An Effective Detection Strategy and Determining Critical Habitat Characteristics for Boreal Felt Lichen (Erioderma Pedicellatum) in Newfoundland, Canada

Total Page:16

File Type:pdf, Size:1020Kb

An Effective Detection Strategy and Determining Critical Habitat Characteristics for Boreal Felt Lichen (Erioderma Pedicellatum) in Newfoundland, Canada An effective detection strategy and determining critical habitat characteristics for Boreal Felt Lichen (Erioderma pedicellatum) in Newfoundland, Canada By © Patrick Norman Lauriault A Thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master’s of Science Department of Biology Memorial University of Newfoundland May 2020 St. John’s, Newfoundland and Labrador Abstract Boreal felt lichen (Erioderma pedicellatum) is a rare lichen that is listed as critically endangered by the IUCN. On the island of Newfoundland, Canada, the Central Avalon Forest Ecoregion is a hotspot for this species. The population in this region is relatively abundant, providing an opportunity to study its habitat requirements. I used occupied and unoccupied plots (each 5 m radius) to test critical habitat for boreal felt lichen. To ensure I effectively detected lichens in our plots, I developed a decoy lichen experiment to test the detection probability of these lichens. I applied the results from the decoy experiment to the habitat study. Although I could not consider time in the study, I discussed how the shortened lifespan of the host tree may constrain the temporal niche of boreal felt lichen. I identified critical habitat for boreal felt lichen, which will contribute to informed land use to help protect this population. i Acknowledgments I would like to thank Dr. Yolanda F. Wiersma for generous recommendations, support and time to consult over the duration of my research program. I would also like to thank my committee members, Dr. Luise Hermanutz and Dr. Troy McMullin, for providing ideas and guidance during our annual committee meetings as well as their edits on my thesis throughout the writing process. I want to acknowledge John Godfrey and Jessika Lamarre as volunteer seekers for Chapter 2: Reducing the rates of false absences in cryptic species inventory and sampling work, without them, we would have no insight for inter-seeker variability when searching for rare and cryptic lichen species. I also thank the Memorial University Botanical Gardens for allowing us to use their grounds for some of our plots. I acknowledge Brian Ronayne for tremendous help with data collection in the summer of 2018. Finally, I would like to thank my colleagues Rachel Wigle, Tegan Padgett, Travis Heckford and Isabella Richmond in the Landscape Ecology and Spatial Analysis lab who provided productive conversations during the development of this project as well as a supportive working atmosphere. This research was supported by funding from NSERC and Environment Climate Change Canada’s Habitat Stewardship Program to YFW and under Government of Newfoundland and Labrador Research Permit 2018/19-14 issued by the Department of Fisheries and Land Resources. ii Abstract........................................................................................................... 1 Acknowledgments ......................................................................................... ii List of Tables .................................................................................................. v List of Figures ............................................................................................. vii 1 Introduction and Overview ........................................................................ 1 1.1 Species’ Description ...........................................................................................1 1.2 Threats to Cyanolichens ....................................................................................4 1.3 Avalon Forest Ecoregion Description ...............................................................5 1.4 Thesis Objectives ................................................................................................6 1.5 References .........................................................................................................10 1.6 Coauthorship Statement ..................................................................................14 2 Reducing the rate of false absences of cryptic species in inventory and sampling work .............................................................................................. 16 2.1 Abstract .............................................................................................................16 2.2 Introduction ......................................................................................................17 2.3 Methods .............................................................................................................20 2.4 Results ...............................................................................................................26 2.5 Discussion ..........................................................................................................31 2.6 Conclusion and Future Recommendations ....................................................34 2.7 Literature Cited ................................................................................................34 3 Substrate dynamics over time influence the rarity of tree-dwelling cyanolichens .................................................................................................. 