Elliptic Curves, Modular Forms, and Their L-Functions

Total Page:16

File Type:pdf, Size:1020Kb

Elliptic Curves, Modular Forms, and Their L-Functions STUDENT MATHEMATICAL LIBRARY IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 58 Elliptic Curves, Modular Forms, and Their L-functions Álvaro Lozano-Robledo American Mathematical Society Institute for Advanced Study stml-58-lozano-cov.indd 1 1/5/11 1:17 PM http://dx.doi.org/10.1090/stml/058 Elliptic Curves, Modular Forms, and Their L-functions STUDENT MATHEMATICAL LIBRARY IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 58 Elliptic Curves, Modular Forms, and Their L-functions Álvaro Lozano-Robledo American Mathematical Society, Providence, Rhode Island Institute for Advanced Study, Princeton, New Jersey Editorial Board of the Student Mathematical Library Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell Series Editor for the Park City Mathematics Institute John Polking Cover art courtesy of Karl Rubin, using MegaPOV, which is based on POV-Ray, both of which are open source, freely available software. 2000 Mathematics Subject Classification. Primary 14H52, 11G05; Secondary 11F03, 11G40. For additional information and updates on this book, visit www.ams.org/bookpages/stml-58 Library of Congress Cataloging-in-Publication Data Lozano-Robledo, Alvaro,´ 1978– Elliptic curves, modular forms, and their L-functions / Alvaro´ Lozano-Robledo. p. cm. — (Student mathematical library ; v. 58. IAS/Park City mathemat- ical subseries) Includes bibliographical references and index. ISBN 978-0-8218-5242-2 (alk. paper) 1. Curves, Elliptic. 2. Forms, Modular. 3. L-functions. 4. Number theory. I. Title. QA567.2.E44L69 2010 516.352—dc22 2010038952 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904- 2294 USA. Requests can also be made by e-mail to [email protected]. c 2011 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 161514131211 A mis padres, que me enseñaron todo lo importante, a mi abuela, por su sonrisa que no aparece en fotografías, a Marisa, por lograr que siempre me supere, y a “Sally”, que nacerá pronto. Contents Preface xi Chapter 1. Introduction 1 §1.1. Elliptic curves 1 §1.2. Modular forms 7 §1.3. L-functions 11 §1.4. Exercises 15 Chapter 2. Elliptic curves 17 §2.1. Why elliptic curves? 17 §2.2. Definition 20 §2.3. Integral points 23 §2.4. The group structure on E(Q) 24 §2.5. The torsion subgroup 32 §2.6. Elliptic curves over finite fields 35 §2.7. The rank and the free part of E(Q) 43 §2.8. Linear independence of rational points 46 §2.9. Descent and the weak Mordell-Weil theorem 49 §2.10. Homogeneous spaces 59 §2.11. Selmer and Sha 66 vii viii Contents §2.12. Exercises 69 Chapter 3. Modular curves 77 §3.1. Elliptic curves over C 77 §3.2. Functions on lattices and elliptic functions 82 §3.3. Elliptic curves and the upper half-plane 84 §3.4. The modular curve X(1) 87 §3.5. Congruence subgroups 90 §3.6. Modular curves 91 §3.7. Exercises 94 Chapter 4. Modular forms 99 §4.1. Modular forms for the modular group 99 §4.2. Modular forms for congruence subgroups 105 §4.3. The Petersson inner product 110 §4.4. Hecke operators acting on cusp forms 111 §4.5. Exercises 118 Chapter 5. L-functions 123 §5.1. The L-function of an elliptic curve 123 §5.2. The Birch and Swinnerton-Dyer conjecture 127 §5.3. The L-function of a modular (cusp) form 135 §5.4. The Taniyama-Shimura-Weil conjecture 137 §5.5. Fermat’s last theorem 140 §5.6. Looking back and looking forward 142 §5.7. Exercises 143 Appendix A. PARI/GP and Sage 147 §A.1. Elliptic curves 147 §A.2. Modular forms 154 §A.3. L-functions 156 §A.4. Other Sage commands 158 Appendix B. Complex analysis 159 Contents ix §B.1. Complex numbers 159 §B.2. Analytic functions 160 §B.3. Meromorphic functions 163 §B.4. The complex exponential function 165 §B.5. Theorems in complex analysis 166 §B.6. Quotients of the complex plane 168 §B.7. Exercises 169 Appendix C. Projective space 171 §C.1. The projective line 171 §C.2. The projective plane 173 §C.3. Over an arbitrary field 174 §C.4. Curves in the projective plane 175 §C.5. Singular and smooth curves 176 Appendix D. The p-adic numbers 179 §D.1. Hensel’s lemma 181 §D.2. Exercises 182 Appendix E. Parametrization of torsion structures 185 Bibliography 189 Index 193 Preface This book grew out