Polyhedral Problems in Combinatorial Convex Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Hypersimplex Canonical Forms and the Momentum Amplituhedron-Like Logarithmic Forms
The hypersimplex canonical forms and the momentum amplituhedron-like logarithmic forms TomaszLukowski, 1 and Jonah Stalknecht1 1Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, United Kingdom E-mail: [email protected], [email protected] Abstract: In this paper we provide a formula for the canonical differential form of the hypersimplex ∆k;n for all n and k. We also study the generalization of the momentum ampli- tuhedron Mn;k to m = 2, and we conclude that the existing definition does not possess the desired properties. Nevertheless, we find interesting momentum amplituhedron-like logarith- mic differential forms in the m = 2 version of the spinor helicity space, that have the same singularity structure as the hypersimplex canonical forms. arXiv:2107.07520v1 [hep-th] 15 Jul 2021 Contents 1 Introduction 1 2 Hypersimplex2 2.1 Definitions3 2.2 Hypersimplex canonical forms4 3 Momentum amplituhedron9 3.1 Definition of m = 2 momentum amplituhedron 10 3.2 Momentum amplituhedron-like logarithmic forms 11 3.3 Geometry 12 4 Summary and outlook 15 A Definition of positive geometry and push-forward 15 1 Introduction Geometry has always played an essential role in physics, and it continues to be crucial in many recently developed branches of theoretical and high-energy physics. In recent years, this statement has been supported by the introduction of positive geometries [1] that encode a variety of observables in Quantum Field Theories [2{5], and beyond [6{8], see [9] for a com- prehensive review. These recent advances have also renewed the interest in well-established and very well-studied geometric objects, allowing us to look at them in a completely new way. -
A General Geometric Construction of Coordinates in a Convex Simplicial Polytope
A general geometric construction of coordinates in a convex simplicial polytope ∗ Tao Ju a, Peter Liepa b Joe Warren c aWashington University, St. Louis, USA bAutodesk, Toronto, Canada cRice University, Houston, USA Abstract Barycentric coordinates are a fundamental concept in computer graphics and ge- ometric modeling. We extend the geometric construction of Floater’s mean value coordinates [8,11] to a general form that is capable of constructing a family of coor- dinates in a convex 2D polygon, 3D triangular polyhedron, or a higher-dimensional simplicial polytope. This family unifies previously known coordinates, including Wachspress coordinates, mean value coordinates and discrete harmonic coordinates, in a simple geometric framework. Using the construction, we are able to create a new set of coordinates in 3D and higher dimensions and study its relation with known coordinates. We show that our general construction is complete, that is, the resulting family includes all possible coordinates in any convex simplicial polytope. Key words: Barycentric coordinates, convex simplicial polytopes 1 Introduction In computer graphics and geometric modelling, we often wish to express a point x as an affine combination of a given point set vΣ = {v1,...,vi,...}, x = bivi, where bi =1. (1) i∈Σ i∈Σ Here bΣ = {b1,...,bi,...} are called the coordinates of x with respect to vΣ (we shall use subscript Σ hereafter to denote a set). In particular, bΣ are called barycentric coordinates if they are non-negative. ∗ [email protected] Preprint submitted to Elsevier Science 3 December 2006 v1 v1 x x v4 v2 v2 v3 v3 (a) (b) Fig. -
7 LATTICE POINTS and LATTICE POLYTOPES Alexander Barvinok
7 LATTICE POINTS AND LATTICE POLYTOPES Alexander Barvinok INTRODUCTION Lattice polytopes arise naturally in algebraic geometry, analysis, combinatorics, computer science, number theory, optimization, probability and representation the- ory. They possess a rich structure arising from the interaction of algebraic, convex, analytic, and combinatorial properties. In this chapter, we concentrate on the the- ory of lattice polytopes and only sketch their numerous applications. We briefly discuss their role in optimization and polyhedral combinatorics (Section 7.1). In Section 7.2 we discuss the decision problem, the problem of finding whether a given polytope contains a lattice point. In Section 7.3 we address the counting problem, the problem of counting all lattice points in a given polytope. The asymptotic problem (Section 7.4) explores the behavior of the number of lattice points in a varying polytope (for example, if a dilation is applied to the polytope). Finally, in Section 7.5 we discuss problems with quantifiers. These problems are natural generalizations of the decision and counting problems. Whenever appropriate we address algorithmic issues. For general references in the area of computational complexity/algorithms see [AB09]. We summarize the computational complexity status of our problems in Table 7.0.1. TABLE 7.0.1 Computational complexity of basic problems. PROBLEM NAME BOUNDED DIMENSION UNBOUNDED DIMENSION Decision problem polynomial NP-hard Counting problem polynomial #P-hard Asymptotic problem polynomial #P-hard∗ Problems with quantifiers unknown; polynomial for ∀∃ ∗∗ NP-hard ∗ in bounded codimension, reduces polynomially to volume computation ∗∗ with no quantifier alternation, polynomial time 7.1 INTEGRAL POLYTOPES IN POLYHEDRAL COMBINATORICS We describe some combinatorial and computational properties of integral polytopes. -
