Fauna of Australia 2A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland
Herpetological Conservation and Biology 11:408–425. Submitted: 26 January 2016; Accepted: 2 September 2016; Published: 16 December 2016. Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland Joanne F. Ocock1,4, Richard T. Kingsford1, Trent D. Penman2, and Jodi J.L. Rowley1,3 1Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, 2052, Australia 2Centre for Environmental Risk Management of Bushfires, Institute of Conservation Biology and Environmental Management, University of Wollongong, Wollongong, New South Wales 2522, Australia 3Australian Museum Research Institute, Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia 4Corresponding author, email: [email protected] Abstract.—Amphibian abundance and occupancy are often reduced in regulated river systems near dams, but com- paratively little is known about how they are affected on floodplain wetlands downstream or the effects of actively managed flows. We assessed frog diversity in the Macquarie Marshes, a semi-arid floodplain wetland of conserva- tion significance, identifying environmental variables that might explain abundances and detection of species. We collected relative abundance data of 15 amphibian species at 30 sites over four months, coinciding with a large natural flood. We observed an average of 39.9 ± (SE) 4.3 (range, 0-246) individuals per site survey, over 47 survey nights. Three non-burrowing, ground-dwelling species were most abundant at temporarily flooded sites with low- growing aquatic vegetation (e.g., Limnodynastes tasmaniensis, Limnodynastes fletcheri, Crinia parinsignifera). Most arboreal species (e.g., Litoria caerulea) were more abundant in wooded habitat, regardless of water permanency. -
Managing Diversity in the Riverina Rice Fields—
Reconciling Farming with Wildlife —Managing diversity in the Riverina rice fields— RIRDC Publication No. 10/0007 RIRDCInnovation for rural Australia Reconciling Farming with Wildlife: Managing Biodiversity in the Riverina Rice Fields by J. Sean Doody, Christina M. Castellano, Will Osborne, Ben Corey and Sarah Ross April 2010 RIRDC Publication No 10/007 RIRDC Project No. PRJ-000687 © 2010 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 983 7 ISSN 1440-6845 Reconciling Farming with Wildlife: Managing Biodiversity in the Riverina Rice Fields Publication No. 10/007 Project No. PRJ-000687 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. -
Resource Allocation to Reproduction in Animals
Biol. Rev. (2014), 89, pp. 849–859. 849 doi: 10.1111/brv.12082 Resource allocation to reproduction in animals Sebastiaan A. L. M. Kooijman1,∗ and Konstadia Lika2 1Department of Theoretical Biology, VU University Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands 2Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece ABSTRACT The standard Dynamic Energy Budget (DEB) model assumes that a fraction κ of mobilised reserve is allocated to somatic maintenance plus growth, while the rest is allocated to maturity maintenance plus maturation (in embryos and juveniles) or reproduction (in adults). All DEB parameters have been estimated for 276 animal species from most large phyla and all chordate classes. The goodness of fit is generally excellent. We compared the estimated values of κ with those that would maximise reproduction in fully grown adults with abundant food. Only 13% of these species show a reproduction rate close to the maximum possible (assuming that κ can be controlled), another 4% have κ lower than the optimal value, and 83% have κ higher than the optimal value. Strong empirical support hence exists for the conclusion that reproduction is generally not maximised. We also compared the parameters of the wild chicken with those of races selected for meat and egg production and found that the latter indeed maximise reproduction in terms of κ, while surface-specific assimilation was not affected by selection. We suggest that small values of κ relate to the down-regulation of maximum body size, and large values to the down-regulation of reproduction. We briefly discuss the ecological context for these findings. -
