Dis- level parallelism (ILP) occurs at the operation level when joint Data (SIM dD) architecture is described and evalu- two or more operations are data-independent from one an- ated. A taxonomy is defined for data-level parallel architec- other and may be executed concurrently. Data-level paral- tures, and patterns of data access for parallel computation lelism (DLP) occurs when the same operation is executed are studied, with measurements presented for over 40es- on each member of a set of data. When the elements of sential telecommunication and media kernels. While some data parallel computations are narrower than a standard algorithms exhibit data-level parallelism suited to packed data width (e.g. 8 instead of 32 bits), sub-word parallelism vector computation, it is shown that other kernels are most (SWP) is present. Superscalar machines detect instruction efficiently scheduled with more flexible vector models. This parallelism in hardware, but other approaches require ILP, motivates exploration of non-traditional processor architec- DLP, and SWP to be explicitly exposed by a compiler or tures for the embedded domain. programmer. Broad application parallelism categories exist (e.g. nu- merical applications are highly data parallel and control ap- Categories and Subject Descriptors plications have little ILP), but most complete applications C.1.1 [Processor Architectures]: Single Data Stream Ar- contain both instruction-level and data parallelism. In the chitectures; C.1.2 [Processor Architectures]: Multiple embedded domain, repetition of computations across sym- Data Stream Architectures; C.1.3 [Processor Architec- bols and pixels results in particularly high amounts of data tures]: Other Architecture Styles; C.3 [Processor Ar- parallelism. This paper is motivated by the breadth of DSP chitectures]: Special-Purpose and Application-Based Sys- and embedded architectures currently available for 2.5G and tems—Real-time and embedded systems;C.4[Processor Third-Generation (3G) wireless systems, so examples and Architectures]: Performance of systems—Design studies analysis will focus on telecommunication and media kernels. This paper qualitatively and quantitatively analyzes meth- ods for performing data parallel computation. Three pri- General Terms mary architecture styles are evaluated: Very Long Instruc- Design tion Word (VLIW), Single Instruction Multiple Packed Data (SIM pD), and Single Instruction Multiple Disjoint Data (SIM dD). Section 3 presents a taxonomy of architectures Keywords and Section 4 describes implementations of these architec- tures. Comparisons in Section 5 include ease of implemen- Data-Level Parallelism, DLP, ILP, SIMD, Sub-word Paral- tation and programming; performance; and the ability to lelism, VLIW, Embedded, Processor, DSP, Telecommunica- match inherent algorithmic patterns. In Section 6, ker- tions, Media, Architecture nels are grouped according to data access patterns, and the amount of irregular patterns is quantified. The results of this analysis motivate definition and exploration of alterna- tive forms of data access. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies 2. RELATED WORK bear this notice and the full citation on the first page. To copy otherwise, to In the uni-processor domain, previous research on data republish, to post on servers or to redistribute to lists, requires prior specific parallel computation deals primarily with architectures us- permission and/or a fee. CASES’03, Oct. 30–Nov. 1, 2003, San Jose, California, USA. ing packed vector data, meaning that multiple data elements Copyright 2003 ACM 1-58113-676-5/03/0010 ...$5.00. are joined together into a single register. In the literature, 159 this is commonly referred to simply as SIMD – Single In- If instructions are viewed as the controllers of data us- struction Multiple Data. For each commercial SIMD ex- age and production, the most general architectural model tension, there are many papers which evaluate speedups re- will allow for simultaneous execution of an arbitrary com- alized for particular domains. A thorough survey of these bination of instructions and a similarly flexible use of data performance studies on the Sun VIS, Intel MMX and SSE, registers. However, to produce useful work, instructions will and IBM PowerPC AltiVec extensions is given in [1]. Most inherently have some degree of dependence on one another, studies focus on general-purpose video and matrix kernels and must therefore be sequenced or combined as dictated and applications. In addition, [2] compares TI C62x VLIW by program control flow. In contrast, data access is not performance to signal processing and multimedia compu- generally restricted by program flow, but by hardware sim- tation on a Pentium II with and without MMX support; plifications made at the time of architecture design. and [3] compares execution of EEMBC telecommunication In [7], Stokes illustrates a Single Instruction Single Data and consumer benchmarks on a proposed vector processor (SISD) architecture as consisting of a single sequential in- (VIRAM) to commercial VLIW and superscalar implemen- struction stream which operates on a single data (register) tations. stream, and produces a single output stream. An adapta- Aside from performance