String Theory: a Framework for Quantum Gravity and Various Applications

Total Page:16

File Type:pdf, Size:1020Kb

String Theory: a Framework for Quantum Gravity and Various Applications SPECIAL SECTION: TWAS SCIENCE FRONTIERS String theory: a framework for quantum gravity and various applications Spenta R. Wadia International Center for Theoretical Sciences and Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India hole thermodynamics. The discovery of the AdS/CFT In this semi-technical review we discuss string theory (and all that goes by that name) as a framework for a correspondence, as a precise realization of the holo- quantum theory of gravity. This is a new paradigm in graphic principle of black hole physics, has shed new theoretical physics that goes beyond relativistic quan- light on the solution of large N gauge theories and other tum field theory. We provide concrete evidence for this field theories at strong coupling. Given the diversity of proposal. It leads to the resolution of the ultra-violet concepts and techniques, string theory has a healthy inter- catastrophe of Einstein’s theory of general relativity face with various branches of mathematics and statistical and an explanation of the Bekenstein–Hawking en- mechanics. More recently, there have appeared connec- tropy (of a class of black holes) in terms of Boltzmann’s tions with fluid mechanics and strongly coupled condensed formula for entropy in statistical mechanics. We dis- matter systems. cuss ‘the holographic principle’ and its precise and We begin with a brief review of the current theories of consequential formulation in the AdS/CFT correspon- physics and their limitations. dence of Maldacena. One consequence of this corres- pondence is the ability to do strong coupling calculations in SU(N) gauge theories in terms of semi- Quantum mechanics and general relativity classical gravity. In particular, we indicate a connec- tion between dissipative fluid dynamics and the dyna- Quantum mechanics mics of black hole horizons. We end with a discussion of elementary particle physics and cosmology in the framework of string theory. We do not cover all Quantum mechanics is the established framework to de- aspects of string theory and its applications to diverse scribe the world of molecules, atoms, nuclei and their areas of physics and mathematics, but follow a few constituents. Its validity has been tested to very short dis- –18 paths in a vast landscape of ideas. tances like 10 m in high-energy collision experiments at CERN and Fermi Lab. In quantum mechanics the scale of quantum effects is set by Planck’s constant = = 1.05 Keywords: Cosmology, elementary particles, quantum × 10–27 erg s, and a new mathematical formulation is re- gravity, string theory. quired. Position and momentum do not commute xp – px = i=, and the Heisenberg uncertainty relation ΔxΔp ≥ = Introduction implies a limit to which we can localize the position of a point particle. This fuzziness that characterizes quantum In this article, we discuss the need for a quantum theory mechanics resolves, e.g. the fundamental problem of the of gravity to address some of the important questions of stability of atoms. physics related to the very early universe and the physics of blackholes. We will posit the case for string theory as a framework to address these questions. The bonus of Relativistic quantum field theory string theory is that it has the tenets of a unified theory of The application of quantum mechanics to describe relati- all interactions, electro-magnetism, weak and strong in- vistic particles, requires the framework of quantum field teractions, and gravitation. Given this, string theory pro- theory (QFT), which is characterized by = and the speed vides a framework to address some fundamental issues in of light c. The successful theories of elementary particle cosmology and elementary particle physics. Examples are physics, viz. electro-weak theory and the theory of strong dark matter, supersymmetric particles, dark energy, unifi- interactions are formulated in this framework. The inherent cation for all interactions, etc. incompatibility between a ‘continuous field’ and the notion Perhaps the most important success of string theory, in of a quantum fluctuation at a space–time point is resolved recent times, is in providing a microscopic basis of black- in the framework of renormalization theory and the con- cept of the renormalization group that was developed by 1 e-mail: [email protected] Wilson . 