Type of the Paper (Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11 -
Emerging Role of the Hexosamine Biosynthetic Pathway in Cancer Neha M
Akella et al. BMC Biology (2019) 17:52 https://doi.org/10.1186/s12915-019-0671-3 REVIEW Open Access Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer Neha M. Akella, Lorela Ciraku and Mauricio J. Reginato* “ ” Abstract conditions [2]. This switch, termed the Warburg effect , funnels glycolytic intermediates into pathways that produce Altered metabolism and deregulated cellular energetics nucleosides, amino acids, macromolecules, and organelles are now considered a hallmark of all cancers. Glucose, required for rapid cell proliferation [3]. Unlike normal cells, glutamine, fatty acids, and amino acids are the primary cancer cells reprogram cellular energetics as a result of drivers of tumor growth and act as substrates for the oncogenic transformations [4]. The hexosamine biosyn- hexosamine biosynthetic pathway (HBP). The HBP thetic pathway utilizes up to 2–5% of glucose that enters a culminates in the production of an amino sugar uridine non-cancer cell and along with glutamine, acetyl- diphosphate N-acetylglucosamine (UDP-GlcNAc) that, coenzyme A (Ac-CoA) and uridine-5′-triphosphate (UTP) along with other charged nucleotide sugars, serves as the are used to produce the amino sugar UDP-GlcNAc [5]. basis for biosynthesis of glycoproteins and other The HBP and glycolysis share the first two steps and di- glycoconjugates. These nutrient-driven post-translational verge at fructose-6-phosphate (F6P) (Fig. 1). Glutamine modifications are highly altered in cancer and regulate fructose-6-phosphate amidotransferase (GFAT) converts protein functions in various cancer-associated processes. F6P and glutamine to glucosamine-6-phosphate and glu- In this review, we discuss recent progress in tamate in the rate-limiting step of HBP [6]. -
Namely, Aspartokinase and Aspartate 3-Semialdehyde Dehydrogenase) Are Not Subject to Feedback Inhibition Control by the End Product Methionine
REGULATION OF HOMOSERINE BIOSYNTHESIS BY L-CYSTEINE, A TERMINA L METABOLITE OF A LINKED PA THWA Y* By PRASANTA DATTA DEPARTMENT OF BIOLOGICAL CHEMISTRY, UNIVERSITY OF MICHIGAN, ANN ARBOR Communicated by Martin D. Kamen, June 23, 1967 In bacteria, the amino acid homoserine is a key branch-point intermediate in the synthesis of several amino acids of the aspartic pathway.' On the one hand, homoserine is converted to threonine (and thus to isoleucine), and through a separate sequence of reactions is transformed to methionine.1 In the latter se- quence, a succinylated product of homoserine is condensed with cysteine to pro- duce cystathionine,2-5 a precursor of methionine. Recent studies (see refs. 6 and 7 for up-to-date reviews on the subject) with several microorganisms have revealed that the synthesis of homoserine is regulated by various combinations of repression and/or feedback inhibition controls of early biosynthetic enzymes of the aspartic pathway by several end-product metabolites. One of these enzymes, homoserine dehydrogenase, catalyzes the pyridine nucleotide-linked reduction of aspartate j3-semialdehyde to homoserine. In the various bacteria that have been examined, this dehydrogenase as well as the two earlier enzymes of the path- way (namely, aspartokinase and aspartate 3-semialdehyde dehydrogenase) are not subject to feedback inhibition control by the end product methionine. This report describes the results of experiments on the control of activity of several bacterial homoserine dehydrogenases by L-cysteine, a terminal metabolite of a linked or connecting pathway, required for the synthesis of cystathionine.2-5 The findings suggest that the size of the homoserine pool in bacterial cells must depend, at least in part, on complex interdependent regulatory interactions of both cysteine and threonine on homoserine dehydrogenase. -
Cyanobacterial Peptide Toxins
CYANOBACTERIAL PEPTIDE TOXINS CYANOBACTERIAL PEPTIDE TOXINS 1. Exposure data 1.1 Introduction Cyanobacteria, also known as blue-green algae, are widely distributed in fresh, brackish and marine environments, in soil and on moist surfaces. They are an ancient group of prokaryotic organisms that are found all over the world in environments as diverse as Antarctic soils and volcanic hot springs, often where no other vegetation can exist (Knoll, 2008). Cyanobacteria are considered to be the organisms responsible for the early accumulation of oxygen in the earth’s atmosphere (Knoll, 2008). The name ‘blue- green’ algae derives from the fact that these organisms contain a specific pigment, phycocyanin, which gives many species a slightly blue-green appearance. Cyanobacterial