How to Create a New Integer Sequence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
POWER FIBONACCI SEQUENCES 1. Introduction Let G Be a Bi-Infinite Integer Sequence Satisfying the Recurrence Relation G If
POWER FIBONACCI SEQUENCES JOSHUA IDE AND MARC S. RENAULT Abstract. We examine integer sequences G satisfying the Fibonacci recurrence relation 2 3 Gn = Gn−1 + Gn−2 that also have the property that G ≡ 1; a; a ; a ;::: (mod m) for some modulus m. We determine those moduli m for which these power Fibonacci sequences exist and the number of such sequences for a given m. We also provide formulas for the periods of these sequences, based on the period of the Fibonacci sequence F modulo m. Finally, we establish certain sequence/subsequence relationships between power Fibonacci sequences. 1. Introduction Let G be a bi-infinite integer sequence satisfying the recurrence relation Gn = Gn−1 +Gn−2. If G ≡ 1; a; a2; a3;::: (mod m) for some modulus m, then we will call G a power Fibonacci sequence modulo m. Example 1.1. Modulo m = 11, there are two power Fibonacci sequences: 1; 8; 9; 6; 4; 10; 3; 2; 5; 7; 1; 8 ::: and 1; 4; 5; 9; 3; 1; 4;::: Curiously, the second is a subsequence of the first. For modulo 5 there is only one such sequence (1; 3; 4; 2; 1; 3; :::), for modulo 10 there are no such sequences, and for modulo 209 there are four of these sequences. In the next section, Theorem 2.1 will demonstrate that 209 = 11·19 is the smallest modulus with more than two power Fibonacci sequences. In this note we will determine those moduli for which power Fibonacci sequences exist, and how many power Fibonacci sequences there are for a given modulus. -
On the Prime Number Subset of the Fibonacci Numbers
Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach On the Prime Number Subset of the Fibonacci Numbers Lacey Fish1 Brandon Reid2 Argen West3 1Department of Mathematics Louisiana State University Baton Rouge, LA 2Department of Mathematics University of Alabama Tuscaloosa, AL 3Department of Mathematics University of Louisiana Lafayette Lafayette, LA Lacey Fish, Brandon Reid, Argen West SMILE Presentations, 2010 LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions History Two Famous and Useful Sieves Sieve of Eratosthenes Brun’s Sieve Lacey Fish, Brandon Reid, Argen West -
Prime Divisors in the Rationality Condition for Odd Perfect Numbers
Aid#59330/Preprints/2019-09-10/www.mathjobs.org RFSC 04-01 Revised The Prime Divisors in the Rationality Condition for Odd Perfect Numbers Simon Davis Research Foundation of Southern California 8861 Villa La Jolla Drive #13595 La Jolla, CA 92037 Abstract. It is sufficient to prove that there is an excess of prime factors in the product of repunits with odd prime bases defined by the sum of divisors of the integer N = (4k + 4m+1 ℓ 2αi 1) i=1 qi to establish that there do not exist any odd integers with equality (4k+1)4m+2−1 between σ(N) and 2N. The existence of distinct prime divisors in the repunits 4k , 2α +1 Q q i −1 i , i = 1,...,ℓ, in σ(N) follows from a theorem on the primitive divisors of the Lucas qi−1 sequences and the square root of the product of 2(4k + 1), and the sequence of repunits will not be rational unless the primes are matched. Minimization of the number of prime divisors in σ(N) yields an infinite set of repunits of increasing magnitude or prime equations with no integer solutions. MSC: 11D61, 11K65 Keywords: prime divisors, rationality condition 1. Introduction While even perfect numbers were known to be given by 2p−1(2p − 1), for 2p − 1 prime, the universality of this result led to the the problem of characterizing any other possible types of perfect numbers. It was suggested initially by Descartes that it was not likely that odd integers could be perfect numbers [13]. After the work of de Bessy [3], Euler proved σ(N) that the condition = 2, where σ(N) = d|N d is the sum-of-divisors function, N d integer 4m+1 2α1 2αℓ restricted odd integers to have the form (4kP+ 1) q1 ...qℓ , with 4k + 1, q1,...,qℓ prime [18], and further, that there might exist no set of prime bases such that the perfect number condition was satisfied. -
Triangular Numbers /, 3,6, 10, 15, ", Tn,'" »*"