38 3.1 Abstract .............................................................................................................38 3.2 Introduction ......................................................................................................38 3.3 Methods .............................................................................................................45 iii 3.4 Results ...............................................................................................................46 3.5 Discussion ..........................................................................................................49 3.6 References .........................................................................................................53 4 Identifying critical habitat for boreal felt lichen (Erioderma pedicellatum) in Newfoundland, Canada ................................................... 59 4.1 Abstract .............................................................................................................59 4.2 Introduction ......................................................................................................60 4.3 Methods .............................................................................................................65 4.3.1 Study area ............................................................................................................ 65 4.3.2 Data collection ..................................................................................................... 66 4.3.3 Statistical Analyses .............................................................................................. 68 4.4 Results ...............................................................................................................71 4.5 Discussion ..........................................................................................................74 4.6 References .........................................................................................................78 5 Summary ................................................................................................... 83 5.1 Thesis Summary ...............................................................................................83 5.2 Limitations ........................................................................................................86 5.3 Management Implications ...............................................................................89 5.4 References .........................................................................................................90 Appendices .................................................................................................... 92 Appendix A: AIC tables for Chapter 4 habitat analyses ....................................92 Appendix B: Tree spatial distribution of boreal felt lichen ..............................101 Appendix C: Protocol for Field Season 2018 (Chapter 4) ................................105 iv List of Tables Table 4.1 List of working hypotheses to be used in the AIC(c) analyses grouped by scale. In this table, boreal felt lichen is abbreviated as BFL, the predictions are the direction of habitat suitability (positive: more suitable, negative: less suitable) as the hypothesized factor increases. Suitability will be indicated by presence/absence of BFL, abundance and reproductive output. 64 Table A.1. Corresponding to Figure 4.2A, the tree level AIC table that includes tests the presence/absence of boreal felt lichen, with points taken on boreal felt lichen presence plots (N = 125). “+” indicates the addition of variables to the model, “:” is the model that includes the interaction of the two variables. 92 Table A.2. Corresponding to Figure 4.2E, the AIC table showing the top-ranked models out of all explanatory parameters tested for plot level using boreal felt lichen abundance as the response metric (N = 25). “+” indicates the addition of variables to the model, “:” is the model that includes the interaction of the two variables. 93 Table A.3. Corresponding to Figure 4.2C, The AIC table for beyond plot analyses looking at various parameters that exceed the constraints of the plot area. This table is for the logistic regression models using presence and absence of boreal felt lichen
Recommended publications
  • Checklist of the Liverworts and Hornworts of the Interior Highlands of North America in Arkansas, Illinois, Missouri and Oklahoma
    Checklist of the Liverworts and Hornworts of the Interior Highlands of North America In Arkansas, Illinois, Missouri and Oklahoma Stephen L. Timme T. M. Sperry Herbarium ‐ Biology Pittsburg State University Pittsburg, Kansas 66762 and 3 Bowness Lane Bella Vista, AR 72714 [email protected] Paul Redfearn, Jr. 5238 Downey Ave. Independence, MO 64055 Introduction Since the last publication of a checklist of liverworts and hornworts of the Interior Highlands (1997)), many new county and state records have been reported. To make the checklist useful, it was necessary to update it since its last posting. The map of the Interior Highlands of North America that appears in Redfearn (1983) does not include the very southeast corner of Kansas. However, the Springfield Plateau encompasses some 88 square kilometers of this corner of the state and includes limestone and some sandstone and shale outcrops. The vegetation is typical Ozarkian flora, dominated by oak and hickory. This checklist includes liverworts and hornworts collected from Cherokee County, Kansas. Most of what is known for the area is the result of collections by R. McGregor published in 1955. The majority of his collections are deposited in the herbarium at the New York Botanical Garden (NY). This checklist only includes the region defined as the Interior Highlands of North America. This includes the Springfield Plateau, Salem Plateau, St. Francois Mountains, Boston Mountains, Arkansas Valley, Ouachita Mountains and Ozark Hills. It encompasses much of southern Missouri south of the Missouri River, southwest Illinois; most of Arkansas except the Mississippi Lowlands and the Coastal Plain, the extreme southeastern corner of Kansas, and eastern Oklahoma (Fig.