studies, there are several bod- tion of Stokes’ one-wide, in-order processor representation ies of work related to overcoming bottlenecks within the isshowninFigure1(a). packed vector format. Proposals to increase multimedia If a statically-scheduled architecture allows simultaneous performance include: the MediaBreeze architecture which and different processing of multiple independent data (reg- improves address generation, loop handling, and data re- ister) streams, the result is a Very Long Instruction Word ordering [4]; the MOM (Matrix Oriented Multimedia) ISA (VLIW) architecture. The instruction stream in Figure 1(b) extension for performing matrix operations on two-dimen- is a combination of multiple operations, grouped into an in- sional data; and use of in-order processors with long vectors struction word which specifies multiple computations. In- instead of superscalar architectures [1]. dividual operations may use any registers, with the restric- Data alignment requirements of the packed vector data tion that their destinations must generally be unique so as paradigm have also received some attention in the form of to avoid write-back ambiguity within a single cycle of exe- alternate permutation (data re-arrangement) networks and cution. This is the most general of the architecture types instruction set modifications. Yang et al. discuss the need discussed in this paper. for flexible permutation instructions in packed vector ar- If the VLIW instruction stream is modified to consist of chitectures, and propose instructions which use a butterfly single, sequential operations, the result is a Single Instruc- permutation network to provide rearrangement of subword tion Multiple Data (SIMD) architecture. Here single opera- data elements [1]. tions are specified in the instruction stream, but each spec- Little work has considered the extent to which media al- ified operation is performed on multiple data elements. For gorithms are truly or only partially suited to packed vec- the general SIMD case, these data elements may come from, tor computation. Bronson’s work [5] was evaluated in a and be written back to, disjoint locations. This separation of multi-processor context, but its premise is that there are al- input and output data streams will be indicated by the no- gorithms which do not map fully to a SIMD computational tation SIM dD (Single Instruction Multiple Disjoint Data), model, and which benefit from a mixed SIMD/MIMD (Mul- andispicturedinFigure1(c). tiple Instruction Multiple Data) system. Faraboschi et al. [6] Current SIMD implementations, however, do not allow advocate a mixed VLIW/SIMD system in which SIMD com- this level of data flexibility. Instead, multiple data elements ponents are programmed by hand, and ILP is scheduled on for SIMD operations are packed into a single register, of- VLIW units by the compiler. They discuss tradeoffs be- ten called a SIMD vector register. Each instruction causes tween VLIW and packed vector architectures in terms of an operation to be performed on all elements in its source implementation and code generation. registers, and there is only one input data
Recommended publications
  • Data-Level Parallelism
    Fall 2015 :: CSE 610 – Parallel Computer Architectures Data-Level Parallelism Nima Honarmand Fall 2015 :: CSE 610 – Parallel Computer Architectures Overview • Data Parallelism vs. Control Parallelism – Data Parallelism: parallelism arises from executing essentially the same code on a large number of objects – Control Parallelism: parallelism arises from executing different threads of control concurrently • Hypothesis: applications that use massively parallel machines will mostly exploit data parallelism – Common in the Scientific Computing domain • DLP originally linked with SIMD machines; now SIMT is more common – SIMD: Single Instruction Multiple Data – SIMT: Single Instruction Multiple Threads Fall 2015 :: CSE 610 – Parallel Computer Architectures Overview • Many incarnations of DLP architectures over decades – Old vector processors • Cray processors: Cray-1, Cray-2, …, Cray X1 – SIMD extensions • Intel SSE and AVX units • Alpha Tarantula (didn’t see light of day ) – Old massively parallel computers • Connection Machines • MasPar machines – Modern GPUs • NVIDIA, AMD, Qualcomm, … • Focus of throughput rather than latency Vector Processors 4 SCALAR VECTOR (1 operation) (N operations) r1 r2 v1 v2 + + r3 v3 vector length add r3, r1, r2 vadd.vv v3, v1, v2 Scalar processors operate on single numbers (scalars) Vector processors operate on linear sequences of numbers (vectors) 6.888 Spring 2013 - Sanchez and Emer - L14 What’s in a Vector Processor? 5 A scalar processor (e.g. a MIPS processor) Scalar register file (32 registers) Scalar functional units (arithmetic, load/store, etc) A vector register file (a 2D register array) Each register is an array of elements E.g. 32 registers with 32 64-bit elements per register MVL = maximum vector length = max # of elements per register A set of vector functional units Integer, FP, load/store, etc Some times vector and scalar units are combined (share ALUs) 6.888 Spring 2013 - Sanchez and Emer - L14 Example of Simple Vector Processor 6 6.888 Spring 2013 - Sanchez and Emer - L14 Basic Vector ISA 7 Instr.