TRIANGULAR NUMBERS V.E. HOGGATT, JR., and IVIARJORIE BICKWELL San Jose State University, San Jose, California 9111112 1. INTRODUCTION To Fibonacci is attributed the arithmetic triangle of odd numbers, in which the nth row has n entries, the cen- ter element is n* for even /?, and the row sum is n3. (See Stanley Bezuszka [11].) FIBONACCI'S TRIANGLE SUMS / 1 =:1 3 3 5 8 = 2s 7 9 11 27 = 33 13 15 17 19 64 = 4$ 21 23 25 27 29 125 = 5s We wish to derive some results here concerning the triangular numbers /, 3,6, 10, 15, ", Tn,'" »*". If one o b - serves how they are defined geometrically, 1 3 6 10 • - one easily sees that (1.1) Tn - 1+2+3 + .- +n = n(n±M and (1.2) • Tn+1 = Tn+(n+1) . By noticing that two adjacent arrays form a square, such as 3 + 6 = 9 '.'.?. we are led to 2 (1.3) n = Tn + Tn„7 , which can be verified using (1.1). This also provides an identity for triangular numbers in terms of subscripts which are also triangular numbers, T =T + T (1-4) n Tn Tn-1 • Since every odd number is the difference of two consecutive squares, it is informative to rewrite Fibonacci's tri- angle of odd numbers: 221 222 TRIANGULAR NUMBERS [OCT. FIBONACCI'S TRIANGLE SUMS f^-O2) Tf-T* (2* -I2) (32-22) Ti-Tf (42-32) (52-42) (62-52) Ti-Tl•2 (72-62) (82-72) (9*-82) (Kp-92) Tl-Tl Upon comparing with the first array, it would appear that the difference of the squares of two consecutive tri- angular numbers is a perfect cube. -
Twelve Simple Algorithms to Compute Fibonacci Numbers Arxiv
Twelve Simple Algorithms to Compute Fibonacci Numbers Ali Dasdan KD Consulting Saratoga, CA, USA [email protected] April 16, 2018 Abstract The Fibonacci numbers are a sequence of integers in which every number after the first two, 0 and 1, is the sum of the two preceding numbers. These numbers are well known and algorithms to compute them are so easy that they are often used in introductory algorithms courses. In this paper, we present twelve of these well-known algo- rithms and some of their properties. These algorithms, though very simple, illustrate multiple concepts from the algorithms field, so we highlight them. We also present the results of a small-scale experi- mental comparison of their runtimes on a personal laptop. Finally, we provide a list of homework questions for the students. We hope that this paper can serve as a useful resource for the students learning the basics of algorithms. arXiv:1803.07199v2 [cs.DS] 13 Apr 2018 1 Introduction The Fibonacci numbers are a sequence Fn of integers in which every num- ber after the first two, 0 and 1, is the sum of the two preceding num- bers: 0; 1; 1; 2; 3; 5; 8; 13; 21; ::. More formally, they are defined by the re- currence relation Fn = Fn−1 + Fn−2, n ≥ 2 with the base values F0 = 0 and F1 = 1 [1, 5, 7, 8]. 1 The formal definition of this sequence directly maps to an algorithm to compute the nth Fibonacci number Fn. However, there are many other ways of computing the nth Fibonacci number. -
Input for Carnival of Math: Number 115, October 2014
Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144. -
Perfect Gaussian Integer Sequences of Arbitrary Length Soo-Chang Pei∗ and Kuo-Wei Chang† National Taiwan University∗ and Chunghwa Telecom†
Perfect Gaussian Integer Sequences of Arbitrary Length Soo-Chang Pei∗ and Kuo-Wei Chang† National Taiwan University∗ and Chunghwa Telecom† m Objectives N = p or N = p using Legendre N = pq where p and q are coprime Conclusion sequence and Gauss sum To construct perfect Gaussian integer sequences Simple zero padding method: We propose several methods to generate zero au- of arbitrary length N: Legendre symbol is defined as 1) Take a ZAC from p and q. tocorrelation sequences in Gaussian integer. If the 8 2 2) Interpolate q − 1 and p − 1 zeros to these signals sequence length is prime number, we can use Leg- • Perfect sequences are sequences with zero > 1, if ∃x, x ≡ n(mod N) n ! > autocorrelation. = < 0, n ≡ 0(mod N) to get two signals of length N. endre symbol and provide more degree of freedom N > 3) Convolution these two signals, then we get a than Yang’s method. If the sequence is composite, • Gaussian integer is a number in the form :> −1, otherwise. ZAC. we develop a general method to construct ZAC se- a + bi where a and b are integer. And the Gauss sum is defined as N−1 ! Using the idea of prime-factor algorithm: quences. Zero padding is one of the special cases of • A Perfect Gaussian sequence is a perfect X n −2πikn/N G(k) = e Recall that DFT of size N = N1N2 can be done by this method, and it is very easy to implement. sequence that each value in the sequence is a n=0 N taking DFT of size N1 and N2 seperately[14]. -
