Sensing and Retrograde Signalling of Mitochondrial Metabolic States in Plants
Total Page:16
File Type:pdf, Size:1020Kb
Sensing and Retrograde Signalling of Mitochondrial Metabolic States in Plants Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München Vorgelegt von Ann-Christine König München, Juni 2014 Gutachter: Dr. Iris Finkemeier (Erstgutachter) Prof. Dr. Jörg Nickelsen (Zweitgutachter) Prof. Dr. Wolfgang Enard Prof. Dr. Thorsten Mascher PD. Dr. Bolle Prof. Dr. Günther Heubl Tag der Dissertations Abgabe: 18.06.2014 Tag der mündlichen Prüfung: 26.09.2014 Table of contents I. Summary 3 II. Zusammenfassung 5 III. Aim of Thesis 7 IV. List of Publications 9 V. Abbreviations 11 1. General Introduction 13 1.1 Main function of mitochondria in plants cells 14 1.2. Mitochondrial retrograde signaling in plants 16 1.3. Protein posttranslational modifications connected to mitochondrial metabolism 18 2. Summarizing Discussion 23 2.1. Dysfunctions in mitochondria result in transcriptional changes of distinct metabolic and regulatory pathways 23 2.2. Carboxylic acid treatment results in distinct changes of nuclear transcripts 26 2.3. Correlation between MRR and citrate-dependent transcriptional changes 31 2.4. Redox regulation of mitochondrial citrate synthase 33 2.5. Acetyl-CoA dependent lysine acetylation of mitochondrial proteins 35 2.6. The Arabidopsis sirtuin SRT2 fine tunes mitochondrial metabolism 40 3. Conclusion and Outlook 43 3.1. Future perspectives of transcriptional regulation triggered by citrate 44 3.2. Research outlook for lysine acetylation on metabolic enzymes 45 4. References 47 VI. Declaration of Own Contributions 57 VII. Curriculum Vitae 59 VIII. Eidesstattliche Erklärung 63 IX. Acknowledgements 65 X. Publications 1-7 67 I. Summary I. Summary Plants are exposed to always changing environmental conditions because of their sessile nature. For an optimal development and growth, plants have to be able to adapt to these changing conditions such as alterations in light intensities, temperature differences, salt stress as well as pathogen attacks. The acclimation of the plant metabolism can occur by the synthesis of new proteins which are directly or indirectly capable to protect cellular components from damage due to oxidative stress for example. Most sensitive to oxidative inhibition are metabolic pathways connected to electron transport chains which are housed in the plant organelles, mitochondria and chloroplasts, and which are the major energy sources for plant cells. Because both organelles lost most of their genomes during evolution, the majority of their required proteins are expressed in the nucleus, translated in the cytosol and posttranslationally imported into the target organelle. This requires a fine-tuned and constant communication between the nucleus and the organelles as well as interplay between chloroplasts and mitochondria themselves. Mitochondria indirectly provide reducing equivalents for the chloroplast and supply the cells with ATP in the dark and when ATP supply from chloroplasts is not sufficient. In this thesis, the communication of mitochondria with the nucleus and the posttranslational regulation of mitochondrial metabolic enzymes have been investigated. Mitochondria house the tricarboxylic acid (TCA) cycle in which acetyl-CoA and carboxylic acids are used in a series of decarboxylation reactions to produce reducing equivalents used during oxidative phosphorylation for ATP synthesis. As organic acids are the major players in the TCA cycle and they reflect both the redox and the metabolic state of the cell, they represent putative candidates to act as regulators of gene expression. We propose citrate as a possible signalling molecule to report on the metabolic state of mitochondria as it can be transported between organelles and we were able to demonstrate that perturbation in cellular citrate concentrations strongly correlate with changes in transcript abundances. After citrate treatment, the main functional affected gene targets were photosynthesis, cell wall, biotic stress, and protein synthesis. Similar categories were observed to be changed after mitochondrial impairment and therefore they were concluded as main targets of mitochondrial retrograde signalling. Additionally we showed that the transcript response to citrate is distinct from other organic acids and that induction of genes occurs in a time and concentration dependent manner. Intracellular mitochondrial citrate levels depend on the action of citrate synthase which we found to be redox-regulated. Citrate synthase is catalyzing the first committed step of the TCA cycle in which oxaloacetate and acetyl-CoA are converted to citrate. Our results indicate 3 I. Summary that citrate synthase can be deactivated by oxidation and reactivated by thioredoxin which probably