1252 CURRENT SCIENCE, VOL. 95, NO. 9, 10 NOVEMBER 2008 SPECIAL SECTION: TWAS SCIENCE FRONTIERS General relativity of a theory of this epoch of space–time, it would be im- possible to understand in a fundamental way the evolu- General relativity was conceived by Einstein to resolve tion of the universe after the ‘Big Bang’. In fact the very an apparent contradiction between special relativity and notion of a ‘initial time’ may lose meaning. Perhaps a Newton’s theory of gravitation. In special relativity, in- new framework may provide a new language in terms of teractions take a finite time to propagate due to the finite- which we may address such questions about the very early ness of the speed of light. But in Newton’s theory the universe. gravitational interaction is instantaneous! The resolution in general relativity is that space–time is not static and re- Black hole information paradox: Quantized general sponds to matter by changing its geometry (the metric of relativity also runs into difficulties with quantum me- space–time) in accordance with Einstein’s equations. chanics in the description of phenomena in the vicinity of General relativity is a successful theory (by success we the horizon of a black hole. A black hole is formed when mean it is experimentally well-tested) for distances R and a large mass is packed in a small volume, characterized 2 2 masses M characterized by R 2 APl, where APl = 2GNM/c by the radius rh = 2GNM/c . If so, then even light cannot (GN is Newton’s constant) is the Planck length. This in- escape from its interior and hence the name black hole. cludes a large range of phenomena in relativistic astro- The surface with radius rh is called the horizon of a black physics. General relativity also provides the framework of hole and it divides the space–time into two distinct re- the standard inflationary model of cosmology within which gions. The horizon of the black hole is a one way gate: If one successfully interprets the cosmic microwave back- you check in you cannot get out! However, Hawking in ground (CMB) data. 1974 realized that in quantum mechanics black holes radi- Now let us indicate the problem one encounters when ate. He calculated the temperature of a black hole of mass 3 one tries to quantize general relativity. M: T = =c /8πGNM. Using the first law of thermodynam- ics and Bekenstein’s heuristic proposal that the entropy Divergent quantum theory: Just like in Maxwell’s the- of a black hole is proportional to the area of its horizon, ory, where electro-magnetic waves exist in the absence of he arrived at one of the most important facts of quantum sources, Einstein’s equations predict ‘gravity’ waves. The gravity. The entropy of a large black hole is given by ‘graviton’ is the analogue of the ‘photon’. The graviton can be considered as a ‘particle’ in the quantum theory A c3 S = h , (1) with mass M = 0 and spin S = 2. It is a fluctuation of the bh 4=G geometry around flat Minkowski space–time. N Given this, one does the obvious like in any quantum where A is the area of the horizon of the black hole. In field theory. One discusses emission and absorption proc- h general, the black hole is characterized by its mass, charge esses of gravitons. The non-linearity of Einstein’s theory and angular momentum, and the Bekenstein–Hawking implies that besides the emission and absorption of gravi- formula (1) is valid for all of them. Note that it involves tons by matter, gravitons can be emitted and absorbed by all the three fundamental constants =, c and GN. Defining gravitons. These processes are characterized by a dimen- 3 APl = =GN/c (Planck area) we can write it suggestively as sionless ‘coupling constant’: E = EPl, where E is the energy 5 1/2 19 of the process and EPl = (=c /GN) 10 GeV. As long as A we are discussing processes in which E/E 1, the ef- Pl Sbh = . (2) fects of quantum fluctuations are suppressed and negligi- 4APl ble. When E = EPl 2 1 gravity is strongly coupled and graviton fluctuations are large. It is basically this fact that A/APl represents the number of degrees of freedom of the –70 2 renders the standard quantum theory of the metric fluc- horizon. In 3 + 1 dim, APl ≈ 2.6 × 10 m . This formula tuations around a given classical space-time badly diver- is a benchmark for any theory of quantum gravity to re- gent and meaningless. Note that in discussing quantum produce. gravity effects, we introduced the Planck energy which The fact that the entropy is proportional to the area of involves all the three fundamental constants of nature: =, the horizon and not the volume it encloses, gives a clue c and GN. that even though the degrees of freedom of the black hole are apparently behind the horizon, they seem to leave an Big Bang singularity: If we consider the Friedmann– imprint (hologram) on the horizon. Robertson–Walker (FRW) expanding universe solution Once the black hole is formed it will emit Hawking ra- and extrapolate it backward in time, the universe would diation. It is here that we run into a problem with quan- be packed in a smaller and smaller volume in the far past. tum mechanics. The quantum states that make up the 2 Once again when we reach the Planck volume APl, we black hole cannot be reconstructed from the emitted ra- would expect a breakdown of the quantized general relati- diation, even in principle, within the framework of gen- vity, due to large uncontrolled fluctuations.