of the lecture notes for a course on “Elliptic Curves, Modular Forms and L-functions” that the author taught at an undergraduate summer school as part of the 2009 Park City Mathe- matics Institute. These notes are an introductory survey of the theory of elliptic curves, modular forms and their L-functions, with an em- phasis on examples rather than proofs. The main goal is to provide the reader with a big picture of the surprising connections among these three types of mathematical objects, which are seemingly so distinct. In that vein, one of the themes of the book is to explain the statement of the modularity theorem (Theorem 5.4.6), previously known as the Taniyama-Shimura-Weil conjecture (Conjecture 5.4.5). In order to underscore the importance of the modularity theorem, we also discuss in some detail one of its most renowned consequences: Fermat’s last theorem (Example 1.1.5 and Section 5.5). It would be impossible to give the proofs of the main theorems on elliptic curves and modular forms in one single course, and the proofs would be outside the scope of the undergraduate curriculum. However, the definitions, the statements of the main theorems and their corollaries can be easily understood by students with some stan- dard undergraduate background (calculus, linear algebra, elementary number theory and a first course in abstract algebra). Proofs that are accessible to a student are left to the reader and proposed as exercises xi xii Preface at the end of each chapter. The reader should be warned, though, that there are multiple references to mathematical objects and results that we will not have enough space to discuss in full, and the student will have to take these items on faith (we will provide references to other texts, however, for those students who wish to deepen their understanding). Some other objects and theorems are mentioned in previous chapters but only explained fully in later chapters. To avoid any confusion, we always try to clarify in the text which objects or results the student should take on faith, which ones we expect the stu- dent to be familiar with, and which will be explained in later chapters (by providing references to later sections of the book). The book begins with some motivating problems, such as the congruent number problem, Fermat’s last theorem, and the represen- tations of integers as sums of squares. Chapter 2 is a survey of the algebraic theory of elliptic curves. In Section 2.9, we give a proof of the weak Mordell-Weil theorem for elliptic curves with rational 2- torsion and explain the method of 2-descent. The goal of Chapter 3 is to motivate the connection between elliptic curves and modular forms. To that end, we discuss complex lattices, tori, modular curves and how these objects relate to elliptic curves over the complex num- bers. Chapter 4 introduces the spaces of modular forms for SL(2, Z) and other congruence subgroups (e.g., Γ0(N)). In Chapter 5 we define the L-functions attached to elliptic curves and modular forms. We briefly discuss the Birch and Swinnerton-Dyer conjecture and other related conjectures. Finally, in Section 5.4, we justify the statement of the original conjecture of Taniyama-Shimura-Weil (which we usu- ally refer to as the modularity theorem, since it was proved in 1999); i.e., we explain the surprising connection between elliptic curves and certain modular forms, and justify which modular forms correspond to elliptic curves. In order to make this book as self-contained as possible, I have also included five appendices with concise introductions to topics that some students may not have encountered in their classes yet. Appen- dix A is a quick reference guide to two popular software packages: PARI and Sage. Throughout the book, we strongly recommend that the reader tries to find examples and do calculations using one of these Preface xiii two packages. Appendix B is a brief summary of complex analysis. Due to space limitations we only include definitions, a few exam- ples, and a list of the main theorems in complex analysis; for a full treatment see [Ahl79], for instance. In Appendix C we introduce the projective line and the projective plane. The p-adic integers and the p-adic numbers are treated in Appendix D (for a complete refer- ence, see [Gou97]).