1 Lifts of Polytopes
Lecture 5: Lifts of polytopes and non-negative rank CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Lifts of polytopes 1.1 Polytopes and inequalities Recall that the convex hull of a subset X n is defined by ⊆ conv X λx + 1 λ x0 : x; x0 X; λ 0; 1 : ( ) f ( − ) 2 2 [ ]g A d-dimensional convex polytope P d is the convex hull of a finite set of points in d: ⊆ P conv x1;:::; xk (f g) d for some x1;:::; xk . 2 Every polytope has a dual representation: It is a closed and bounded set defined by a family of linear inequalities P x d : Ax 6 b f 2 g for some matrix A m d. 2 × Let us define a measure of complexity for P: Define γ P to be the smallest number m such that for some C s d ; y s ; A m d ; b m, we have ( ) 2 × 2 2 × 2 P x d : Cx y and Ax 6 b : f 2 g In other words, this is the minimum number of inequalities needed to describe P. If P is full- dimensional, then this is precisely the number of facets of P (a facet is a maximal proper face of P). Thinking of γ P as a measure of complexity makes sense from the point of view of optimization: Interior point( methods) can efficiently optimize linear functions over P (to arbitrary accuracy) in time that is polynomial in γ P . ( ) 1.2 Lifts of polytopes Many simple polytopes require a large number of inequalities to describe. -
The Orientability of Small Covers and Coloring Simple Polytopes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Osaka City University Repository Nakayama, H. and Nishimura, Y. Osaka J. Math. 42 (2005), 243–256 THE ORIENTABILITY OF SMALL COVERS AND COLORING SIMPLE POLYTOPES HISASHI NAKAYAMA and YASUZO NISHIMURA (Received September 1, 2003) Abstract Small Cover is an -dimensional manifold endowed with a Z2 action whose or- bit space is a simple convex polytope . It is known that a small cover over is characterized by a coloring of which satisfies a certain condition. In this paper we shall investigate the topology of small covers by the coloring theory in com- binatorics. We shall first give an orientability condition for a small cover. In case = 3, an orientable small cover corresponds to a four colored polytope. The four color theorem implies the existence of orientable small cover over every simple con- vex 3-polytope. Moreover we shall show the existence of non-orientable small cover over every simple convex 3-polytope, except the 3-simplex. 0. Introduction “Small Cover” was introduced and studied by Davis and Januszkiewicz in [5]. It is a real version of “Quasitoric manifold,” i.e., an -dimensional manifold endowed with an action of the group Z2 whose orbit space is an -dimensional simple convex poly- tope. A typical example is provided by the natural action of Z2 on the real projec- tive space R whose orbit space is an -simplex. Let be an -dimensional simple convex polytope. Here is simple if the number of codimension-one faces (which are called “facets”) meeting at each vertex is , equivalently, the dual of its boundary complex ( ) is an ( 1)-dimensional simplicial sphere. -
Combinatorial and Discrete Problems in Convex Geometry
COMBINATORIAL AND DISCRETE PROBLEMS IN CONVEX GEOMETRY A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Matthew R. Alexander September, 2017 Dissertation written by Matthew R. Alexander B.S., Youngstown State University, 2011 M.A., Kent State University, 2013 Ph.D., Kent State University, 2017 Approved by Dr. Artem Zvavitch , Co-Chair, Doctoral Dissertation Committee Dr. Matthieu Fradelizi , Co-Chair Dr. Dmitry Ryabogin , Members, Doctoral Dissertation Committee Dr. Fedor Nazarov Dr. Feodor F. Dragan Dr. Jonathan Maletic Accepted by Dr. Andrew Tonge , Chair, Department of Mathematical Sciences Dr. James L. Blank , Dean, College of Arts and Sciences TABLE OF CONTENTS LIST OF FIGURES . vi ACKNOWLEDGEMENTS ........................................ vii NOTATION ................................................. viii I Introduction 1 1 This Thesis . .2 2 Preliminaries . .4 2.1 Convex Geometry . .4 2.2 Basic functions and their properties . .5 2.3 Classical theorems . .6 2.4 Polarity . .8 2.5 Volume Product . .8 II The Discrete Slicing Problem 11 3 The Geometry of Numbers . 12 3.1 Introduction . 12 3.2 Lattices . 12 3.3 Minkowski's Theorems . 14 3.4 The Ehrhart Polynomial . 15 4 Geometric Tomography . 17 4.1 Introduction . 17 iii 4.2 Projections of sets . 18 4.3 Sections of sets . 19 4.4 The Isomorphic Busemann-Petty Problem . 20 5 The Discrete Slicing Problem . 22 5.1 Introduction . 22 5.2 Solution in Z2 ............................................. 23 5.3 Approach via Discrete F. John Theorem . 23 5.4 Solution using known inequalities . 26 5.5 Solution for Unconditional Bodies . 27 5.6 Discrete Brunn's Theorem . -