Recommended publications
  • Symmetries of String Theory and Early Universe Cosmology
    String Cosmology R. Branden- berger Introduction Symmetries of String Theory and Early T-Duality: Key Symmetry of Universe Cosmology String Theory String Gas Cosmology Structure Robert Brandenberger Perturbations Overview Physics Department, McGill University Analysis DFT Conclusions Yukawa Institute, Kyoto University, Feb. 26, 2018 1 / 61 Outline String Cosmology 1 Introduction R. Branden- berger 2 T-Duality: Key Symmetry of String Theory Introduction T-Duality: Key 3 String Gas Cosmology Symmetry of String Theory String Gas 4 String Gas Cosmology and Structure Formation Cosmology Review of the Theory of Cosmological Perturbations Structure Perturbations Overview Overview Analysis Analysis DFT 5 Double Field Theory as a Background for String Gas Conclusions Cosmology 6 Conclusions 2 / 61 Plan String Cosmology 1 Introduction R. Branden- berger 2 T-Duality: Key Symmetry of String Theory Introduction T-Duality: Key 3 String Gas Cosmology Symmetry of String Theory String Gas 4 String Gas Cosmology and Structure Formation Cosmology Review of the Theory of Cosmological Perturbations Structure Perturbations Overview Overview Analysis Analysis DFT 5 Double Field Theory as a Background for String Gas Conclusions Cosmology 6 Conclusions 3 / 61 Inflation: the Standard Model of Early Universe Cosmology String Cosmology R. Branden- berger Introduction Inflation is the standard paradigm of early universe T-Duality: Key cosmology. Symmetry of String Theory Inflation solves conceptual problems of Standard Big String Gas Bang Cosmology. Cosmology Structure Inflation predicts an almost scale-invariant spectrum of Perturbations Overview primordial cosmological perturbations with a small red Analysis tilt (Chibisov & Mukhanov, 1981). DFT Conclusions Fluctuations are nearly Gaussian and nearly adiabatic. 4 / 61 Map of the Cosmic Microwave Background (CMB) String Cosmology R.
    [Show full text]
  • String-Inspired Running Vacuum—The ``Vacuumon''—And the Swampland Criteria
    universe Article String-Inspired Running Vacuum—The “Vacuumon”—And the Swampland Criteria Nick E. Mavromatos 1 , Joan Solà Peracaula 2,* and Spyros Basilakos 3,4 1 Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London, Strand, London WC2R 2LS, UK; [email protected] 2 Departament de Física Quàntica i Astrofísica, and Institute of Cosmos Sciences (ICCUB), Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Catalonia, Spain 3 Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efessiou 4, 11527 Athens, Greece; [email protected] 4 National Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece * Correspondence: [email protected] Received: 15 October 2020; Accepted: 17 November 2020; Published: 20 November 2020 Abstract: We elaborate further on the compatibility of the “vacuumon potential” that characterises the inflationary phase of the running vacuum model (RVM) with the swampland criteria. The work is motivated by the fact that, as demonstrated recently by the authors, the RVM framework can be derived as an effective gravitational field theory stemming from underlying microscopic (critical) string theory models with gravitational anomalies, involving condensation of primordial gravitational waves. Although believed to be a classical scalar field description, not representing a fully fledged quantum field, we show here that the vacuumon potential satisfies certain swampland criteria for the relevant regime of parameters and field range. We link the criteria to the Gibbons–Hawking entropy that has been argued to characterise the RVM during the de Sitter phase. These results imply that the vacuumon may, after all, admit under certain conditions, a rôle as a quantum field during the inflationary (almost de Sitter) phase of the running vacuum.