The Unexpected Genetic Mating System of the Red‐Backed Toadlet
1 2 DR. PHILLIP BYRNE (Orcid ID : 0000-0003-2183-9959) 3 4 5 Article type : Original Article 6 7 8 The unexpected genetic mating system of the red-backed toadlet (Pseudophryne coriacea); a 9 species with prolonged terrestrial breeding and cryptic reproductive behaviour 10 11 Short running title: Cryptic reproductive behaviour in a frog 12 13 Daniel M. O’Brien1, J. Scott Keogh², Aimee J. Silla1, Phillip G. Byrne1* 14 1 Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, 15 University of Wollongong, Wollongong, New South Wales, Australia 2522 16 ² Ecology & Evolution, Research School of Biology, The Australian National University, 17 Canberra, Australian Capital Territory, Australia 0200 18 19 *corresponding author: 20 P.G. Byrne 21 E: [email protected] 22 P: + 61 2 4221 1932Author Manuscript This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/mec.14737 This article is protected by copyright. All rights reserved 23 F: + 61 2 4221 4135 24 25 Word count: 7861 26 Figures: 5 27 Tables: 2 28 Abstract 29 Molecular technologies have revolutionised our classification of animal mating systems, yet we 30 still know very little about the genetic mating systems of many vertebrate groups. It is widely 31 believed that anuran amphibians have the highest reproductive diversity of all vertebrates, yet 32 genetic mating systems have been studied in less than one percent of all described species. -
Toxicity of Glyphosate on Physalaemus Albonotatus (Steindachner, 1864) from Western Brazil
Ecotoxicol. Environ. Contam., v. 8, n. 1, 2013, 55-58 doi: 10.5132/eec.2013.01.008 Toxicity of Glyphosate on Physalaemus albonotatus (Steindachner, 1864) from Western Brazil F. SIMIONI 1, D.F.N. D A SILVA 2 & T. MO tt 3 1 Laboratório de Herpetologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil. 2 Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil. 3 Setor de Biodiversidade e Ecologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, Maceió, Alagoas, CEP 57072-970, Brazil. (Received April 12, 2012; Accept April 05, 2013) Abstract Amphibian declines have been reported worldwide and pesticides can negatively impact this taxonomic group. Brazil is the world’s largest consumer of pesticides, and Mato Grosso is the leader in pesticide consumption among Brazilian states. However, the effects of these chemicals on the biota are still poorly explored. The main goals of this study were to determine the acute toxicity (CL50) of the herbicide glyphosate on Physalaemus albonotatus, and to assess survivorship rates when tadpoles are kept under sub-lethal concentrations. Three egg masses of P. albonotatus were collected in Cuiabá, Mato Grosso, Brazil. Tadpoles were exposed for 96 h to varying concentrations of glyphosate to determine the CL50 and survivorship. The -1 CL50 was 5.38 mg L and there were statistically significant differences in mortality rates and the number of days that P. albonotatus tadpoles survived when exposed in different sub-lethal concentrations of glyphosate. Different sensibilities among amphibian species may be related with their historical contact with pesticides and/or specific tolerances. -
Amphibiaweb's Illustrated Amphibians of the Earth
AmphibiaWeb's Illustrated Amphibians of the Earth Created and Illustrated by the 2020-2021 AmphibiaWeb URAP Team: Alice Drozd, Arjun Mehta, Ash Reining, Kira Wiesinger, and Ann T. Chang This introduction to amphibians was written by University of California, Berkeley AmphibiaWeb Undergraduate Research Apprentices for people who love amphibians. Thank you to the many AmphibiaWeb apprentices over the last 21 years for their efforts. Edited by members of the AmphibiaWeb Steering Committee CC BY-NC-SA 2 Dedicated in loving memory of David B. Wake Founding Director of AmphibiaWeb (8 June 1936 - 29 April 2021) Dave Wake was a dedicated amphibian biologist who mentored and educated countless people. With the launch of AmphibiaWeb in 2000, Dave sought to bring the conservation science and basic fact-based biology of all amphibians to a single place where everyone could access the information freely. Until his last day, David remained a tirelessly dedicated scientist and ally of the amphibians of the world. 