metabolites can be lethally toxic to wildlife, domestic livestock and even humans. Cyanotoxins fall into three broad groups of chemical structure: cyclic peptides, alkaloids and lipopolysaccharides. Table 1.1 gives an overview of the specific toxic substances within these broad groups that are produced by different genera of cyanobacteria together, with their primary target organs in mammals. However, not all cyanobacterial blooms are toxic and neither are all strains within one species. Toxic and non-toxic strains show no predictable difference in appearance and, therefore, physicochemical, biochemical and biological methods are essential for the detection of cyanobacterial toxins. The most frequently reported cyanobacterial toxins are cyclic heptapeptide toxins known as microcystins which can be isolated from several species of the freshwater genera Microcystis , Planktothrix ( Oscillatoria ), Anabaena and Nostoc . More than 70 structural variants of microcystins are known. A structurally very similar class of cyanobacterial toxins is nodularins ( < 10 structural variants), which are cyclic pentapeptide hepatotoxins that are found in the brackish-water cyanobacterium Nodularia . -
Dehydropeptide Supramolecular Hydrogels and Nanostructures As Potential Peptidomimetic Biomedical Materials
International Journal of Molecular Sciences Review Dehydropeptide Supramolecular Hydrogels and Nanostructures as Potential Peptidomimetic Biomedical Materials Peter J. Jervis * , Carolina Amorim, Teresa Pereira, José A. Martins and Paula M. T. Ferreira Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; [email protected] (C.A.); [email protected] (T.P.); [email protected] (J.A.M.); [email protected] (P.M.T.F.) * Correspondence: [email protected] Abstract: Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracel- lular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, β-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, Citation: Jervis, P.J.; Amorim, C.; i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also intro- Pereira, T.; Martins, J.A.; Ferreira, duces a conformational restraint to the peptide backbone, resulting in (often predictable) changes P.M.T. -
Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides
H OH metabolites OH Review Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides Yaojie Guo , Jens C. Frisvad and Thomas O. Larsen * Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark; [email protected] (Y.G.); [email protected] (J.C.F.) * Correspondence: [email protected]; Tel.: +45-4525-2632 Received: 12 May 2020; Accepted: 8 June 2020; Published: 15 June 2020 Abstract: Recently, a rare class of nonribosomal peptides (NRPs) bearing a unique Oxepine-Pyrimidinone-Ketopiperazine (OPK) scaffold has been exclusively isolated from fungal sources. Based on the number of rings and conjugation systems on the backbone, it can be further categorized into three types A, B, and C. These compounds have been applied to various bioassays, and some have exhibited promising bioactivities like antifungal activity against phytopathogenic fungi and transcriptional activation on liver X receptor α. This review summarizes all the research related to natural OPK NRPs, including their biological sources, chemical structures, bioassays, as well as proposed biosynthetic mechanisms from 1988 to March 2020. The taxonomy of the fungal sources and chirality-related issues of these products are also discussed. Keywords: oxepine; nonribosomal peptides; bioactivity; biosynthesis; fungi; Aspergillus 1. Introduction Nonribosomal peptides (NRPs), mostly found in bacteria and fungi, are a class of peptidyl secondary metabolites biosynthesized by large modularly organized multienzyme complexes named nonribosomal peptide synthetases (NRPSs) [1]. These products are amongst the most structurally diverse secondary metabolites in nature; they exhibit a broad range of activities, which have been exploited in treatments such as the immunosuppressant cyclosporine A and the antibiotic daptomycin [2,3]. -
Subject Index