    [Show full text]
  • Predictive Distribution Model for the Boreal Felt Lichen Erioderma Pedicellatum in Newfoundland, Canada
    Vol. 15: 115–127, 2011 ENDANGERED SPECIES RESEARCH Published online November 10 doi: 10.3354/esr00374 Endang Species Res OPENPEN ACCESSCCESS Predictive distribution model for the boreal felt lichen Erioderma pedicellatum in Newfoundland, Canada Yolanda F. Wiersma1,*, Randolph Skinner1,2 1Department of Biology, Memorial University, St. John’s, Newfoundland A1B 3X9, Canada 2Present address: Atlantic Canada Conservation Data Centre, Corner Brook, Newfoundland A2H 751, Canada ABSTRACT: The worldwide population of the boreal felt lichen Erioderma pedicellatum is cur- rently listed as Critically Endangered by the IUCN, with over 95% of the current population resid- ing on the island of Newfoundland, Canada. Surveys of E. pedicellatum habitats and populations have primarily been opportunistic, rather than systematic, in nature. We used a geographic infor- mation system and compiled occurrence data and pseudo-absence data to develop the first pre- dictive spatial distribution model for E. pedicellatum in Newfoundland. Of the suite of 19 models using 4 different parameters examined, the model with distance from coastline and topographic aspect was the best candidate. The final model had low sensitivity (i.e. a low ability to predict false presence), but high specificity (a strong ability to predict true absence). The final predictive model can contribute to future species status assessments and provincial conservation management decisions that require information on probable species distribution. KEY WORDS: Habitat · Lichen · Predictive habitat model · Species distribution · Rare species · Generalized additive model · Newfoundland Resale or republication not permitted without written consent of the publisher INTRODUCTION Canada, E. pedicellatum has been listed as a species of special concern by the Committee on the Status of In conservation biology, determining the spatial Endangered Wildlife in Canada (COSEWIC), and distribution of rare species is a challenge.
    [Show full text]
  • Pannariaceae Generic Taxonomy LL Ver. 27.9.2013.Docx
    http://www.diva-portal.org Preprint This is the submitted version of a paper published in The Lichenologist. Citation for the original published paper (version of record): Ekman, S. (2014) Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota). The Lichenologist, 46: 627-656 http://dx.doi.org/10.1017/S002428291400019X Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-943 Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota) Stefan EKMAN, Mats WEDIN, Louise LINDBLOM & Per M. JØRGENSEN S. Ekman (corresponding author): Museum of Evolution, Uppsala University, Norbyvägen 16, SE –75236 Uppsala, Sweden. Email: [email protected] M. Wedin: Dept. of Botany, Swedish Museum of Natural History, Box 50007, SE –10405 Stockholm, Sweden. L. Lindblom and P. M. Jørgensen: Dept. of Natural History, University Museum of Bergen, Box 7800, NO –5020 Bergen, Norway. Abstract: We estimated phylogeny in the lichen-forming ascomycete family Pannariaceae. We specifically modelled spatial (across-site) heterogeneity in nucleotide frequencies, as models not incorporating this heterogeneity were found to be inadequate for our data. Model adequacy was measured here as the ability of the model to reconstruct nucleotide diversity per site in the original sequence data. A potential non-orthologue in the internal transcribed spacer region (ITS) of Degelia plumbea was observed. We propose a revised generic classification for the Pannariaceae, accepting 30 genera, based on our phylogeny, previously published phylogenies, as well as morphological and chemical data available.
