FREE/OPEN SOURCE SOFTWARE: an ALTERNATIVE for ENGINEERING STUDENTS Paulo S

Total Page:16

File Type:pdf, Size:1020Kb

FREE/OPEN SOURCE SOFTWARE: an ALTERNATIVE for ENGINEERING STUDENTS Paulo S Session T3G FREE/OPEN SOURCE SOFTWARE: AN ALTERNATIVE FOR ENGINEERING STUDENTS Paulo S. Motta Pires1, David A. Rogers2 Abstract ¾ Networked or stand-alone computational · Next, the Linux operating system is introduced. environments that are available as free or open-source Options for installation on different computing systems software are very useful for teaching engineering courses. are outlined along with some of its distinctive The cost of implementation of these environments is characteristics. essentially that of the underlying personal computer (PC) · Finally, the Scilab software package is presented. hardware. The necessary software, of very high quality, is available free of charge through the Internet. Our purpose is The main body of this paper contains the following to show that free or open source software can be used as a elements: (1) a brief description of the main software good alternative for engineering students. The main focus is packages used is given, (2) a survey of some Scilab on Scilab, a numerical software package. Often installed characteristics and capabilities (includes an overview of on machines running the Linux operating system, it is a commands and functions) that are appropriate for powerful tool that is useful in teaching numerical methods or engineering students is presented, and (3) examples of computationally intensive disciplines. Also presented are Scilab utilization in numerical methods courses for other free software packages, GSL (GNU Scientific Library) undergraduates and suggestions for utilization in graduate and LaTeX, that can be useful to the student. A package like courses are given. For economy of space, the second and Scilab can serve the needs of students when standard third elements are combined. Finally, some suggestions for commercial mathematical software is not available. including other useful material in these courses will be presented. The procedures used to install the necessary Index Terms—Free/open source software, numerical software are outlined in the Appendix. methods, programming language, Scilab. DESCRIPTION OF THE SOFTWARE PACKAGES INTRODUCTION The Linux operating system is a free, open-source multi-task There is no doubt that the Internet has changed engineering and multi-user operating system that is well known and education, especially in providing rapid and, often, free widely used. Linux was first developed for 32-bit Intel x86- access to information. Teachers, researchers, and students based personal computers (386 or higher) but has been can use the Internet to improve their professional knowledge ported to SUN SPARC and UltraSPARC machines, and skills. Motorola 68000-based machines, Power PCs, the IBM The Internet is also a vast and rich repository of S/390, the Intel IA-64, and others. free/open source computational software environments. There are several Linux flavors or distributions. For Very high quality packages are available for mathematics, PCs, the following are examples of such distributions: numerical analysis, parallel computing, data processing, RedHat [5], Suse [6], Mandrake [7], Slackware [8], Debian image visualization, graphics, text preparation and [9] and Conectiva [10]. The latter is a distribution that is presentation, and so on [1]. In this paper the central focus available to Portuguese- and Spanish-speaking users. Linux will be Scilab [2]-[3], often used in combination with Linux can be downloaded through the Internet. The choice would [4]. These alternatives give the student or professional with be the ISO (ISO9660 type) files that are about 600 MB in limited resources a long-term capability for performing size. With the ISO file the user burns an installation CD for significant computational studies. himself or herself. If the Internet connection is slow, one The approach used in this work is to introduce free/open can purchase Linux on CDs from several vendors including source software in numerically intensive graduate and local bookstores. Installation instructions come with the undergraduate courses as described below: distribution files or from the Linux HOWTO guides [11]. · First, the free/open source software philosophy is These guides are translated into several languages and are presented. Emphasis is placed on World Wide Web available in several file formats. search mechanisms and the opportunity that the students Scilab, a numerical software package developed at have to access information that will permit them to do INRIA (Institut National de Recherche en Informatique et en their jobs better. Automatique), France, is similar in some respects to MATLABâ [12]. It uses an interactive graphical 1 Paulo S. Motta Pires, Depto. de Engenharia de Computação e Automação, Univ. Federal do Rio Grande do Norte (UFRN), Brazil, [email protected] 2 David A. Rogers, Dept. of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, 58105, [email protected] 0-7803-7444-4/02/$17.00 © 2002 IEEE November 6 - 9, 2002, Boston, MA 