Recommended publications
  • Arxiv:2003.01675V1 [Math.NT] 3 Mar 2020 of Their Locations
    DIVISORS OF MODULAR PARAMETRIZATIONS OF ELLIPTIC CURVES MICHAEL GRIFFIN AND JONATHAN HALES Abstract. The modularity theorem implies that for every elliptic curve E=Q there exist rational maps from the modular curve X0(N) to E, where N is the conductor of E. These maps may be expressed in terms of pairs of modular functions X(z) and Y (z) where X(z) and Y (z) satisfy the Weierstrass equation for E as well as a certain differential equation. Using these two relations, a recursive algorithm can be used to calculate the q - expansions of these parametrizations at any cusp. Using these functions, we determine the divisor of the parametrization and the preimage of rational points on E. We give a sufficient condition for when these preimages correspond to CM points on X0(N). We also examine a connection between the al- gebras generated by these functions for related elliptic curves, and describe sufficient conditions to determine congruences in the q-expansions of these objects. 1. Introduction and statement of results The modularity theorem [2, 12] guarantees that for every elliptic curve E of con- ductor N there exists a weight 2 newform fE of level N with Fourier coefficients in Z. The Eichler integral of fE (see (3)) and the Weierstrass }-function together give a rational map from the modular curve X0(N) to the coordinates of some model of E: This parametrization has singularities wherever the value of the Eichler integral is in the period lattice. Kodgis [6] showed computationally that many of the zeros of the Eichler integral occur at CM points.
    [Show full text]
  • Generalization of a Theorem of Hurwitz
    J. Ramanujan Math. Soc. 31, No.3 (2016) 215–226 Generalization of a theorem of Hurwitz Jung-Jo Lee1,∗ ,M.RamMurty2,† and Donghoon Park3,‡ 1Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea e-mail: [email protected] 2Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, K7L 3N6, Canada e-mail: [email protected] 3Department of Mathematics, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, South Korea e-mail: [email protected] Communicated by: R. Sujatha Received: February 10, 2015 Abstract. This paper is an exposition of several classical results formulated and unified using more modern terminology. We generalize a classical theorem of Hurwitz and prove the following: let 1 G (z) = k (mz + n)k m,n be the Eisenstein series of weight k attached to the full modular group. Let z be a CM point in the upper half-plane. Then there is a transcendental number z such that ( ) = 2k · ( ). G2k z z an algebraic number Moreover, z can be viewed as a fundamental period of a CM elliptic curve defined over the field of algebraic numbers. More generally, given any modular form f of weight k for the full modular group, and with ( )π k /k algebraic Fourier coefficients, we prove that f z z is algebraic for any CM point z lying in the upper half-plane. We also prove that for any σ Q Q ( ( )π k /k)σ = σ ( )π k /k automorphism of Gal( / ), f z z f z z . 2010 Mathematics Subject Classification: 11J81, 11G15, 11R42.
    [Show full text]
  • Examples from Complex Geometry
    Examples from Complex Geometry Sam Auyeung November 22, 2019 1 Complex Analysis Example 1.1. Two Heuristic \Proofs" of the Fundamental Theorem of Algebra: Let p(z) be a polynomial of degree n > 0; we can even assume it is a monomial. We also know that the number of zeros is at most n. We show that there are exactly n. 1. Proof 1: Recall that polynomials are entire functions and that Liouville's Theorem says that a bounded entire function is in fact constant. Suppose that p has no roots. Then 1=p is an entire function and it is bounded. Thus, it is constant which means p is a constant polynomial and has degree 0. This contradicts the fact that p has positive degree. Thus, p must have a root α1. We can then factor out (z − α1) from p(z) = (z − α1)q(z) where q(z) is an (n − 1)-degree polynomial. We may repeat the above process until we have a full factorization of p. 2. Proof 2: On the real line, an algorithm for finding a root of a continuous function is to look for when the function changes signs. How do we generalize this to C? Instead of having two directions, we have a whole S1 worth of directions. If we use colors to depict direction and brightness to depict magnitude, we can plot a graph of a continuous function f : C ! C. Near a zero, we'll see all colors represented. If we travel in a loop around any point, we can keep track of whether it passes through all the colors; around a zero, we'll pass through all the colors, possibly many times.
    [Show full text]
  • Supersingular Zeros of Divisor Polynomials of Elliptic Curves of Prime Conductor
    Kazalicki and Kohen Res Math Sci(2017) 4:10 DOI 10.1186/s40687-017-0099-8 R E S E A R C H Open Access Supersingular zeros of divisor polynomials of elliptic curves of prime conductor Matija Kazalicki1* and Daniel Kohen2,3 *Correspondence: [email protected] Abstract 1Department of Mathematics, p p University of Zagreb, Bijeniˇcka For a prime number , we study the zeros modulo of divisor polynomials of rational cesta 30, 10000 Zagreb, Croatia elliptic curves E of conductor p. Ono (CBMS regional conference series in mathematics, Full list of author information is 2003, vol 102, p. 118) made the observation that these zeros are often j-invariants of available at the end of the article supersingular elliptic curves over Fp. We show that these supersingular zeros are in bijection with zeros modulo p of an associated quaternionic modular form vE .This allows us to prove that if the root number of E is −1 then all supersingular j-invariants of elliptic curves defined over Fp are zeros of the corresponding divisor polynomial. If the root number is 1, we study the discrepancy between rank 0 and higher rank elliptic curves, as in the latter case the amount of supersingular zeros in Fp seems to be larger. In order to partially explain this phenomenon, we conjecture that when E has positive rank the values of the coefficients of vE corresponding to supersingular elliptic curves defined over Fp are even. We prove this conjecture in the case when the discriminant of E is positive, and obtain several other results that are of independent interest.