    [Show full text]
  • Dilaton and Off-Shell (Non-Critical String) Effects in Boltzmann Equation for Species Abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5
    Research article Open Access Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5 Address: 1University of Athens, Physics Department, Nuclear and Particle Physics Section, GR157 71, Athens, Greece., 2King's College London, University of London, Department of Physics, Strand WC2R 2LS, London, UK., 3George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A&M University, College Station, TX 77843, USA., 4Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381, USA. and 5Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679, Greece. Email: AB Lahanas - [email protected]; NE Mavromatos - [email protected]; DV Nanopoulos - [email protected] Published: 2 October 2007 Received: 3 June 2007 Accepted: 2 October 2007 PMC Physics A 2007, 1:2 doi:10.1186/1754-0410-1-2 This article is available from: http://www.physmathcentral.com/1754-0410/1/2 © 2007 Lahanas et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements.
    [Show full text]
  • String Cosmology”  “Should Be an Overview of the Whole Activity!” New Ideas About Gravity Cf
    Strings 2011, Uppsala July 1, 2011 Mandate from the organizers: “one hour review talk on string cosmology” “should be an overview of the whole activity!” New ideas about gravity cf. talk by Verlinde Holographic models of inflation Cosmological singularities de Sitter in Inflation in string theory String gas cosmology string theory cf. talks by Graña, Shiu Tunneling in the string landscape Cosmic superstrings cf. talk by Greene dS/CFT Inflation in supergravity Non-BD initial conditions cf. talk by Linde Wavefunction of the universe Measures in eternal inflation cf. talk by Maldacena Lower-dimensional (e.g. matrix) cosmologies New ideas about gravity cf. talk by Verlinde Holographic models of inflation Cosmological singularities de Sitter in Inflation in string theory String gas cosmology string theory cf. talks by Graña, Shiu Tunneling in the string landscape Cosmic superstrings cf. talk by Greene dS/CFT Inflation in supergravity Non-BD initial conditions cf. talk by Linde Wavefunction of the universe Measures in eternal inflation cf. talk by Maldacena Lower-dimensional (e.g. matrix) cosmologies I. Cosmology in 2011 II. Why use string theory in cosmology? III. Inflation in string theory i. D3-brane inflation ii. Axion inflation IV. The initial singularity V. Alternative cosmologies VI. Outlook Planck; WMAP; SDSS Planck; WMAP; SDSS • Vigorous, diverse experimental effort – CMB (Planck; balloon-based and ground-based missions) – Large-scale structure (multiple surveys) – Dark energy (supernovae; probes of structure formation) – Dark matter (direct and indirect) • Theoretical status: compelling phenomenological description using QFT+GR, but: – Late universe: dark energy presents a severe failure of naturalness. – Early universe: inflation is an impressive paradigm with multiple successful predictions, but: • Inflation is sensitive to Planck-scale physics, and is therefore best described in a theory of quantum gravity.