32nd ASEE/IEEE Frontiers in Education Conference T3G-7 Session T3G environment combined with a higher level programming examples of these data types are given. To illustrate, the language. The Scilab language can be interfaced easily with polynomial C or FORTRAN programs using dynamic links, through the 1+ 2s link primitive, or using interfacing or gateway programs. with coefficients 1 and 2 and variable s, can be defined using The latter programs can be written by the user following the the command poly, examples distributed with the Scilab package or generated -->poly([1 2], ‘s’, ‘c’). through the Scilab Intersi companion toolbox. Also, Scilab The Scilab prompt is the “-->” sign. A row vector can be can be used to do symbolic computation through an interface defined using with Maple software [13]. Several high quality toolboxes are -->w = [1 2 3]. available to Scilab users, such as: Scicos, a package for To define a row vector, the elements should be separated by modeling and simulation of dynamical systems; ANN, the blanks or by commas. To define a column vector, the Artificial Neural Network toolbox; the Signal Processing elements should be separated by a semicolon as in [1; 2; 3]. toolbox; and FRACLAB (Fractal, Multifractal and Wavelet The handling of input and output of vector and matrix files Analysis toolbox). Scilab also has an extension called follows. For example, the elements of the matrix A, Parallel Scilab, Scilab // [14]-[15], that supports the execution of parallel jobs within Scilab. This extension can é1 2 3 4ù ê ú run on parallel machines or on a network of workstations A = 5 6 7 8 (NOWs) and is based on the Parallel Virtual Machine, PVM, ê ú software paradigm [16]. Scilab has introductory ëê9 2 3 4ûú documentation in several languages (English, French, can be stored in an ASCII file called matrixA and read to Spanish, and Portuguese). the Scilab environment using the command read, -->A = read(‘matrixA’, 3, 4). SCILAB FOR ENGINEERING STUDENTS In this case, the numbers contained in the archive matrixA will be assigned to the variable A. Finally, loops (for and Engineering students at both the undergraduate and graduate while), conditional commands (if-then-else, select-case), levels will normally need an introduction to the graphics the concept of local and global variables, and the structure environment of the software. Scilab can also run in Linux of functions are presented. At each point the student does text mode if it is started as “scilab -nw”, but that will not be some hands-on exercises considered here. Scilab’s menu structure and its built-in The process of introducing students to Scilab culminates libraries are typical initial elements to be presented in a with Scilab seen as a programming development course. Some representative built-in Scilab libraries that environment. The students develop programs as separate would be of interest in most classes are listed below: files, load these files into the Scilab environment, and · Scilab programming. Consists of several commands execute their code. Here Scilab is used as a programming and functions that can be used to program with Scilab. environment to operate in some of the following areas: · Graphics functions, the functions to draw 2D and 3D · Non-linear equation solving using the bisection and graphics. Newton-Raphson methods · Elementary mathematical functions. · Direct methods for solving linear equation systems · Input/output functions. (Gauss triangularization, LU decomposition) · Linear algebra functions. · Iterative methods for solving linear equation systems (Gauss-Jacobi and Gauss-Siedel methods) In the sections that follow, the use of Scilab in · Numerical solutions of non-linear systems of equations undergraduate and graduate courses will be considered (Newton methods) separately. · Initial-value problems for ordinary differential SCILAB FOR UNDERGRADUATES equations (Runge-Kutta methods) · Numerical integration (Simpson and Romberg methods) Scilab can be introduced to students initially as a very · Interpolation and polynomial approximation powerful calculator. At this level, students are exposed to promp t-line operations. They learn to edit command lines, Figure 1 shows a typical program example written in the how to use comments, and how to manipulate files and Scilab programming language that is appropriate for an directories in the Scilab environment. Several basic undergraduate numerical methods course. This program is operations are performed with real and complex numbers used to solve the ordinary differential equation, and with several elementary mathematical functions. The dy objective at this point is to acquaint the students with the = (x - y)/ 2 (1) environment. Next, students become familiar with dx polynomials, vectors, matrices, and lists data types. Several in the interval [a,b] with step h using the traditional fourth order Runge-Kutta numerical integration method defined by: 0-7803-7444-4/02/$17.00 © 2002 IEEE November 6 - 9, 2002, Boston, MA 32nd ASEE/IEEE Frontiers in Education Conference T3G-8 Session T3G h arguments and the parameter XY is the output argument. yk+1 = yk + ( f1 + 2 f2 + 2 f 3 + f 4 ).