    [Show full text]
  • A Glimpse of the Laureate's Work
    A glimpse of the Laureate’s work Alex Bellos Fermat’s Last Theorem – the problem that captured planets moved along their elliptical paths. By the beginning Andrew Wiles’ imagination as a boy, and that he proved of the nineteenth century, however, they were of interest three decades later – states that: for their own properties, and the subject of work by Niels Henrik Abel among others. There are no whole number solutions to the Modular forms are a much more abstract kind of equation xn + yn = zn when n is greater than 2. mathematical object. They are a certain type of mapping on a certain type of graph that exhibit an extremely high The theorem got its name because the French amateur number of symmetries. mathematician Pierre de Fermat wrote these words in Elliptic curves and modular forms had no apparent the margin of a book around 1637, together with the connection with each other. They were different fields, words: “I have a truly marvelous demonstration of this arising from different questions, studied by different people proposition which this margin is too narrow to contain.” who used different terminology and techniques. Yet in the The tantalizing suggestion of a proof was fantastic bait to 1950s two Japanese mathematicians, Yutaka Taniyama the many generations of mathematicians who tried and and Goro Shimura, had an idea that seemed to come out failed to find one. By the time Wiles was a boy Fermat’s of the blue: that on a deep level the fields were equivalent. Last Theorem had become the most famous unsolved The Japanese suggested that every elliptic curve could be problem in mathematics, and proving it was considered, associated with its own modular form, a claim known as by consensus, well beyond the reaches of available the Taniyama-Shimura conjecture, a surprising and radical conceptual tools.
    [Show full text]
  • The Arbeitsgemeinschaft 2017: Higher Gross-Zagier Formulas Notes By
    The Arbeitsgemeinschaft 2017: Higher Gross-Zagier Formulas Notes by Tony Feng1 Oberwolfach April 2-8, 2017 1version of April 11, 2017 Contents Note to the reader 5 Part 1. Day One 7 1. An overview of the Gross-Zagier and Waldspurger formulas (Yunqing Tang) 8 2. The stacks Bunn and Hecke (Timo Richarz) 13 3. (Moduli of Shtukas I) (Doug Ulmer) 17 4. Moduli of Shtukas II (Brian Smithling) 21 Part 2. Day Two 25 5. Automorphic forms over function fields (Ye Tian) 26 6. The work of Drinfeld (Arthur Cesar le Bras) 30 7. Analytic RTF: Geometric Side (Jingwei Xiao) 36 8. Analytic RTF: Spectral Side (Ilya Khayutin) 41 Part 3. Day Three 47 9. Geometric Interpretation of Orbital Integrals (Yihang Zhu) 48 10. Definition and properties of Md (Jochen Heinloth) 52 Part 4. Day Four 57 11. Intersection theory on stacks (Michael Rapoport) 58 12. LTF for Cohomological Correspondences (Davesh Maulik) 64 µ 13. Definition and description of HkM;d: expressing Ir(hD) as a trace (Liang Xiao) 71 3 4 CONTENTS 14. Alternative calculation of Ir(hD) (Yakov Varshavsky) 77 Part 5. Day Five 83 15. Comparison of Md and Nd; the weight factors (Ana Caraiani) 84 16. Horocycles (Lizao Ye) 89 17. Cohomological spectral decomposition and finishing the proof (Chao Li) 93 NOTE TO THE READER 5 Note to the reader This document consists of notes I live-TEXed during the Arbeitsgemeinschaft at Oberwolfach in April 2017. They should not be taken as a faithful transcription of the actual lectures; they represent only my personal perception of the talks.