    [Show full text]
  • Revisions of British and Irish Lichens
    Revisions of British and Irish Lichens Volume 9 February 2021 Peltigerales: Pannariaceae Cover image: Pectenia atlantica, on bark of Fraxinus excelsior, Strath Croe, Kintail, Wester Ross. Revisions of British and Irish Lichens is a free-to-access serial publication under the auspices of the British Lichen Society, that charts changes in our understanding of the lichens and lichenicolous fungi of Great Britain and Ireland. Each volume will be devoted to a particular family (or group of families), and will include descriptions, keys, habitat and distribution data for all the species included. The maps are based on information from the BLS Lichen Database, that also includes data from the historical Mapping Scheme and the Lichen Ireland database. The choice of subject for each volume will depend on the extent of changes in classification for the families concerned, and the number of newly recognized species since previous treatments. To date, accounts of lichens from our region have been published in book form. However, the time taken to compile new printed editions of the entire lichen biota of Britain and Ireland is extensive, and many parts are out-of-date even as they are published. Issuing updates as a serial electronic publication means that important changes in understanding of our lichens can be made available with a shorter delay. The accounts may also be compiled at intervals into complete printed accounts, as new editions of the Lichens of Great Britain and Ireland. Editorial Board Dr P.F. Cannon (Department of Taxonomy & Biodiversity, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK). Dr A. Aptroot (Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n, Bairro Universitário, CEP 79070-900, Campo Grande, MS, Brazil) Dr B.J.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • Habitat Quality and Disturbance Drive Lichen Species Richness in a Temperate Biodiversity Hotspot
    Oecologia (2019) 190:445–457 https://doi.org/10.1007/s00442-019-04413-0 COMMUNITY ECOLOGY – ORIGINAL RESEARCH Habitat quality and disturbance drive lichen species richness in a temperate biodiversity hotspot Erin A. Tripp1,2 · James C. Lendemer3 · Christy M. McCain1,2 Received: 23 April 2018 / Accepted: 30 April 2019 / Published online: 15 May 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The impacts of disturbance on biodiversity and distributions have been studied in many systems. Yet, comparatively less is known about how lichens–obligate symbiotic organisms–respond to disturbance. Successful establishment and development of lichens require a minimum of two compatible yet usually unrelated species to be present in an environment, suggesting disturbance might be particularly detrimental. To address this gap, we focused on lichens, which are obligate symbiotic organ- isms that function as hubs of trophic interactions. Our investigation was conducted in the southern Appalachian Mountains, USA. We conducted complete biodiversity inventories of lichens (all growth forms, reproductive modes, substrates) across 47, 1-ha plots to test classic models of responses to disturbance (e.g., linear, unimodal). Disturbance was quantifed in each plot using a standardized suite of habitat quality variables. We additionally quantifed woody plant diversity, forest density, rock density, as well as environmental factors (elevation, temperature, precipitation, net primary productivity, slope, aspect) and analyzed their impacts on lichen biodiversity. Our analyses recovered a strong, positive, linear relationship between lichen biodiversity and habitat quality: lower levels of disturbance correlate to higher species diversity. With few exceptions, additional variables failed to signifcantly explain variation in diversity among plots for the 509 total lichen species, but we caution that total variation in some of these variables was limited in our study area.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Species Fact Sheet
    SPECIES FACT SHEET Common Name: pink-eyed mouse, shingle lichen. Scientific Name: Fuscopannaria saubinetii (Mont.) P. M. Jørg. Synonym: Pannaria saubinetii (Mont.) Nyl. Division: Ascomycota Class: Lecanoromycetes Order: Peltigerales Family: Pannariaceae Note: This species not found in North America. Previous records misidentifications, most often Fuscopannaria pacifica (see below for details and references). Technical Description: Thallus made of small (to 1 mm diameter), smooth, delicately incised, bluish leaf-like flaps (squamulose). The squamules have an upper cortex, a medulla with the cyanobacteria Nostoc (photobiont) and fungal hyphae, and no lower cortex. Apothecia convex, flesh-colored, to 0.5 mm diam., with a pale margin of fungal tissue (proper margin) but without an obvious ring of thallus-colored tissue around the edge (thalline margin). Hymenium reacts blue-green then turns red-brown rapidly in I. Asci with apical amyloid sheet (this is a microscopic character that takes acquired skill to locate). Spores simple, colorless, ellipsoid, 15- 17x5-6 µm. Other descriptions and illustrations: Jørgensen 1978, Brodo 2001. Chemistry: All spot tests on thallus negative. Distinctive Characters: (1) pale blue-gray, delicately incised squamules with small flesh- colored apothecia, (2) spores 15-17X5-6 µm, (3) asci with amyloid sheet. Similar Species: Many Pannaria and Fuscopannaria species look similar and are very difficult to distinguish. Fuscopannaria pacifica is the species described from North America that is most often confused with F. saubinetii. Fuscopannaria pacifica has squamules that are brownish gray and minutely incised, lying on a black mat of hyphal strands. Its pale orangish brown convex apothecia lack a margin of thallus-colored tissue, the spores are 16-20x7-10 µm, and the asci have amyloid rings instead of an amyloid sheet.