Recommended publications
  • IADS Group Uses Multiple MATLAB Licenses
    Can We Migrate Our Analysis Routines to Python? Introduction • Can we migrate our analysis routines to Python? - MATLAB is powerful, but it’s expensive. - Capable open-source alternatives exist and are thriving. • Recent developments in scientific Python libraries have made migration from MATLAB to Python possible and attractive. • The IADS Group uses multiple MATLAB licenses. Dominance of MATLAB • MATLAB is the standard language for engineering analysis. • No need to be a programmer to solve engineering problems. • Used for collaboration and development of analysis routines. • MATLAB is required for study in an engineering curriculum - ECE 309 (CSUN), “Numerical Methods in Electrical Engineering”, is now taught using MATLAB. It was taught using Pascal in the 1980s… Dependence on MATLAB • IADS uses MATLAB to prototype new analysis routines. • IADS uses MATLAB to test and maintain data export and import. We need MATLAB! • IADS uses a set of MATLAB scripts to test Autospectrum and PSD results for Every Release. • IADS is dependent upon MATLAB. Problems with Dependency • Budget constraints mean fewer licenses and toolboxes are available. • MATLAB version changes force retest What happens of data interfaces. if they take MATLAB away • Retest requires an active license. from us? • Test Scripts are unusable without a license. • Having no backup plan in place is risky. Requirements for a Replacement • Should have broad industry acceptance. • Should have scientific libraries that mimic functionality that is commonly used in MATLAB by the flight test community. • Should have similar syntax. • Total MATLAB functionality is not necessary for our purposes, but it would be nice for going forward. • Should be relatively free of periodic licensing hassles.
    [Show full text]
  • A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya 1 Introduction
    A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya Sai K. Popuri and Matthias K. Gobbert* Department of Mathematics and Statistics, University of Maryland, Baltimore County *Corresponding author: [email protected], www.umbc.edu/~gobbert Technical Report HPCF{2017{3, hpcf.umbc.edu > Publications Abstract Matlab is the most popular commercial package for numerical computations in mathematics, statistics, the sciences, engineering, and other fields. Octave is a freely available software used for numerical computing. R is a popular open source freely available software often used for statistical analysis and computing. Julia is a recent open source freely available high-level programming language with a sophisticated com- piler for high-performance numerical and statistical computing. They are all available to download on the Linux, Windows, and Mac OS X operating systems. We investigate whether the three freely available software are viable alternatives to Matlab for uses in research and teaching. We compare the results on part of the equipment of the cluster maya in the UMBC High Performance Computing Facility. The equipment has 72 nodes, each with two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) proces- sors with 8 cores per CPU, for a total of 16 cores per node. All nodes have 64 GB of main memory and are connected by a quad-data rate InfiniBand interconnect. The tests focused on usability lead us to conclude that Octave is the most compatible with Matlab, since it uses the same syntax and has the native capability of running m-files. R was hampered by somewhat different syntax or function names and some missing functions.
    [Show full text]
  • Julia, My New Friend for Computing and Optimization? Pierre Haessig, Lilian Besson
    Julia, my new friend for computing and optimization? Pierre Haessig, Lilian Besson To cite this version: Pierre Haessig, Lilian Besson. Julia, my new friend for computing and optimization?. Master. France. 2018. cel-01830248 HAL Id: cel-01830248 https://hal.archives-ouvertes.fr/cel-01830248 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 1 « Julia, my New frieNd for computiNg aNd optimizatioN? » Intro to the Julia programming language, for MATLAB users Date: 14th of June 2018 Who: Lilian Besson & Pierre Haessig (SCEE & AUT team @ IETR / CentraleSupélec campus Rennes) « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 2 AgeNda for today [30 miN] 1. What is Julia? [5 miN] 2. ComparisoN with MATLAB [5 miN] 3. Two examples of problems solved Julia [5 miN] 4. LoNger ex. oN optimizatioN with JuMP [13miN] 5. LiNks for more iNformatioN ? [2 miN] « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 3 1. What is Julia ? Open-source and free programming language (MIT license) Developed since 2012 (creators: MIT researchers) Growing popularity worldwide, in research, data science, finance etc… Multi-platform: Windows, Mac OS X, GNU/Linux..