    [Show full text]
  • A Review on Elliptic Curve Cryptography for Embedded Systems
    International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 3, June 2011 A REVIEW ON ELLIPTIC CURVE CRYPTOGRAPHY FOR EMBEDDED SYSTEMS Rahat Afreen 1 and S.C. Mehrotra 2 1Tom Patrick Institute of Computer & I.T, Dr. Rafiq Zakaria Campus, Rauza Bagh, Aurangabad. (Maharashtra) INDIA [email protected] 2Department of C.S. & I.T., Dr. B.A.M. University, Aurangabad. (Maharashtra) INDIA [email protected] ABSTRACT Importance of Elliptic Curves in Cryptography was independently proposed by Neal Koblitz and Victor Miller in 1985.Since then, Elliptic curve cryptography or ECC has evolved as a vast field for public key cryptography (PKC) systems. In PKC system, we use separate keys to encode and decode the data. Since one of the keys is distributed publicly in PKC systems, the strength of security depends on large key size. The mathematical problems of prime factorization and discrete logarithm are previously used in PKC systems. ECC has proved to provide same level of security with relatively small key sizes. The research in the field of ECC is mostly focused on its implementation on application specific systems. Such systems have restricted resources like storage, processing speed and domain specific CPU architecture. KEYWORDS Elliptic curve cryptography Public Key Cryptography, embedded systems, Elliptic Curve Digital Signature Algorithm ( ECDSA), Elliptic Curve Diffie Hellman Key Exchange (ECDH) 1. INTRODUCTION The changing global scenario shows an elegant merging of computing and communication in such a way that computers with wired communication are being rapidly replaced to smaller handheld embedded computers using wireless communication in almost every field. This has increased data privacy and security requirements.
    [Show full text]
  • APRIL 2014 ● Official Newsletter of the LSU College of Science E-NEWS
    APRIL 2014 ● Official newsletter of the LSU College of Science e-NEWS NEWS/EVENTS LSU Museum of Natural Science Research Shows Hummingbird Diversity Is Increasing Research relying heavily on the genetic tissue collection housed at LSU’s Museum of Natural Science (one of the world’s largest collections of vertebrate tissues) has provided a newly constructed family tree of hummingbirds, with the research demonstrating that hummingbird diversity appears to be increasing rather than reaching a plateau. The work, started more than 12 years ago at LSU, culminated with a publication in the journal Current Biology. - LSU Office of Research Communications More LSU Geologist's Innovative Use of Magnetic Susceptibility Helps Uncover Burial Site of Notorious Texas Outlaw Brooks Ellwood, Robey H. Clark Distinguished Professor of Geology & Geophysics, was featured in a recent edition of Earth, for his innovative use of magnetic susceptibility (MS) for high- resolution interpretation of sedimentary sequences. Magnetic susceptibility is essentially how easily a material is magnetized in an inducing magnetic field. MS has proved useful for dating archeological sites more than 40,000 years old. One of Ellwood's more unusual applications of MS was when he was approached by Doug Owsley, forensic anthropologist at the Smithsonian Institution, to help search for the burial site of notorious Texas outlaw William Preston Longley, or 'Wild Bill." Ellwood, Owsley and their research team excavate the grave site of More "Wild Bill." LSU Alum, MacArthur Fellow Susan Murphy Gives Porcelli Lectures LSU mathematics graduate and 2013 MacArthur Fellow Susan Murphy was the featured speaker for the 2014 Porcelli Lectures held April 28 in the LSU Digital Media Center.
    [Show full text]
  • Contents 5 Elliptic Curves in Cryptography
    Cryptography (part 5): Elliptic Curves in Cryptography (by Evan Dummit, 2016, v. 1.00) Contents 5 Elliptic Curves in Cryptography 1 5.1 Elliptic Curves and the Addition Law . 1 5.1.1 Cubic Curves, Weierstrass Form, Singular and Nonsingular Curves . 1 5.1.2 The Addition Law . 3 5.1.3 Elliptic Curves Modulo p, Orders of Points . 7 5.2 Factorization with Elliptic Curves . 10 5.3 Elliptic Curve Cryptography . 14 5.3.1 Encoding Plaintexts on Elliptic Curves, Quadratic Residues . 14 5.3.2 Public-Key Encryption with Elliptic Curves . 17 5.3.3 Key Exchange and Digital Signatures with Elliptic Curves . 20 5 Elliptic Curves in Cryptography In this chapter, we will introduce elliptic curves and describe how they are used in cryptography. Elliptic curves have a long and interesting history and arise in a wide range of contexts in mathematics. The study of elliptic curves involves elements from most of the major disciplines of mathematics: algebra, geometry, analysis, number theory, topology, and even logic. Elliptic curves appear in the proofs of many deep results in mathematics: for example, they are a central ingredient in the proof of Fermat's Last Theorem, which states that there are no positive integer solutions to the equation xn + yn = zn for any integer n ≥ 3. Our goals are fairly modest in comparison, so we will begin by outlining the basic algebraic and geometric properties of elliptic curves and motivate the addition law. We will then study the behavior of elliptic curves modulo p: ultimately, there is a fairly strong analogy between the structure of the points on an elliptic curve modulo p and the integers modulo n.