Cambridge University Press 0521462924 - Amino Acids and Peptides G. C. Barrett and D. T. Elmore Index More information Subject index acetamidomalonate synthesis 123–4 in fossil dating 15 S-adenosyl--methionine 11, 12, 174, 181 in geological samples 15 alanine, N-acetyl 9 in Nature 1 structure 4 IR spectrometry 36 alkaloids, biosynthesis from amino acids 16–17 isolation from proteins 121 alloisoleucine 6 mass spectra 61 allosteric change 178 metabolism, products of 187 allothreonine 6 metal-binding properties 34 Alzheimer’s disease 14 NMR 41 amidation at peptide C-terminus 57, 94, 181 physicochemical properties 32 amides, cis–trans isomerism 20 protein 3 N-acylation 72 PTC derivatives 87 N-alkylation 72 quaternary ammonium salts 50 hydrolysis 57 reactions of amino group 49, 51 O-trimethylsilylation 72 reactions of carboxy group 49, 53 reduction to -aminoalkanols 72 racemisation 56 amidocarbonylation in amino acid synthesis 125 routine spectrometry 35 amino acids, abbreviated names 7 Schöllkopf synthesis 127–8 acid–base properties 32 Schiff base formation 49 antimetabolites 200 sequence determination 97 et seq. as food additives 14 following selective chemical degradation 107 as neurotransmitters 17 following selective enzymic degradation 109 asymmetric synthesis 127 general strategy for 92 - 17–18 identification of C-terminus 106–7 biosynthesis 121 identification of N-terminus 94, 97 biosynthesis from, of creatinine 183 by solid-phase methodology 100 of nitric oxide 186 by stepwise chemical degradation 97 of porphyrins 185 by use of dipeptidyl -
Highly Stereoselective and Efficient Synthesis of the Dopa Analogue In
Turk J Chem 34 (2010) , 181 – 186. c TUB¨ ITAK˙ doi:10.3906/kim-0904-14 Highly stereoselective and efficient synthesis of the dopa analogue in pepticinnamin E via enantioselective hydrogenation of dehydroamino acids Dequn SUN Marine College, Shandong University at Weihai, Weihai 264209, P. R. CHINA e-mail: [email protected] Received 13.04.2009 An efficient and new method was developed to prepare the dopa analogue 11 in natural pepticinnamin via catalytic hydrogenation of dehydroamino acids (DDAA) with a good yield and ee. Product 11 is a key intermediate towards the total synthesis of pepticinnamin E and its analogues. Key Words: Synthesis; dopa analogue; enantioselective hydrogenation; dehydroamino acid. Introduction Pepticinnamin E1 (Figure) is a major product of the pepticinnamins, which are isolated from the culture of Streptomyces sp. OH-4652. It was identified as a depsipeptide having an O − Z -pentenylcinnamin acid and a novel dopa analogue, whose configuration has been determined as S by the Waldmann group using the Sch¨ollkopf method. 2 Pepticinnamin E shows rather potent inhibitory activity against farnesyl protein transferase (FPTase) with an IC 50 of 0.3 μM and is the first competitive inhibitor derived from a natural product. Our interest in the exploitation of a new methodology to synthesise naturally bioactive peptides containing non-ribosomal amino acids led us to initiate the synthesis of pepticinnamin E (1). Emphasis was placed on preparing both dopa analogue 2 and O − Z -pentenylcinnamin acid. 3 This study reports the enantioselective synthesis of the precursor of the dopa analogue 2, which would be suitable for the total synthesis of pepticinnamin E and its analogues. -
Aquatic Microbial Ecology 69:135
Vol. 69: 135–143, 2013 AQUATIC MICROBIAL ECOLOGY Published online May 28 doi: 10.3354/ame01628 Aquat Microb Ecol A cultivation-independent approach for the genetic and cyanotoxin characterization of colonial cyanobacteria Yannick Lara1, Alexandre Lambion1, Diana Menzel2, Geoffrey A. Codd2, Annick Wilmotte1,* 1Center for Protein Engineering, University of Liège, 4000 Liège, Belgium 2Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 4HN, UK ABSTRACT: To bypass the constraint of cyanobacterial strain isolation and cultivation, a combina- tion of whole genome amplification (WGA) and enzyme-linked immunoassay (ELISA) for micro- cystin toxins (MCs) was tested on individual colonies of Microcystis and Woronichinia, taken directly from aquatic environments. Genomic DNA of boiled cells was amplified by multiple strand displacement amplification (MDA), followed by several specific PCR reactions to character- ize the genotype of each colony. Sequences of 3 different housekeeping genes (ftsZ, gltX, and recA), of 3 MC biosynthesis genes (mcyA, mcyB, and mcyE), and the Internal Transcribed Spacer (ITS) were analyzed for 11 colonies of Microcystis. MCs were detected and quantified by ELISA in 7 of the 11 Microcystis colonies tested, in agreement with the detection of mcy genes. Sequence types (ST) based on the concatenated sequences of housekeeping genes from cyanobacterial colonies from Belgian water bodies appeared to be endemic when compared to those of strains described in the literature. One colony appeared to belong to a yet undiscovered lineage. A simi- lar protocol was used for 6 colonies of the genus Woronichinia, a taxon that is very difficult to cul- tivate in the laboratory. -
Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses
life Review Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses Inseok Choi , Hyewon Son and Jea-Hyun Baek * School of Life Science, Handong Global University, Pohang, Gyeongbuk 37554, Korea; [email protected] (I.C.); [email protected] (H.S.) * Correspondence: [email protected]; Tel.: +82-54-260-1347 Abstract: The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria, while the intermediates of the TCA cycle are retained inside mitochondria due to their polarity and hydrophilicity. Under cell stress conditions, mitochondria can become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss its implication for immune activation and suppression. Keywords: Krebs cycle; tricarboxylic acid cycle; cellular immunity; immunometabolism 1. Introduction The tricarboxylic acid cycle (TCA, also known as the Krebs cycle or the citric acid Citation: Choi, I.; Son, H.; Baek, J.-H. Tricarboxylic Acid (TCA) Cycle cycle) is a series of chemical reactions used in aerobic organisms (pro- and eukaryotes) to Intermediates: Regulators of Immune generate energy via the oxidation of acetyl-coenzyme A (CoA) derived from carbohydrates, Responses. -
Phosphorus-Containing Amino Acids with a P–C Bond in the Side Chain Or a P–O, P–Sorp–N Bond: Cite This: RSC Adv., 2020, 10, 6678 from Synthesis to Applications
RSC Advances View Article Online REVIEW View Journal | View Issue Phosphorus-containing amino acids with a P–C bond in the side chain or a P–O, P–SorP–N bond: Cite this: RSC Adv., 2020, 10, 6678 from synthesis to applications a b b Mathieu Arribat, Florine Cavelier * and Emmanuelle Remond´ * Since the discovery of (L)-phosphinothricin in the year 1970, the development of a-amino acids bearing a phosphorus group has been of renewed interest due to their diverse applications, including their use in [18F]-fluorolabeling, as fluorescent probes, as protecting groups and in the reversible immobilization of amino acids or peptide derivatives on carbon nanomaterials. Considerable progress has also been achieved in the field of antiviral agents, through the development of phosphoramidate prodrugs, which increase significantly the intracellular delivery of nucleoside monophosphate and monophosphonate analogues. This review aims to summarize the strategies reported in the literature for the synthesis of P(III), P(IV) and P(V) phosphorus-containing amino acids with P–C, P–O, P–SorP–N bonds in the side Received 2nd December 2019 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. chains and their related applications, including their use in natural products, ligands for asymmetric Accepted 22nd January 2020 catalysis, peptidomimetics, therapeutic agents, chemical reagents, markers and nanomaterials. The DOI: 10.1039/c9ra10917j discussion is organized according to the position of the phosphorus atom linkage to the amino acid side rsc.li/rsc-advances chain, either in an a-, b-, g-ord-position or to a hydroxyl, thiol or amino group. 1. Introduction phosphinothricin has engendered the development of numerous drugs for neurodegenerative disease treatment. -
Amide Bond Formation in Nonribosomal Peptide Synthesis
Amide Bond Formation in Nonribosomal Peptide Synthesis: The Formylation and Condensation Domains Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Chemie der Philipps-Universität Marburg vorgelegt von Georg Schönafinger aus München Marburg/Lahn 2007 Vom Fachbereich Chemie der Philipps-Universität Marburg als Dissertation am _______________ angenommen. Erstgutachter : Prof. Dr. M. A. Marahiel (Philipps-Universität, Marburg) Zweitgutachter : Prof. Dr. L.-O. Essen (Philipps-Universität, Marburg) Tag der Disputation: 20. Dezember 2007 2 The majority of the work presented here has been published: Samel, S.A.†, Schoenafinger, G. †, Knappe, T.A., Marahiel, M.A., Essen, L.O. 2007. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 15(7): 781-92. † equal contribution Schoenafinger, G., Schracke, N., Linne, U., Marahiel, M.A. 2006. Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin. J Am Chem Soc. 128(23): 7406-7. Schoenafinger, G., Marahiel, M.A. accepted 2007. Nonribosomal Peptides. Wiley Encyclopaedia of Chemical Biology. In press. 3 To Anke 4 Summary Nonribosomal peptides are of outstanding pharmacological interest, since many representatives of this highly diverse class of natural products exhibit therapeutically important activities, such as antibacterial, antitumor and immunosuppressive properties. Understanding their biosynthesis performed by multimodular mega-enzymes, the nonribosomal peptide synthetases (NRPSs), is one of the key determinants in order to be able to reprogram these machineries for the production of novel therapeutics. The central structural motif of all peptides is the peptide (or amide) bond. In this work, two different amide bond forming catalytic entities from NRPSs were studied: The condensation (C) and formylation (F) domains.