    [Show full text]
  • Delivering a Professional ®
    Delivering a professional ® We stand on the shoulders of giants (2015) Custodians of OpenFOAM® (2016) … www.esi-group.com 1 Copyright © ESICopyright Group, 2017. © ESI All Group, rights reserved.2017. All rights reserved. OpenFOAM – foreword Greetings from, and thanks to the Team • OpenCFD Core Development‣ Karen Kettle and Supporting Teams ‣ Takashi Minabe (Japan) ‣ Andrew Heather ‣ Mohsen Battoei (North America) ‣ Mattijs Janssens ‣ Ravi Ajjampudi (India) ‣ Sergio Ferraris ‣ Bjorn Landmann, Sebastien Vilfayeau (Germany) ‣ Mark Olesen ‣ Matej Forman (Training Coordinator) ‣ Prashant Sonakar ‣ Roger Almenar ‣ Pawan Ghildiyal ‣ Fred Mendonca OpenFOAM Operation www.esi-group.com 2 Copyright © ESI Group, 2017. All rights reserved. OpenCFD – Commitment to OpenFOAM Users Development and Release Schedule • OpenCFD owns the trademark • Releasing OpenFOAM since 2004 • Professional Six-monthly Development and Release cycle, including ‣ New developments ‣ Consolidated bug-fixes ‣ Overhaulled testing procedure for Quality Assurance ‣ Release and Development repositories in GitLab https://develop.openfoam.com ‣ Master branch ‣ Develop branch (includes > Master > Release ‣ Community Repositories > Develop www.esi-group.com 3 Copyright © ESI Group, 2017. All rights reserved. OpenCFD – Commitment to OpenFOAM Users Development and Release Schedule • OpenFOAM.com releases so far • OpenFOAM-v3.0+ on Jan 13th 2016 • OpenFOAM-v1606+ on June 30th 2016 • OpenFOAM-v1612+ on 23rd December 2016 • OpenFOAM-v1706 on 30th June 2017 www.esi-group.com 4 Copyright
    [Show full text]
  • Ordinary Differential Equations (ODE) Using Euler's Technique And
    Mathematical Models and Methods in Modern Science Ordinary Differential Equations (ODE) using Euler’s Technique and SCILAB Programming ZULZAMRI SALLEH Applied Sciences and Advance Technology Universiti Kuala Lumpur Malaysian Institute of Marine Engineering Technology Bandar Teknologi Maritim Jalan Pantai Remis 32200 Lumut, Perak MALAYSIA [email protected] http://www.mimet.edu.my Abstract: - Mathematics is very important for the engineering and scientist but to make understand the mathematics is very difficult if without proper tools and suitable measurement. A numerical method is one of the algorithms which involved with computer programming. In this paper, Scilab is used to carter the problems related the mathematical models such as Matrices, operation with ODE’s and solving the Integration. It remains true that solutions of the vast majority of first order initial value problems cannot be found by analytical means. Therefore, it is important to be able to approach the problem in other ways. Today there are numerous methods that produce numerical approximations to solutions of differential equations. Here, we introduce the oldest and simplest such method, originated by Euler about 1768. It is called the tangent line method or the Euler method. It uses a fixed step size h and generates the approximate solution. The purpose of this paper is to show the details of implementing of Euler’s method and made comparison between modify Euler’s and exact value by integration solution, as well as solve the ODE’s use built-in functions available in Scilab programming. Key-Words: - Numerical Methods, Scilab programming, Euler methods, Ordinary Differential Equation. 1 Introduction availability of digital computers has led to a Numerical methods are techniques by which veritable explosion in the use and development of mathematical problems are formulated so that they numerical methods [1].