    [Show full text]
  • Pacific Northwest Fungi Project
    North American Fungi Volume 6, Number 7, Pages 1-8 Published July 19, 2011 Hypogymnia pulverata (Parmeliaceae) and Collema leptaleum (Collemataceae), two macrolichens new to Alaska Peter R. Nelson1,2, James Walton3, Heather Root1 and Toby Spribille4 1 Department of Botany and Plant Pathology, Cordley Hall 2082, Oregon State University Corvallis, Oregon, 2 National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, Alaska, 3 National Park Service, Southwest Alaska Network, 240 West 5th Ave., Anchorage, Alaska, 4 Institute of Plant Sciences, University of Graz, Holteigasse 6, A-8010 Graz, Austria. Nelson, P. R., J. Walton, H. Root, and T. Spribille. 2011. Hypogymnia pulverata (Parmeliaceae) and Collema leptaleum (Collemataceae), two macrolichens new to Alaska. North American Fungi 6(7): 1-8. doi: 10.2509/naf2011.006.007 Corresponding author: Peter R. Nelson, [email protected] Accepted for publication July 18, 2011. http://pnwfungi.org Copyright © 2011 Pacific Northwest Fungi Project. All rights reserved. Abstract: Hypogymnia pulverata is a foliose macrolichen distinguished by its solid medulla and laminal soredia. Though widespread in Asia, it is considered rare in North America, where it is currently known from three widely separated locations in Québec, Oregon, and Alaska. We document the first report of this species from Alaska and from several new localities within south-central and southwestern Alaska. Collema leptaleum is a non-stratified, foliose cyanolichen distinguished by its multicellular, fusiform ascospores and a distinct exciple cell type. It is globally distributed, known most proximately from Kamchatka, Japan and eastern North America, but considered rare in Europe. It has not heretofore been reported from western North America.
    [Show full text]
  • Boreal Felt Lichen (Erioderma Pedicellatum) Is a Globally Threatened, Conspicuous Foliose Cyanolichen Belonging to the Pannariaceae
    COSEWIC Assessment and Status Report on the Boreal Felt Lichen Erioderma pedicellatum Atlantic population Boreal population in Canada ENDANGERED - Atlantic population 2002 SPECIAL CONCERN - Boreal population 2002 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION DES ENDANGERED WILDLIFE IN ESPÈCES EN PÉRIL CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: Please note: Persons wishing to cite data in the report should refer to the report (and cite the author(s)); persons wishing to cite the COSEWIC status will refer to the assessment (and cite COSEWIC). A production note will be provided if additional information on the status report history is required. COSEWIC 2002. COSEWIC assessment and status report on the boreal felt lichen Erioderma pedicellatum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. viii + 50 pp. Maass, W. and D. Yetman. 2002. COSEWIC assessment and status report on the boreal felt lichen Erioderma pedicellatum in Canada, in COSEWIC assessment and status report on the boreal felt lichen Erioderma pedicellatum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1- 50 pp. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Ếgalement disponible en français sous le titre Évaluation et Rapport du COSEPAC sur la situation de l’erioderme boréal (Erioderma pedicellatum) au Canada Cover illustration: Boreal felt lichen — Provided by the author, photo by Dr.