    [Show full text]
  • High Performance Computing Through Parallel and Distributed Processing
    Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64 Journal Of Harmonized Research (JOHR) Journal Of Harmonized Research in Engineering 1(2), 2013, 54-64 ISSN 2347 – 7393 Original Research Article High Performance Computing through Parallel and Distributed Processing Shikha Yadav, Preeti Dhanda, Nisha Yadav Department of Computer Science and Engineering, Dronacharya College of Engineering, Khentawas, Farukhnagar, Gurgaon, India Abstract : There is a very high need of High Performance Computing (HPC) in many applications like space science to Artificial Intelligence. HPC shall be attained through Parallel and Distributed Computing. In this paper, Parallel and Distributed algorithms are discussed based on Parallel and Distributed Processors to achieve HPC. The Programming concepts like threads, fork and sockets are discussed with some simple examples for HPC. Keywords: High Performance Computing, Parallel and Distributed processing, Computer Architecture Introduction time to solve large problems like weather Computer Architecture and Programming play forecasting, Tsunami, Remote Sensing, a significant role for High Performance National calamities, Defence, Mineral computing (HPC) in large applications Space exploration, Finite-element, Cloud science to Artificial Intelligence. The Computing, and Expert Systems etc. The Algorithms are problem solving procedures Algorithms are Non-Recursive Algorithms, and later these algorithms transform in to Recursive Algorithms, Parallel Algorithms particular Programming language for HPC. and Distributed Algorithms. There is need to study algorithms for High The Algorithms must be supported the Performance Computing. These Algorithms Computer Architecture. The Computer are to be designed to computer in reasonable Architecture is characterized with Flynn’s Classification SISD, SIMD, MIMD, and For Correspondence: MISD. Most of the Computer Architectures preeti.dhanda01ATgmail.com are supported with SIMD (Single Instruction Received on: October 2013 Multiple Data Streams).
    [Show full text]
  • Introduction to Multi-Threading and Vectorization Matti Kortelainen Larsoft Workshop 2019 25 June 2019 Outline
    Introduction to multi-threading and vectorization Matti Kortelainen LArSoft Workshop 2019 25 June 2019 Outline Broad introductory overview: • Why multithread? • What is a thread? • Some threading models – std::thread – OpenMP (fork-join) – Intel Threading Building Blocks (TBB) (tasks) • Race condition, critical region, mutual exclusion, deadlock • Vectorization (SIMD) 2 6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization Motivations for multithreading Image courtesy of K. Rupp 3 6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization Motivations for multithreading • One process on a node: speedups from parallelizing parts of the programs – Any problem can get speedup if the threads can cooperate on • same core (sharing L1 cache) • L2 cache (may be shared among small number of cores) • Fully loaded node: save memory and other resources – Threads can share objects -> N threads can use significantly less memory than N processes • If smallest chunk of data is so big that only one fits in memory at a time, is there any other option? 4 6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization What is a (software) thread? (in POSIX/Linux) • “Smallest sequence of programmed instructions that can be managed independently by a scheduler” [Wikipedia] • A thread has its own – Program counter – Registers – Stack – Thread-local memory (better to avoid in general) • Threads of a process share everything else, e.g. – Program code, constants – Heap memory – Network connections – File handles
    [Show full text]
  • Demystifying Parallel and Distributed Deep Learning: an In-Depth Concurrency Analysis
    1 Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis TAL BEN-NUN and TORSTEN HOEFLER, ETH Zurich, Switzerland Deep Neural Networks (DNNs) are becoming an important tool in modern computing applications. Accelerating their training is a major challenge and techniques range from distributed algorithms to low-level circuit design. In this survey, we describe the problem from a theoretical perspective, followed by approaches for its parallelization. We present trends in DNN architectures and the resulting implications on parallelization strategies. We then review and model the different types of concurrency in DNNs: from the single operator, through parallelism in network inference and training, to distributed deep learning. We discuss asynchronous stochastic optimization, distributed system architectures, communication schemes, and neural architecture search. Based on those approaches, we extrapolate potential directions for parallelism in deep learning. CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies → Neural networks; Parallel computing methodologies; Distributed computing methodologies; Additional Key Words and Phrases: Deep Learning, Distributed Computing, Parallel Algorithms ACM Reference Format: Tal Ben-Nun and Torsten Hoefler. 2018. Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis. 47 pages. 1 INTRODUCTION Machine Learning, and in particular Deep Learning [143], is rapidly taking over a variety of aspects in our daily lives.