    [Show full text]
  • Running Sagemath (With Or Without Installation)
    Running SageMath (with or without installation) http://www.sagemath.org/ Éric Gourgoulhon Running SageMath 9 Feb. 2017 1 / 5 Various ways to install/access SageMath 7.5.1 Install on your computer: 2 options: install a compiled binary version for Linux, MacOS X or Windows1 from http://www.sagemath.org/download.html compile from source (Linux, MacOS X): check the prerequisites (see here for Ubuntu) and run git clone git://github.com/sagemath/sage.git cd sage MAKE=’make -j8’ make Run on your computer without installation: Sage Debian Live http://sagedebianlive.metelu.net/ Bootable USB flash drive with SageMath (boosted with octave, scilab), Geogebra, LaTeX, gimp, vlc, LibreOffice,... Open a (free) account on SageMathCloud https://cloud.sagemath.com/ Run in SageMathCell Single cell mode: http://sagecell.sagemath.org/ 1requires VirtualBox; alternatively, a full Windows installer is in pre-release stage at https://github.com/embray/sage-windows/releases Éric Gourgoulhon Running SageMath 9 Feb. 2017 2 / 5 Example 1: installing on Ubuntu 16.04 1 Download the archive sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 from one the mirrors listed at http://www.sagemath.org/download-linux.html 2 Run the following commands in a terminal: bunzip2 sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 tar xvf sage-7.5.1-Ubuntu_16.04-x86_64.tar cd SageMath ./sage -n jupyter A Jupyter home page should then open in your browser. Click on New and select SageMath 7.5.1 to open a Jupyter notebook with a SageMath kernel. Éric Gourgoulhon Running SageMath 9 Feb. 2017 3 / 5 Example 2: using the SageMathCloud 1 Open a free account on https://cloud.sagemath.com/ 2 Create a new project 3 In the second top menu, click on New to create a new file 4 Select Jupyter Notebook for the file type 5 In the Jupyter menu, click on Kernel, then Change kernel and choose SageMath 7.5 Éric Gourgoulhon Running SageMath 9 Feb.
    [Show full text]
  • Introduction to Scilab
    www.scilab.org INTRODUCTION TO SCILAB Consortium sCilab Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex France This document has been written by Michaël Baudin from the Scilab Consortium. © November 2010 The Scilab Consortium - Digiteo. All rights reserved. November 2010 Abstract In this document, we make an overview of Scilab features so that we can get familiar with this environment. The goal is to present the core of skills necessary to start with Scilab. In the first part, we present how to get and install this software on our computer. We also present how to get some help with the provided in-line documentation and also thanks to web resources and forums. In the remaining sections, we present the Scilab language, especially its structured programming features. We present an important feature of Scilab, that is the management of real matrices and overview the linear algebra library. The definition of functions and the elementary management of input and output variables is presented. We present Scilab's graphical features and show how to create a 2D plot, how to configure the title and the legend and how to export that plot into a vectorial or bitmap format. Contents 1 Overview5 1.1 Introduction................................5 1.2 Overview of Scilab............................5 1.3 How to get and install Scilab.......................6 1.3.1 Installing Scilab under Windows.................7 1.3.2 Installing Scilab under Linux..................7 1.3.3 Installing Scilab under Mac OS.................8 1.4 How to get help..............................8 1.5 Mailing lists, wiki and bug reports....................9 1.6 Getting help from Scilab demonstrations and macros........