Understanding the Formation of Pbse Honeycomb Superstructures by Dynamics Simulations
PHYSICAL REVIEW X 9, 021015 (2019) Understanding the Formation of PbSe Honeycomb Superstructures by Dynamics Simulations Giuseppe Soligno* and Daniel Vanmaekelbergh Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, Netherlands (Received 28 October 2018; revised manuscript received 28 January 2019; published 23 April 2019) Using a coarse-grained molecular dynamics model, we simulate the self-assembly of PbSe nanocrystals (NCs) adsorbed at a flat fluid-fluid interface. The model includes all key forces involved: NC-NC short- range facet-specific attractive and repulsive interactions, entropic effects, and forces due to the NC adsorption at fluid-fluid interfaces. Realistic values are used for the input parameters regulating the various forces. The interface-adsorption parameters are estimated using a recently introduced sharp- interface numerical method which includes capillary deformation effects. We find that the final structure in which the NCs self-assemble is drastically affected by the input values of the parameters of our coarse- grained model. In particular, by slightly tuning just a few parameters of the model, we can induce NC self- assembly into either silicene-honeycomb superstructures, where all NCs have a f111g facet parallel to the fluid-fluid interface plane, or square superstructures, where all NCs have a f100g facet parallel to the interface plane. Both of these nanostructures have been observed experimentally. However, it is still not clear their formation mechanism, and, in particular, which are the factors directing the NC self-assembly into one or another structure. In this work, we identify and quantify such factors, showing illustrative assembled-phase diagrams obtained from our simulations. -
Classification of Ehrhart Polynomials of Integral Simplices Akihiro Higashitani
Classification of Ehrhart polynomials of integral simplices Akihiro Higashitani To cite this version: Akihiro Higashitani. Classification of Ehrhart polynomials of integral simplices. 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), 2012, Nagoya, Japan. pp.587-594. hal-01283113 HAL Id: hal-01283113 https://hal.archives-ouvertes.fr/hal-01283113 Submitted on 5 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. FPSAC 2012, Nagoya, Japan DMTCS proc. AR, 2012, 587–594 Classification of Ehrhart polynomials of integral simplices Akihiro Higashitani y Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan Abstract. Let δ(P) = (δ0; δ1; : : : ; δd) be the δ-vector of an integral convex polytope P of dimension d. First, by Pd using two well-known inequalities on δ-vectors, we classify the possible δ-vectors with i=0 δi ≤ 3. Moreover, by Pd means of Hermite normal forms of square matrices, we also classify the possible δ-vectors with i=0 δi = 4. In Pd Pd addition, for i=0 δi ≥ 5, we characterize the δ-vectors of integral simplices when i=0 δi is prime. -
Unimodular Triangulations of Dilated 3-Polytopes
Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc. Tom 74 (2013), vyp. 2 2013, Pages 293–311 S 0077-1554(2014)00220-X Article electronically published on April 9, 2014 UNIMODULAR TRIANGULATIONS OF DILATED 3-POLYTOPES F. SANTOS AND G. M. ZIEGLER Abstract. A seminal result in the theory of toric varieties, by Knudsen, Mumford and Waterman (1973), asserts that for every lattice polytope P there is a positive integer k such that the dilated polytope kP has a unimodular triangulation. In dimension 3, Kantor and Sarkaria (2003) have shown that k = 4 works for every polytope. But this does not imply that every k>4 works as well. We here study the values of k for which the result holds, showing that: (1) It contains all composite numbers. (2) It is an additive semigroup. These two properties imply that the only values of k that may not work (besides 1 and 2, which are known not to work) are k ∈{3, 5, 7, 11}.Withanad-hocconstruc- tion we show that k =7andk = 11 also work, except in this case the triangulation cannot be guaranteed to be “standard” in the boundary. All in all, the only open cases are k =3andk =5. § 1. Introduction Let Λ ⊂ Rd be an affine lattice. A lattice polytope (or an integral polytope [4]) is a polytope P with all its vertices in Λ. We are particularly interested in lattice (full- dimensional) simplices. The vertices of a lattice simplex Δ are an affine basis for Rd, hence they induce a sublattice ΛΔ of Λ of index equal to the normalized volume of Δ with respect to Λ. -
Mixed Volumes of Hypersimplices, Root Systems and Shifted Young Tableaux Dorian Croitoru