    [Show full text]
  • July 2007 Volume 38, No.2
    July 2007 Volume 38, No.2 THE OSPREY __________________________________ NATURE JOURNAL OF NEWFOUNDLAND AND LABRADOR NATURAL HISTORY SOCIETY OF NEWFOUNDLAND AND LABRADOR Publication Mail Registration # 8302 ISSN 0710-4847 THE NATURAL HISTORY SOCIETY OF NEWFOUNDLAND AND LABRADOR P.O. Box 1013, St. John’s, NL A1C 5M3 Editorial Policy: All members are encouraged to contribute articles and materials in accordance with the society’s mandate for publication in “The Osprey” Articles should be submitted via 3.5” High-density IBM-formatted fl oppy disks or Compact Disk. Computer users should prepare articles in Word Perfect or MS Word or text fi le. Font, margins, and spacing can be adjusted by the editor. The editor reserves the right to re-format any materials received. Please note that all material will be reviewed by the editorial staff and only those deemed appropriate will be published. Illustrations and photos are welcome, and should be provided in a format compatible with photocopying in black and white. Submissions for publication can be mailed to: P.O. Box 1013 St. John’s, NL A1C 5M3 or emailed to the editor at: [email protected] “The Osprey does not print advertising or solicitations without the expressed consent of the executive. Views expressed in “Letters to the Editor” are not necessarily the views of the editor or the executive of the Society. Natural History Society Executive (Mar. 2007 - 2008). Website: www.nhs.nf.ca e-mail: [email protected] HOME WORK FAX President - Rita Anderson [email protected] 895-2564 737-8771 737-2430 Vice President - John Jacobs [email protected] 738-3147 737-8194 737-3119 Secretary- Don Steele [email protected] 754-0455 737-7520 737-3018 Treasurer - Jackie Feltham [email protected] 895-0477 895-7776 Osprey Editor - Elizabeth Zedel [email protected] 754-3321 Associate Editor - John Jacobs [email protected] 738-3147 Humber Rep.
    [Show full text]
  • Érioderme Boréal (Erioderma Pedicellatum), Population De L’Atlantique, Au Canada
    PROPOSITION Loi sur les espèces en péril Série de Programmes de rétablissement Programme de rétablissement modifié de l’érioderme boréal (Erioderma pedicellatum), population de l’Atlantique, au Canada Érioderme boréal, population de l’Atlantique 2018 Référence recommandée : Environnement et Changement climatique Canada. 2018. Programme de rétablissement modifié de l’érioderme boréal (Erioderma pedicellatum), population de l’Atlantique, au Canada [Proposition]. Série de Programmes de rétablissement de la Loi sur les espèces en péril. Environnement et Changement climatique Canada, Ottawa. viii + 52 p. Pour télécharger le présent programme de rétablissement ou pour obtenir un complément d’information sur les espèces en péril, incluant les rapports de situation du Comité sur la situation des espèces en péril au Canada (COSEPAC), les descriptions de la résidence, les plans d’action et d’autres documents connexes portant sur le rétablissement, veuillez consulter le Registre public des espèces en péril1. Illustration de la couverture : Érioderme boréal sur un sapin baumier, côte est, Nouvelle-Écosse. Photo par Robert Cameron, utilisée avec autorisation. Also available in English under the title "Amended Recovery Strategy for the Boreal Felt Lichen (Erioderma pedicellatum), Atlantic population, in Canada [Proposed]" © Sa Majesté la Reine du chef du Canada, représentée par la ministre de l’Environnement et du Changement climatique, 2018. Tous droits réservés. ISBN No de catalogue Le contenu du présent document (à l’exception des illustrations)
    [Show full text]