    [Show full text]
  • Scilab for Very Beginners
    Scilab for very beginners Scilab Enterprises S.A.S - 143 bis rue Yves Le Coz - 78000 Versailles (France) - www.scilab-enterprises.com This document has been co-written by Scilab Enterprises and Christine Gomez, mathematics teacher at Lycée Descartes (Descartes HiGh School) in Antony, Hauts-de-Seine (France). © 2013 Scilab Enterprises. All riGhts reserved. Scilab for very beGinners - 2/33 Table of content Introduction About this document 4 Install Scilab 4 MailinG list 4 Complementary resources 4 Chapter 1 – Become familiar with Scilab The General environment and the console 5 Simple numerical calculations 6 The menu bar 7 The editor 8 The Graphics window 9 Windows manaGement and workspace customization 11 Chapter 2 - Programming Variables, assignment and display 12 Loops 16 Tests 17 2 and 3D plots 18 Supplements on matrices and vectors 23 Calculation accuracy 29 SolvinG differential equations 30 Chapter 3 – Useful Scilab functions In analysis 32 In probability and statistics 32 To display and plot 33 Utilities 33 Scilab for very beGinners - 3/33 Introduction About this document The purpose of this document is to Guide you step by step in explorinG the various basic features of Scilab for a user who has never used numerical computation software. This presentation is voluntarily limited to the essential to allow easier handling of Scilab. Computations, Graphs and illustrations are made with Scilab 5.4.0. You can reproduce all those commands from this version. Install Scilab Scilab is numerical computation software that anybody can freely download. Available under Windows, Linux and Mac OS X, Scilab can be downloaded at the followinG address: http://www.scilab.orG/ You can be notified of new releases of Scilab software by subscribinG to our channel notification at the following address: http://lists.scilab.orG/mailman/listinfo/release Mailing list To facilitate the exchanGe between Scilab users, dedicated mailinG lists exist (list in French, list for the education world, international list in English).
    [Show full text]
  • Some Effective Methods for Teaching Mathematics Courses in Technological Universities
    International Journal of Education and Information Studies. ISSN 2277-3169 Volume 6, Number 1 (2016), pp. 11-18 © Research India Publications http://www.ripublication.com Some Effective Methods for Teaching Mathematics Courses in Technological Universities Dr. D. S. Sankar Professor, School of Applied Sciences and Mathematics, Universiti Teknologi Brunei, Jalan Tungku Link, BE1410, Brunei Darussalam E-mail: [email protected] Dr. Rama Rao Karri Principal Lecturer, Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam E-mail: [email protected] Abstract This article discusses some effective and useful methods for teaching various mathematics topics to the students of undergraduate and post-graduate degree programmes in technological universities. These teaching methods not only equip the students to acquire knowledge and skills for solving real world problems efficiently, but also these methods enhance the teacher’s ability to demonstrate the mathematical concepts effectively along with suitable physical examples. The exposure to mathematical softwares like MATLAB, SCILAB, MATHEMATICA, etc not only increases the students confidential level to solve variety of typical problems which they come across in their respective disciplines of study, but also it enables them to visualize the surfaces of the functions of several variable. Peer learning, seminar based learning and project based learning are other methods of learning environment to the students which makes the students to learn mathematics by themselves. These are higher level learning methods which enhances the students understanding on the mathematical concepts and it enables them to take up research projects. It is noted that the teaching and learning of mathematics with the support of mathematical softwares is believed to be more effective when compared to the effects of other methods of teaching and learning of mathematics.
    [Show full text]
  • Some Notes on SCILAB
    Universit´ede Nice Sophia-Antipolis Master 1 MathMods Ann´ee 2008/2009 Some notes on SCILAB STEP 1 Get starting To run Scilab on Unix/Linux O.S. type in the window the word: scilab You get a Scilab window on your computer screen. This Scilab window has a menu (File, Control, Graphic Window, Help). 1.1 Manipulating variables, constants As programming language Scilab owns variables, constants, vectors. 1.1.1 Scalars Few examples are given − − −− > x = 2. + sqrt(5) − − −− > x = 3.e − 2 Usual arithmetic operations are valable with usual priority +, −, ∗, /, ∗∗. 1.1.2 Constants Scilab possesses predefined variables or protected variables known as constants. They cannot be changed. There are given in table 1. Constant meaning %pi π = 3.14... %e e = 2.73... %i complexe number i s.t. i2 = −1 %eps machine epsilon %inf +∞ %nan ”Not A Number” Table 1: Scilab constants. 1.1.3 String variables Examples of chains of caracters known as string variables are given. − − −− > s =0 subject0, v =0 verb0, c =00 complement00 Some operations on string variables are shown in table 2. 1 Universit´ede Nice Sophia-Antipolis Master 1 MathMods Ann´ee 2008/2009 operations meaning + concatenation strcat concatenation strindex caracter research strsubst caracter substitution length number of caracters in a chain Table 2: Some operations on string variables. 1.1.4 Logical variables Logical variable or boolean variable corresponds to a logical expression. A logical variable can only take two values: %t for true and %f for false. Basic operations on logical variables are given in table 3. operations meaning ˜ negation | or & and Table 3: Operations on logical variables.