    [Show full text]
  • Parallel Programming: Performance
    Introduction Parallel Programming: Rich space of techniques and issues • Trade off and interact with one another Performance Issues can be addressed/helped by software or hardware • Algorithmic or programming techniques • Architectural techniques Todd C. Mowry Focus here on performance issues and software techniques CS 418 • Point out some architectural implications January 20, 25 & 26, 2011 • Architectural techniques covered in rest of class –2– CS 418 Programming as Successive Refinement Outline Not all issues dealt with up front 1. Partitioning for performance Partitioning often independent of architecture, and done first 2. Relationshipp,y of communication, data locality and • View machine as a collection of communicating processors architecture – balancing the workload – reducing the amount of inherent communication 3. Orchestration for performance – reducing extra work • Tug-o-war even among these three issues For each issue: Then interactions with architecture • Techniques to address it, and tradeoffs with previous issues • Illustration using case studies • View machine as extended memory hierarchy • Application to g rid solver –extra communication due to archlhitectural interactions • Some architectural implications – cost of communication depends on how it is structured • May inspire changes in partitioning Discussion of issues is one at a time, but identifies tradeoffs 4. Components of execution time as seen by processor • Use examples, and measurements on SGI Origin2000 • What workload looks like to architecture, and relate to software issues –3– CS 418 –4– CS 418 Page 1 Partitioning for Performance Load Balance and Synch Wait Time Sequential Work 1. Balancing the workload and reducing wait time at synch Limit on speedup: Speedupproblem(p) < points Max Work on any Processor • Work includes data access and other costs 2.
    [Show full text]
  • Exploiting Parallelism in Many-Core Architectures: Architectures G Bortolotti, M Caberletti, G Crimi Et Al
    Journal of Physics: Conference Series OPEN ACCESS Related content - Computing on Knights and Kepler Exploiting parallelism in many-core architectures: Architectures G Bortolotti, M Caberletti, G Crimi et al. Lattice Boltzmann models as a test case - Implementing the lattice Boltzmann model on commodity graphics hardware Arie Kaufman, Zhe Fan and Kaloian To cite this article: F Mantovani et al 2013 J. Phys.: Conf. Ser. 454 012015 Petkov - Many-core experience with HEP software at CERN openlab Sverre Jarp, Alfio Lazzaro, Julien Leduc et al. View the article online for updates and enhancements. Recent citations - Lattice Boltzmann benchmark kernels as a testbed for performance analysis M. Wittmann et al - Enrico Calore et al - Computing on Knights and Kepler Architectures G Bortolotti et al This content was downloaded from IP address 170.106.202.58 on 23/09/2021 at 15:57 24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing Journal of Physics: Conference Series 454 (2013) 012015 doi:10.1088/1742-6596/454/1/012015 Exploiting parallelism in many-core architectures: Lattice Boltzmann models as a test case F Mantovani1, M Pivanti2, S F Schifano3 and R Tripiccione4 1 Department of Physics, Univesit¨atRegensburg, Germany 2 Department of Physics, Universit`adi Roma La Sapienza, Italy 3 Department of Mathematics and Informatics, Universit`adi Ferrara and INFN, Italy 4 Department of Physics and CMCS, Universit`adi Ferrara and INFN, Italy E-mail: [email protected], [email protected], [email protected], [email protected] Abstract. In this paper we address the problem of identifying and exploiting techniques that optimize the performance of large scale scientific codes on many-core processors.