Mixed Volumes of Hypersimplices, Root Systems and Shifted Young Tableaux by Dorian Croitoru M.A., University of Pittsburgh, 2005 Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2010 © Dorian Croitoru, 2010. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Author......................................... Department of Mathematics July 21, 2010 Certifiedby...................................... Alexander Postnikov Associate Professor of Applied Mathematics Thesis Supervisor Accepted by . Bjorn Poonen Chairman, Department Committee on Graduate Students Mixed Volumes of Hypersimplices, Root Systems and Shifted Young Tableaux by Dorian Croitoru Submitted to the Department of Mathematics on July 21, 2010 in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract This thesis consists of two parts. In the first part, we start by investigating the classical permutohedra as Minkowski sums of the hypersimplices. Their volumes can be expressed as polynomials whose coefficients { the mixed Eulerian numbers { are given by the mixed volumes of the hypersimplices. We build upon results of Postnikov and derive various recursive and combinatorial formulas for the mixed Eulerian numbers. We generalize these results to arbitrary root systems Φ, and obtain cyclic, recursive and combinatorial formulas for the volumes of the weight polytopes (Φ-analogues of permutohedra) as well as the mixed Φ-Eulerian numbers. These formulas involve Cartan matrices and weighted paths in Dynkin diagrams, and thus enable us to extend the theory of mixed Eulerian numbers to arbitrary matrices whose principal minors are invertible. -
Research Statement
RESEARCH STATEMENT SERGII MYROSHNYCHENKO Contents 1. Introduction 1 2. Nakajima-S¨ussconjecture and its functional generalization 2 3. Visual recognition of convex bodies 4 4. Intrinsic volumes of ellipsoids and the moment problem 6 5. Questions of geometric inequalities 7 6. Analytic permutation testing 9 7. Current work and future plans 10 References 12 1. Introduction My research interests lie mainly in Convex and Discrete Geometry with applications of Probability Theory and Harmonic Analysis to these areas. Convex geometry is a branch of mathematics that works with compact convex sets of non-empty interior in Euclidean spaces called convex bodies. The simple notion of convexity provides a very rich structure for the bodies that can lead to surprisingly simple and elegant results (for instance, [Ba]). A lot of progress in this area has been made by many leading mathematicians, and the outgoing work keeps providing fruitful and extremely interesting new results, problems, and applications. Moreover, convex geometry often deals with tasks that are closely related to data analysis, theory of optimizations, and computer science (some of which are mentioned below, also see [V]). In particular, I have been interested in the questions of Geometric Tomography ([Ga]), which is the area of mathematics dealing with different ways of retrieval of information about geometric objects from data about their different types of projections, sections, or both. Many long-standing problems related to this topic are quite intuitive and easy to formulate, however, the answers in many cases remain unknown. Also, this field of study is of particular interest, since it has many curious applications that include X-ray procedures, computer vision, scanning tasks, 3D printing, Cryo-EM imaging processes etc. -
Generating Combinatorial Complexes of Polyhedral Type
transactions of the american mathematical society Volume 309, Number 1, September 1988 GENERATING COMBINATORIAL COMPLEXES OF POLYHEDRAL TYPE EGON SCHULTE ABSTRACT. The paper describes a method for generating combinatorial com- plexes of polyhedral type. Building blocks B are implanted into the maximal simplices of a simplicial complex C, on which a group operates as a combinato- rial reflection group. Of particular interest is the case where B is a polyhedral block and C the barycentric subdivision of a regular incidence-polytope K together with the action of the automorphism group of K. 1. Introduction. In this paper we discuss a method for generating certain types of combinatorial complexes. We generalize ideas which were recently applied in [23] for the construction of tilings of the Euclidean 3-space E3 by dodecahedra. The 120-cell {5,3,3} in the Euclidean 4-space E4 is a regular convex polytope whose facets and vertex-figures are dodecahedra and 3-simplices, respectively (cf. Coxeter [6], Fejes Toth [12]). When the 120-cell is centrally projected from some vertex onto the 3-simplex T spanned by the neighboured vertices, then a dissection of T into dodecahedra arises (an example of a central projection is shown in Figure 1). This dissection can be used as a building block for a tiling of E3 by dodecahedra. In fact, in the barycentric subdivision of the regular tessellation {4,3,4} of E3 by cubes each 3-simplex can serve as as a fundamental region for the symmetry group W of {4,3,4} (cf. Coxeter [6]). Therefore, mapping T affinely onto any of these 3-simplices and applying all symmetries in W turns the dissection of T into a tiling T of the whole space E3.