    [Show full text]
  • Julia: a Fresh Approach to Numerical Computing∗
    SIAM REVIEW c 2017 Society for Industrial and Applied Mathematics Vol. 59, No. 1, pp. 65–98 Julia: A Fresh Approach to Numerical Computing∗ Jeff Bezansony Alan Edelmanz Stefan Karpinskix Viral B. Shahy Abstract. Bridging cultures that have often been distant, Julia combines expertise from the diverse fields of computer science and computational science to create a new approach to numerical computing. Julia is designed to be easy and fast and questions notions generally held to be \laws of nature" by practitioners of numerical computing: 1. High-level dynamic programs have to be slow. 2. One must prototype in one language and then rewrite in another language for speed or deployment. 3. There are parts of a system appropriate for the programmer, and other parts that are best left untouched as they have been built by the experts. We introduce the Julia programming language and its design|a dance between special- ization and abstraction. Specialization allows for custom treatment. Multiple dispatch, a technique from computer science, picks the right algorithm for the right circumstance. Abstraction, which is what good computation is really about, recognizes what remains the same after differences are stripped away. Abstractions in mathematics are captured as code through another technique from computer science, generic programming. Julia shows that one can achieve machine performance without sacrificing human con- venience. Key words. Julia, numerical, scientific computing, parallel AMS subject classifications. 68N15, 65Y05, 97P40 DOI. 10.1137/141000671 Contents 1 Scientific Computing Languages: The Julia Innovation 66 1.1 Julia Architecture and Language Design Philosophy . 67 ∗Received by the editors December 18, 2014; accepted for publication (in revised form) December 16, 2015; published electronically February 7, 2017.
    [Show full text]
  • Basic Statistics and Probability with SCILAB
    Basic Statistics and Probability with SCILAB By Gilberto E. Urroz, Ph.D., P.E. Distributed by i nfoClearinghouse.com ©2001 Gilberto E. Urroz All Rights Reserved A "zip" file containing all of the programs in this document (and other SCILAB documents at InfoClearinghouse.com) can be downloaded at the following site: http://www.engineering.usu.edu/cee/faculty/gurro/Software_Calculators/Scil ab_Docs/ScilabBookFunctions.zip The author's SCILAB web page can be accessed at: http://www.engineering.usu.edu/cee/faculty/gurro/Scilab.html Please report any errors in this document to: [email protected] INTRODUCTION TO STATISTICS AND PROBABILITY 2 Statistics of a sample 2 Percentiles 3 Calculation of percentiles 3 Deciles 4 The coefficient of variation 4 SCILAB script for sample statistics 4 A function that produces a summary of sample statistics 6 Moments of a sample 9 Covariance and correlation 11 Frequency distribution of a sample 12 Selecting the number of classes 13 Histogram and frequency plot 14 Relative frequency 14 Cumulative frequency 14 A SCILAB function for determining frequency distributions 14 Skewness and kurtosis 17 Probability 20 Sample space and events 20 Sets 20 Set operations 20 Venn diagrams 23 Definitions of probability 24 Probability axioms 24 Addition rule 24 Counting 25 The Gamma function and factorials 27 Permutations and combinations using the Gamma function 28 Conditional probability 29 Independent events 30 Total probability 30 Bayes theorem 31 Exercises 31 Download at InfoClearinghouse.com 1 © 2001 Gilberto E. Urroz Introduction to Statistics and Probability Statistics is the science of data analysis. Through the use of a number of mathematical techniques, statistics can be used to summarize and analyze data from samples taken from a population of data.
    [Show full text]