And Its Properties on the Sequence Related to Lucas Numbers
Mathematica Aeterna, Vol. 2, 2012, no. 1, 63 - 75 On the sequence related to Lucas numbers and its properties Cennet Bolat Department of Mathematics, Art and Science Faculty, Mustafa Kemal University, 31034, Hatay,Turkey Ahmet I˙pek Department of Mathematics, Art and Science Faculty, Mustafa Kemal University, 31034, Hatay,Turkey Hasan Köse Department of Mathematics, Science Faculty, Selcuk University 42031, Konya,Turkey Abstract The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recur- rence relation. In this article, we study a new generalization {Lk,n}, with initial conditions Lk,0 = 2 and Lk,1 = 1, which is generated by the recurrence relation Lk,n = kLk,n−1 + Lk,n−2 for n ≥ 2, where k is integer number. Some well-known sequence are special case of this generalization. The Lucas sequence is a special case of {Lk,n} with k = 1. Modified Pell-Lucas sequence is {Lk,n} with k = 2. We produce an extended Binet’s formula for {Lk,n} and, thereby, identities such as Cassini’s, Catalan’s, d’Ocagne’s, etc. using matrix algebra. Moreover, we present sum formulas concerning this new generalization. Mathematics Subject Classi…cation: 11B39, 15A23. Keywords: Classic Fibonacci numbers; Classic Lucas numbers; k-Fibonacci numbers; k-Lucas numbers, Matrix algebra. 64 C. Bolat, A. Ipek and H. Kose 1 Introduction In recent years, many interesting properties of classic Fibonacci numbers, clas- sic Lucas numbers and their generalizations have been shown by researchers and applied to almost every …eld of science and art. -
Fibonacci Numbers
mathematics Article On (k, p)-Fibonacci Numbers Natalia Bednarz The Faculty of Mathematics and Applied Physics, Rzeszow University of Technology, al. Powsta´nców Warszawy 12, 35-959 Rzeszów, Poland; [email protected] Abstract: In this paper, we introduce and study a new two-parameters generalization of the Fibonacci numbers, which generalizes Fibonacci numbers, Pell numbers, and Narayana numbers, simultane- ously. We prove some identities which generalize well-known relations for Fibonacci numbers, Pell numbers and their generalizations. A matrix representation for generalized Fibonacci numbers is given, too. Keywords: Fibonacci numbers; Pell numbers; Narayana numbers MSC: 11B39; 11B83; 11C20 1. Introduction By numbers of the Fibonacci type we mean numbers defined recursively by the r-th order linear recurrence relation of the form an = b1an−1 + b2an−2 + ··· + bran−r, for n > r, (1) where r > 2 and bi > 0, i = 1, 2, ··· , r are integers. For special values of r and bi, i = 1, 2, ··· r, the Equality (1) defines well-known numbers of the Fibonacci type and their generalizations. We list some of them: Citation: Bednarz, N. On 1. Fibonacci numbers: Fn = Fn−1 + Fn−2 for n > 2, with F0 = F1 = 1. (k, p)-Fibonacci Numbers. 2. Lucas numbers: Ln = Ln−1 + Ln−2 for n > 2, with L0 = 2, L1 = 1. Mathematics 2021, 9, 727. https:// 3. Pell numbers: Pn = 2Pn−1 + Pn−2 for n > 2, with P0 = 0, P1 = 1. doi.org/10.3390/math9070727 4. Pell–Lucas numbers: Qn = 2Qn−1 + Qn−2 for n > 2, with Q0 = 1, Q1 = 3. 5. Jacobsthal numbers: Jn = Jn−1 + 2Jn−2 for n > 2, with J0 = 0, J1 = 1. -
On Repdigits As Product of Consecutive Fibonacci Numbers1
Rend. Istit. Mat. Univ. Trieste Volume 44 (2012), 393–397 On repdigits as product of consecutive Fibonacci numbers1 Diego Marques and Alain Togbe´ Abstract. Let (Fn)n≥0 be the Fibonacci sequence. In 2000, F. Luca proved that F10 = 55 is the largest repdigit (i.e. a number with only one distinct digit in its decimal expansion) in the Fibonacci sequence. In this note, we show that if Fn ··· Fn+(k−1) is a repdigit, with at least two digits, then (k, n) = (1, 10). Keywords: Fibonacci, repdigits, sequences (mod m) MS Classification 2010: 11A63, 11B39, 11B50 1. Introduction Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n ≥ 0, where F0 = 0 and F1 = 1. These numbers are well-known for possessing amaz- ing properties. In 