    [Show full text]
  • An Introduction to Gpus, CUDA and Opencl
    An Introduction to GPUs, CUDA and OpenCL Bryan Catanzaro, NVIDIA Research Overview ¡ Heterogeneous parallel computing ¡ The CUDA and OpenCL programming models ¡ Writing efficient CUDA code ¡ Thrust: making CUDA C++ productive 2/54 Heterogeneous Parallel Computing Latency-Optimized Throughput- CPU Optimized GPU Fast Serial Scalable Parallel Processing Processing 3/54 Why do we need heterogeneity? ¡ Why not just use latency optimized processors? § Once you decide to go parallel, why not go all the way § And reap more benefits ¡ For many applications, throughput optimized processors are more efficient: faster and use less power § Advantages can be fairly significant 4/54 Why Heterogeneity? ¡ Different goals produce different designs § Throughput optimized: assume work load is highly parallel § Latency optimized: assume work load is mostly sequential ¡ To minimize latency eXperienced by 1 thread: § lots of big on-chip caches § sophisticated control ¡ To maXimize throughput of all threads: § multithreading can hide latency … so skip the big caches § simpler control, cost amortized over ALUs via SIMD 5/54 Latency vs. Throughput Specificaons Westmere-EP Fermi (Tesla C2050) 6 cores, 2 issue, 14 SMs, 2 issue, 16 Processing Elements 4 way SIMD way SIMD @3.46 GHz @1.15 GHz 6 cores, 2 threads, 4 14 SMs, 48 SIMD Resident Strands/ way SIMD: vectors, 32 way Westmere-EP (32nm) Threads (max) SIMD: 48 strands 21504 threads SP GFLOP/s 166 1030 Memory Bandwidth 32 GB/s 144 GB/s Register File ~6 kB 1.75 MB Local Store/L1 Cache 192 kB 896 kB L2 Cache 1.5 MB 0.75 MB
    [Show full text]
  • Parallel Computing a Key to Performance
    Parallel Computing A Key to Performance Dheeraj Bhardwaj Department of Computer Science & Engineering Indian Institute of Technology, Delhi –110 016 India http://www.cse.iitd.ac.in/~dheerajb Dheeraj Bhardwaj <[email protected]> August, 2002 1 Introduction • Traditional Science • Observation • Theory • Experiment -- Most expensive • Experiment can be replaced with Computers Simulation - Third Pillar of Science Dheeraj Bhardwaj <[email protected]> August, 2002 2 1 Introduction • If your Applications need more computing power than a sequential computer can provide ! ! ! ❃ Desire and prospect for greater performance • You might suggest to improve the operating speed of processors and other components. • We do not disagree with your suggestion BUT how long you can go ? Can you go beyond the speed of light, thermodynamic laws and high financial costs ? Dheeraj Bhardwaj <[email protected]> August, 2002 3 Performance Three ways to improve the performance • Work harder - Using faster hardware • Work smarter - - doing things more efficiently (algorithms and computational techniques) • Get help - Using multiple computers to solve a particular task. Dheeraj Bhardwaj <[email protected]> August, 2002 4 2 Parallel Computer Definition : A parallel computer is a “Collection of processing elements that communicate and co-operate to solve large problems fast”. Driving Forces and Enabling Factors Desire and prospect for greater performance Users have even bigger problems and designers have even more gates Dheeraj Bhardwaj <[email protected]>
    [Show full text]
  • Computer Architecture: Parallel Processing Basics
    Computer Architecture: Parallel Processing Basics Onur Mutlu & Seth Copen Goldstein Carnegie Mellon University 9/9/13 Today What is Parallel Processing? Why? Kinds of Parallel Processing Multiprocessing and Multithreading Measuring success Speedup Amdhal’s Law Bottlenecks to parallelism 2 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi PDL'09 © 2007-9 Goldstein5 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi Parallel PDL'09 © 2007-9 Goldstein6 Concurrent Systems Physical Geographical Cloud Parallel Geophysical +++ ++ --- --- location Relative +++ +++ + - location Faults ++++ +++ ++++ -- Number of +++ +++ + - Processors + Network varies varies fixed fixed structure Network --- --- + + connectivity 7 Concurrent System Challenge: Programming The old joke: How long does it take to write a parallel program? One Graduate Student Year 8 Parallel Programming Again?? Increased demand (multicore) Increased scale (cloud) Improved compute/communicate Change in Application focus Irregular Recursive data structures PDL'09 © 2007-9 Goldstein9 Why Parallel Computers? Parallelism: Doing multiple things at a time Things: instructions,
    [Show full text]
  • 1 Parallelism