enables the proper folding of citrate synthase. Further high molecular weight complexes of citrate synthase were observed either because of multimeric aggregates or association with high molecular weight complexes with proteins from oxidative phosphorylation (OXPHOS). By site-directed mutagenesis the cysteine residues important for activity and redox regulation of citrate synthase were discovered. Until now almost nothing was known about the posttranslational regulation of TCA cycle enzymes and here we provide first insight into the redox regulation of citrate synthase. Posttranslational modifications, like redox regulation, are in general efficient molecular mechanisms to modify the activity of important metabolic enzymes. A further yet largely unexplored posttranslational modification is the acetylation of the ε-amino group of lysine residues on proteins investigated in the third part of this thesis. Lysine acetylation is dependent on the acetyl-CoA pools and can be reverted by the action of lysine deacetylases. We explored the extent of lysine acetylation in plant mitochondria. By liquid chromatography–mass spectrometry (LC-MS/MS) analysis the acetylome of Arabidopsis mitochondria was revealed, including 120 proteins and 243 acetylated sites. All TCA cycle enzymes carry at least one acetylation site and several enzymes of OXPHOS were identified as lysine-acetylated. The high number of lysine-acetylated proteins suggests that this modification has a regulatory role in mitochondrial metabolism maybe under adverse environmental conditions. In in vitro analysis, the abundance of non-enzymatic lysine acetylation depending on elevated pH and acetyl-CoA concentrations has been investigated. Furthermore, we characterized a novel sirtuin-type lysine deacetylase, Silent Information Regulator2 homolog (SRT2) in Arabidopsis mitochondria. We were able to demonstrate that SRT2 is mainly localized at the inner mitochondrial membrane and is interacting with several protein complexes in energy metabolism such as complex I, the ATP/ADP carries, and a subunit of the ATP-synthase. An increased ADP uptake was discovered for the knockout mutant as well as changes in sugars and amino acid contents compared to wild type plants. In conclusion, this work provides a first insight into the fine-tuning of mitochondrial metabolism which is achieved by retrograde regulation and possibly mediated by citrate as signalling molecule. Furthermore, novel post-translational regulatory processes in Arabidopsis mitochondria were uncovered, such as the redox regulation of citrate synthase and the regulation of mitochondrial metabolism by lysine acetylation with SRT2 as active mitochondrial deacetylase. 4 II. Zusammenfassung II. Zusammenfassung Pflanzen sind durch ihre sessile Lebensweise ständig wechselnden Umweltbedingungen ausgesetzt. Für eine optimale Entwicklung und optimales Wachstum müssen Pflanzen dazu in der Lage sein, sich wechselnden Bedingungen wie Lichtintensität, Temperaturunterschiede, Salzstress und Pathogenbefall anzupassen. Die Adaption des Pflanzenmetabolismus kann zum Beispiel durch die Synthese oder Regulation von Proteinen erfolgen, die direkt oder indirekt dazu fähig sind zelluläre Bestandteile vor Schäden wie z.B. Oxidation zu bewahren. Besonders metabolische Vorgänge in den pflanzlichen Organellen, welche mit dem Transport von Elektronen verbunden sind, erweisen sich als sehr empfindlich gegenüber Oxidation. Da Mitochondrien und Chloroplasten im Laufe der Evolution den größten Teil ihres Genoms verloren haben, müssen benötigte Proteine im Zellkern exprimiert, im Zytosol translatiert und anschließend posttranslational in das Zielorganell importiert werden. Dies setzt eine Feinregulation und ständige Kommunikation zwischen dem Zellkern und den Organellen voraus. Im Zuge dieser Arbeit wurde sowohl die Kommunikation zwischen Mitochondrien und dem Zellkern, als auch die posttranslationale Regulation mitochondrialer metabolischer Enzyme untersucht. In Mitochondrien findet der Citratzyklus statt, in welchem Reduktionsäquivalente aus Acetyl-CoA und Carbonsäuren in einer Reihe von Decarboxylierungsreaktionen gewonnen werden. Diese werden in der Oxidativen Phosphorylierung (OXPHOS) zur ATP-Produktion verwendet. Die Konzentrationen der Carbonsäuren des Citratzyklus spiegeln den Redoxstatus und den metabolischen Zustand der Mitochondrien wieder. Aus diesem Grund sind Carbonsäuren mögliche Kandidaten, welche an der Regulation der Genexpression beteiligt sein könnten. Citrat besitzt die Grundvoraussetzungen um als Signalmolekül mitochondrialer metabolischer Zustände zu dienen, da es zwischen den Organellen transportiert werden kann. In dieser Arbeit konnte gezeigt werden, dass die zelluläre Citratkonzentration einen starken Einfluss auf den Transkriptionsspiegel hat. Nach der Behandlung