1963, the Fibonacci Association was created to provide an opportunity to share ideas about these intriguing numbers and their applica- tions. We remark that, in 2003, Bugeaud et al. [2] proved that the only perfect powers in the Fibonacci sequence are 0, 1, 8 and 144 (see [6] for the Fibono- mial version). In 2005, Luca and Shorey [5] showed, among other things, that a non-zero product of two or more consecutive Fibonacci numbers is never a perfect power except for the trivial case F1 · F2 = 1. Recall that a positive integer is called a repdigit if it has only one distinct digit in its decimal expansion. In particular, such a number has the form a(10m − 1)/9, for some m ≥ 1 and 1 ≤ a ≤ 9. -
Arxiv:1804.04198V1 [Math.NT] 6 Apr 2018 Rm-Iesequence, Prime-Like Hoy H Function the Theory
CURIOUS CONJECTURES ON THE DISTRIBUTION OF PRIMES AMONG THE SUMS OF THE FIRST 2n PRIMES ROMEO MESTROVIˇ C´ ∞ ABSTRACT. Let pn be nth prime, and let (Sn)n=1 := (Sn) be the sequence of the sums 2n of the first 2n consecutive primes, that is, Sn = k=1 pk with n = 1, 2,.... Heuristic arguments supported by the corresponding computational results suggest that the primes P are distributed among sequence (Sn) in the same way that they are distributed among positive integers. In other words, taking into account the Prime Number Theorem, this assertion is equivalent to # p : p is a prime and p = Sk for some k with 1 k n { ≤ ≤ } log n # p : p is a prime and p = k for some k with 1 k n as n , ∼ { ≤ ≤ }∼ n → ∞ where S denotes the cardinality of a set S. Under the assumption that this assertion is | | true (Conjecture 3.3), we say that (Sn) satisfies the Restricted Prime Number Theorem. Motivated by this, in Sections 1 and 2 we give some definitions, results and examples concerning the generalization of the prime counting function π(x) to increasing positive integer sequences. The remainder of the paper (Sections 3-7) is devoted to the study of mentioned se- quence (Sn). Namely, we propose several conjectures and we prove their consequences concerning the distribution of primes in the sequence (Sn). These conjectures are mainly motivated by the Prime Number Theorem, some heuristic arguments and related computational results. Several consequences of these conjectures are also established. 1. INTRODUCTION, MOTIVATION AND PRELIMINARIES An extremely difficult problem in number theory is the distribution of the primes among the natural numbers. -
Some Combinatorics of Factorial Base Representations
1 2 Journal of Integer Sequences, Vol. 23 (2020), 3 Article 20.3.3 47 6 23 11 Some Combinatorics of Factorial Base Representations Tyler Ball Joanne Beckford Clover Park High School University of Pennsylvania Lakewood, WA 98499 Philadelphia, PA 19104 USA USA [email protected] [email protected] Paul Dalenberg Tom Edgar Department of Mathematics Department of Mathematics Oregon State University Pacific Lutheran University Corvallis, OR 97331 Tacoma, WA 98447 USA USA [email protected] [email protected] Tina Rajabi University of Washington Seattle, WA 98195 USA [email protected] Abstract Every non-negative integer can be written using the factorial base representation. We explore certain combinatorial structures arising from the arithmetic of these rep- resentations. In particular, we investigate the sum-of-digits function, carry sequences, and a partial order referred to as digital dominance. Finally, we describe an analog of a classical theorem due to Kummer that relates the combinatorial objects of interest by constructing a variety of new integer sequences. 1 1 Introduction Kummer’s theorem famously draws a connection between the traditional addition algorithm of base-p representations of integers and the prime factorization of binomial coefficients. Theorem 1 (Kummer). Let n, m, and p all be natural numbers with p prime. Then the n+m exponent of the largest power of p dividing n is the sum of the carries when adding the base-p representations of n and m. Ball et al. [2] define a new class of generalized binomial coefficients that allow them to extend Kummer’s theorem to base-b representations when b is not prime, and they discuss connections between base-b representations and a certain partial order, known as the base-b (digital) dominance order.