    [Show full text]
  • An Efficient Approach to Point-Counting on Elliptic Curves
    mathematics Article An Efficient Approach to Point-Counting on Elliptic Curves from a Prominent Family over the Prime Field Fp Yuri Borissov * and Miroslav Markov Department of Mathematical Foundations of Informatics, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; [email protected] * Correspondence: [email protected] Abstract: Here, we elaborate an approach for determining the number of points on elliptic curves 2 3 from the family Ep = fEa : y = x + a (mod p), a 6= 0g, where p is a prime number >3. The essence of this approach consists in combining the well-known Hasse bound with an explicit formula for the quantities of interest-reduced modulo p. It allows to advance an efficient technique to compute the 2 six cardinalities associated with the family Ep, for p ≡ 1 (mod 3), whose complexity is O˜ (log p), thus improving the best-known algorithmic solution with almost an order of magnitude. Keywords: elliptic curve over Fp; Hasse bound; high-order residue modulo prime 1. Introduction The elliptic curves over finite fields play an important role in modern cryptography. We refer to [1] for an introduction concerning their cryptographic significance (see, as well, Citation: Borissov, Y.; Markov, M. An the pioneering works of V. Miller and N. Koblitz from 1980’s [2,3]). Briefly speaking, the Efficient Approach to Point-Counting advantage of the so-called elliptic curve cryptography (ECC) over the non-ECC is that it on Elliptic Curves from a Prominent requires smaller keys to provide the same level of security. Family over the Prime Field Fp.
    [Show full text]
  • Number Theory, Analysis and Geometry
    Number Theory, Analysis and Geometry Dorian Goldfeld • Jay Jorgenson • Peter Jones Dinakar Ramakrishnan • Kenneth A. Ribet John Tate Editors Number Theory, Analysis and Geometry In Memory of Serge Lang 123 Editors Dorian Goldfeld Jay Jorgenson Department of Mathematics Department of Mathematics Columbia University City University of New York New York, NY 10027 New York, NY 10031 USA USA [email protected] [email protected] Peter Jones Dinakar Ramakrishnan Department of Mathematics Department of Mathematics Yale University California Institute of Technology New Haven, CT 06520 Pasadena, CA 91125 USA USA [email protected] [email protected] Kenneth A. Ribet John Tate Department of Mathematics Department of Mathematics University of California at Berkeley Harvard University Berkeley, CA 94720 Cambridge, MA 02138 USA USA [email protected] [email protected] ISBN 978-1-4614-1259-5 e-ISBN 978-1-4614-1260-1 DOI 10.1007/978-1-4614-1260-1 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011941121 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]
  • Pierre Deligne
    www.abelprize.no Pierre Deligne Pierre Deligne was born on 3 October 1944 as a hobby for his own personal enjoyment. in Etterbeek, Brussels, Belgium. He is Profes- There, as a student of Jacques Tits, Deligne sor Emeritus in the School of Mathematics at was pleased to discover that, as he says, the Institute for Advanced Study in Princeton, “one could earn one’s living by playing, i.e. by New Jersey, USA. Deligne came to Prince- doing research in mathematics.” ton in 1984 from Institut des Hautes Études After a year at École Normal Supériure in Scientifiques (IHÉS) at Bures-sur-Yvette near Paris as auditeur libre, Deligne was concur- Paris, France, where he was appointed its rently a junior scientist at the Belgian National youngest ever permanent member in 1970. Fund for Scientific Research and a guest at When Deligne was around 12 years of the Institut des Hautes Études Scientifiques age, he started to read his brother’s university (IHÉS). Deligne was a visiting member at math books and to demand explanations. IHÉS from 1968-70, at which time he was His interest prompted a high-school math appointed a permanent member. teacher, J. Nijs, to lend him several volumes Concurrently, he was a Member (1972– of “Elements of Mathematics” by Nicolas 73, 1977) and Visitor (1981) in the School of Bourbaki, the pseudonymous grey eminence Mathematics at the Institute for Advanced that called for a renovation of French mathe- Study. He was appointed to a faculty position matics. This was not the kind of reading mat- there in 1984.
    [Show full text]