    Lecture 23: Parallelism • Administration – Take QUIZ 17 over P&H 7.1-5, before 11:59pm today – Project: Cache Simulator, Due April 29, 2010 • Last Time – On chip communication – How I/O works • Today – Where do architectures exploit parallelism? – What are the implications for programming models? – What are the implications for communication? – … for caching? UTCS 352, Lecture 23 1 Parallelism • What type of parallelism do applications have? • How can computer architectures exploit this parallelism? UTCS 352, Lecture 23 2 1 Granularity of Parallelism • Fine grain instruction level parallelism • Fine grain data parallelism • Coarse grain (data center) parallelism • Multicore parallelism UTCS 352, Lecture 23 3 Fine grain instruction level parallelism • Fine grain instruction level parallelism – Pipelining – Multi-issue (dynamic scheduling & issue) – VLIW (static issue) – Very Long Instruction Word • Each VLIW instruction includes up to N RISC-like operations • Compiler groups up to N independent operations • Architecture issues fixed size VLIW instructions UTCS 352, Lecture 23 4 2 VLIW Example Theory Let N = 4 Theoretically 4 ops/cycle • 8 VLIW = 32 operations in practice In practice, • Compiler cannot fill slots • Memory stalls - load stall - UTCS 352, Lecture 23 5 Multithreading • Performing multiple threads together – Replicate registers, PC, etc. – Fast switching between threads • Fine-grain multithreading – Switch threads after each cycle – Interleave instruction execution – If one thread stalls, others are executed • Medium-grain
    [Show full text]
  • Exploiting Parallelism Opportunities with Deep Learning Frameworks
    Exploiting Parallelism Opportunities with Deep Learning Frameworks YU EMMA WANG, Harvard University CAROLE-JEAN WU, Facebook XIAODONG WANG, Facebook KIM HAZELWOOD, Facebook DAVID BROOKS, Harvard University State-of-the-art machine learning frameworks support a wide variety of design features to enable a flexible machine learning programming interface and to ease the programmability burden on machine learning developers. Identifying and using a performance-optimal setting in feature-rich frameworks, however, involves a non-trivial amount of performance profiling efforts and often relies on domain-specific knowledge. This paper takesa deep dive into analyzing the performance impact of key design features in a machine learning framework and quantifies the role of parallelism. The observations and insights distill into a simple set of guidelines thatone can use to achieve much higher training and inference speedup. Across a diverse set of real-world deep learning models, the evaluation results show that the proposed performance tuning guidelines outperform the Intel and TensorFlow recommended settings by 1.29× and 1.34×, respectively. ACM Reference Format: Yu Emma Wang, Carole-Jean Wu, Xiaodong Wang, Kim Hazelwood, and David Brooks. 2020. Exploiting Parallelism Opportunities with Deep Learning Frameworks. 1, 1 (July 2020), 21 pages. https://doi.org/10.1145/ nnnnnnn.nnnnnnn 1 INTRODUCTION The wide adoption of deep learning (DL) tasks has spawned a plethora of domain-specific frameworks to help improve development efficiency and to enable a flexible path from research to production deployment for machine learning (ML). Notable ML frameworks include Caffe/Caffe2 [23], Py- Torch [24], TensorFlow [2], and MXNet [8]. These frameworks provide high-level APIs as the building blocks of DL models.
    [Show full text]
  • An Introduction to CUDA/Opencl and Graphics Processors
    An Introduction to CUDA/OpenCL and Graphics Processors Bryan Catanzaro, NVIDIA Research Overview ¡ Terminology ¡ The CUDA and OpenCL programming models ¡ Understanding how CUDA maps to NVIDIA GPUs ¡ Thrust 2/74 Heterogeneous Parallel Computing Latency Throughput Optimized CPU Optimized GPU Fast Serial Scalable Parallel Processing Processing 3/74 Latency vs. Throughput Latency Throughput ¡ Latency: yoke of oxen § Each core optimized for executing a single thread ¡ Throughput: flock of chickens § Cores optimized for aggregate throughput, deemphasizing individual performance ¡ (apologies to Seymour Cray) 4/74 Latency vs. Throughput, cont. Specificaons Sandy Bridge- Kepler EP (Tesla K20) 8 cores, 2 issue, 14 SMs, 6 issue, 32 Processing Elements 8 way SIMD way SIMD @3.1 GHz @730 MHz 8 cores, 2 threads, 8 14 SMs, 64 SIMD Resident Strands/ way SIMD: vectors, 32 way Threads (max) SIMD: Sandy Bridge-EP (32nm) 96 strands 28672 threads SP GFLOP/s 396 3924 Memory Bandwidth 51 GB/s 250 GB/s Register File 128 kB (?) 3.5 MB Local Store/L1 Cache 256 kB 896 kB L2 Cache 2 MB 1.5 MB L3 Cache 20 MB - Kepler (28nm) 5/74 Why Heterogeneity? ¡ Different goals produce different designs § Manycore assumes work load is highly parallel § Multicore must be good at everything, parallel or not ¡ Multicore: minimize latency experienced by 1 thread § lots of big on-chip caches § extremely sophisticated control ¡ Manycore: maximize throughput of all threads § lots of big ALUs § multithreading can hide latency … so skip the big caches § simpler control, cost amortized over
    [Show full text]