3 Table of Contents What are Amphibians? Their Characteristics ...................................................................................... 7 Orders of Amphibians.................................................................................... 7 Where are Amphibians? Where are Amphibians? ............................................................................... 9 What are Bioregions? ..................................................................................10 Conservation of Amphibians Why Save Amphibians? ............................................................................. -
White-Bellied and Orange-Bellied Frogs Geocrinia Species
White-bellied and Orange-bellied Frogs Geocrinia species Conservation Status: Critically Endangered and Vulnerable Identification The white-bellied frog Geocrinia alba and orange-bellied frog Geocrinia vitellina are two small species of frogs that are endemic to Western Australia and are both restricted to small areas in the lower southwest. There are also two other Geocrinia species found in the similar habitats in the southwest. The white-bellied frog has a light brown to grey back with two parallel rows of darker brown wart-like spots along the body. The belly is white, with or without a very faint yellow wash. Toes are short and unwebbed. The males make a mating call that is a series of 11-18 rapid pulses repeated irregularly. White-bellied frog. Photo: Perth Zoo You can listen to a recording of the call on the Western Australian Museum’s website. White-bellied Length: 2.0-2.4cm (males) and 1.7cm (females) The orange-bellied frog is similar-looking to the white-bellied frog, except that it has a bright orange or egg-yolk yellow coloured belly. The males making a mating call that is a series of 9-15 slow pulses repeated irregularly. You can listen to a recording of the call on the Western Australian Museum’s website. Orange-bellied Length 2.1-2.5cm (males) 1.8cm (females) Taxonomy Orange-bellied frog. Photo: Perth Zoo Family: Myobatrachidae Genus: Geocrinia Species (white-bellied): alba Species (orange-bellied): vitellina Other common names: the orange-bellied frog is also sometimes referred to as the yellow-bellied frog, because some have a bright yellow belly rather than a bright orange belly. -
Maritime Southeast Asia and Oceania Regional Focus
November 2011 Vol. 99 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus Maritime Southeast Asia and Oceania INSIDE News from the ASG Regional Updates Global Focus Recent Publications General Announcements And More..... Spotted Treefrog Nyctixalus pictus. Photo: Leong Tzi Ming New The 2012 Sabin Members’ Award for Amphibian Conservation is now Bulletin open for nomination Board FrogLog Vol. 99 | November 2011 | 1 Follow the ASG on facebook www.facebook.com/amphibiansdotor2 | FrogLog Vol. 99| November 2011 g $PSKLELDQ$UN FDOHQGDUVDUHQRZDYDLODEOH 7KHWZHOYHVSHFWDFXODUZLQQLQJSKRWRVIURP $PSKLELDQ$UN¶VLQWHUQDWLRQDODPSKLELDQ SKRWRJUDSK\FRPSHWLWLRQKDYHEHHQLQFOXGHGLQ $PSKLELDQ$UN¶VEHDXWLIXOZDOOFDOHQGDU7KH FDOHQGDUVDUHQRZDYDLODEOHIRUVDOHDQGSURFHHGV DPSKLELDQDUN IURPVDOHVZLOOJRWRZDUGVVDYLQJWKUHDWHQHG :DOOFDOHQGDU DPSKLELDQVSHFLHV 3ULFLQJIRUFDOHQGDUVYDULHVGHSHQGLQJRQ WKHQXPEHURIFDOHQGDUVRUGHUHG±WKHPRUH \RXRUGHUWKHPRUH\RXVDYH2UGHUVRI FDOHQGDUVDUHSULFHGDW86HDFKRUGHUV RIEHWZHHQFDOHQGDUVGURSWKHSULFHWR 86HDFKDQGRUGHUVRIDUHSULFHGDW MXVW86HDFK 7KHVHSULFHVGRQRWLQFOXGH VKLSSLQJ $VZHOODVRUGHULQJFDOHQGDUVIRU\RXUVHOIIULHQGV DQGIDPLO\ZK\QRWSXUFKDVHVRPHFDOHQGDUV IRUUHVDOHWKURXJK\RXU UHWDLORXWOHWVRUIRUJLIWV IRUVWDIIVSRQVRUVRUIRU IXQGUDLVLQJHYHQWV" 2UGHU\RXUFDOHQGDUVIURPRXUZHEVLWH ZZZDPSKLELDQDUNRUJFDOHQGDURUGHUIRUP 5HPHPEHU±DVZHOODVKDYLQJDVSHFWDFXODUFDOHQGDU WRNHHSWUDFNRIDOO\RXULPSRUWDQWGDWHV\RX¶OODOVREH GLUHFWO\KHOSLQJWRVDYHDPSKLELDQVDVDOOSUR¿WVZLOOEH XVHGWRVXSSRUWDPSKLELDQFRQVHUYDWLRQSURMHFWV ZZZDPSKLELDQDUNRUJ FrogLog Vol. 99 | November -
Bibliography and Scientific Name Index to Amphibians
lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year. -
Spatial Ecology of the Giant Burrowing Frog (Heleioporus Australiacus): Implications for Conservation Prescriptions
University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health January 2008 Spatial ecology of the giant burrowing frog (Heleioporus australiacus): implications for conservation prescriptions Trent D. Penman University of Wollongong, [email protected] F Lemckert M J Mahony Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Penman, Trent D.; Lemckert, F; and Mahony, M J: Spatial ecology of the giant burrowing frog (Heleioporus australiacus): implications for conservation prescriptions 2008, 179-186. https://ro.uow.edu.au/scipapers/724 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Spatial ecology of the giant burrowing frog (Heleioporus australiacus): implications for conservation prescriptions Abstract Management of threatened anurans requires an understanding of a species’ behaviour and habitat requirements in both the breeding and non-breeding environments. The giant burrowing frog (Heleioporus australiacus) is a threatened species in south-eastern Australia. Little is known about its habitat requirements, creating difficulties in vde eloping management strategies for the species.Weradio-tracked 33 individual H. australiacus in order to determine their habitat use and behaviour. Data from 33 frogs followed for between 5 and 599 days show that individuals spend little time near (<15 >m) their breeding sites (mean 4.7 days for males and 6.3 days for females annually). Most time is spent in distinct non- breeding activity areas 20–250m from the breeding sites. -
Analysis of the Intcrgencric Relationships of the Australian Frog Family Myobatrachidae
Analysis of the Intcrgencric Relationships of the Australian Frog Family Myobatrachidae W. RONALD HEYER and DAVID S. LIEM SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 233 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These pub- lications are distributed by mailing lists to libraries, laboratories, and other interested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available. -
North Central Waterwatch Frogs Field Guide
North Central Waterwatch Frogs Field Guide “This guide is an excellent publication. It strikes just the right balance, providing enough information in a format that is easy to use for identifying our locally occurring frogs, while still being attractive and interesting to read by people of all ages.” Rodney Orr, Bendigo Field Naturalists Club Inc. 1 The North Central CMA Region Swan Hill River Murray Kerang Cohuna Quambatook Loddon River Pyramid Hill Wycheproof Boort Loddon/Campaspe Echuca Watchem Irrigation Area Charlton Mitiamo Donald Rochester Avoca River Serpentine Avoca/Avon-Richardson Wedderburn Elmore Catchment Area Richardson River Bridgewater Campaspe River St Arnaud Marnoo Huntly Bendigo Avon River Bealiba Dunolly Loddon/Campaspe Dryland Area Heathcote Maryborough Castlemaine Avoca Loddon River Kyneton Lexton Clunes Daylesford Woodend Creswick Acknowledgement Of Country The North Central Catchment Management Authority (CMA) acknowledges Aboriginal Traditional Owners within the North Central CMA region, their rich culture and their spiritual connection to Country. We also recognise and acknowledge the contribution and interests of Aboriginal people and organisations in the management of land and natural resources. Acknowledgements North Central Waterwatch would like to acknowledge the contribution and support from the following organisations and individuals during the development of this publication: Britt Gregory from North Central CMA for her invaluable efforts in the production of this document, Goulburn Broken Catchment Management Authority for allowing use of their draft field guide, Lydia Fucsko, Adrian Martins, David Kleinert, Leigh Mitchell, Peter Robertson and Nick Layne for use of their wonderful photos and Mallee Catchment Management Authority for their design support and a special thanks to Ray Draper for his support and guidance in the development of the Frogs Field Guide 2012.