    [Show full text]
  • Towards Uniform T-Duality Rules
    Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 659–662 Towards Uniform T-Duality Rules Alexei J. NURMAGAMBETOV Institute for Theoretical Physics, NSC “Kharkov Institute of Physics and Technology”, 1 Akademicheskaya Str., 61108, Kharkov, Ukraine Center for Theoretical Physics, Texas A&M University, College Station, TX 77843, USA E-mail: [email protected] In this contribution based on the talk given at the SUSY’01, Dubna, Russia, I discuss the reasons of appearing the different sets of fields entering into the T-duality transformations and a way to construct the uniform T-duality rules. 1 Introduction Discovery in the past decade of the new class of non-compact symmetries allowed to revise one of the main problems of Superstrings: The puzzle of having too much “fundamental” theories. The resolution was in the conjecture on the M-theory in framework of which it turned out possible to unify all the five different superstring theories. The useful tool for establishing the M-theory evidence are dualities connected to the new symmetries of perturbative or non-perturbative sectors of Superstrings. In this Contribution I would like to discuss some questions related to the so-called T-duality (see [1] for review). Namely, I will focus my attention on the following: Q1: What are the different ways of T-duality rules derivation? Q2: Do the T-duality rules coincide? Q3: How uniform T-duality rules could be derived? For the sake of simplicity I restrict myself in what follows to the pure classical frames, that means neglecting the dilaton field, which receives its corrections from quantum effects, and will consider backgrounds with single isometry direction.
    [Show full text]
  • String Theory and Pre-Big Bang Cosmology Arxiv:Hep-Th/0703055V3
    BA-TH/07-651 CERN-PH-TH/2007-026 hep-th/0703055 String Theory and Pre-big bang Cosmology M. Gasperini1;2 and G. Veneziano3;4 1Dipartimento di Fisica, Universit`adi Bari, Via G. Amendola 173, 70126 Bari, Italy 2Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy 3CERN, Theory Unit, Physics Department, CH-1211 Geneva 23, Switzerland 4Coll`egede France, 11 Place M. Berthelot, 75005 Paris, France Summary. | In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikely. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe \bounce" into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a \hot big bounce" in which the bouncing and heating mechanisms originate from the quan- tum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its simplest version (where it represents an alternative and not a complement to standard slow-roll inflation) it can produce a viable spectrum of density perturbations, together with a tensor component characterized by a \blue" spectral index with a peak in the GHz frequency range.
    [Show full text]
  • Memories of a Theoretical Physicist
    Memories of a Theoretical Physicist Joseph Polchinski Kavli Institute for Theoretical Physics University of California Santa Barbara, CA 93106-4030 USA Foreword: While I was dealing with a brain injury and finding it difficult to work, two friends (Derek Westen, a friend of the KITP, and Steve Shenker, with whom I was recently collaborating), suggested that a new direction might be good. Steve in particular regarded me as a good writer and suggested that I try that. I quickly took to Steve's suggestion. Having only two bodies of knowledge, myself and physics, I decided to write an autobiography about my development as a theoretical physicist. This is not written for any particular audience, but just to give myself a goal. It will probably have too much physics for a nontechnical reader, and too little for a physicist, but perhaps there with be different things for each. Parts may be tedious. But it is somewhat unique, I think, a blow-by-blow history of where I started and where I got to. Probably the target audience is theoretical physicists, especially young ones, who may enjoy comparing my struggles with their own.1 Some dis- claimers: This is based on my own memories, jogged by the arXiv and IN- SPIRE. There will surely be errors and omissions. And note the title: this is about my memories, which will be different for other people. Also, it would not be possible for me to mention all the authors whose work might intersect mine, so this should not be treated as a reference work.
    [Show full text]
  • String Cosmology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server String Cosmology John D. Barrow and Kerstin E. Kunze Astronomy Centre University of Sussex Brighton BN1 9QJ UK Abstract An overview is given of the formulation of low-energy string cosmologies together with ex- amples of particular solutions, successes and problems of the theory. 1 Introduction General relativity provides a successful theory to describe classical phenomena in gravity. Several experiments provide impressive evidence for how well it succeeds. The Hulse-Taylor binary pulsar PSR1913+16 consists of a pulsating and a non-pulsating neutron star. According to general relativity the orbit should slowly decay and the orbital period should increase due to the loss of energy by the emission of gravitational waves. This has been indeed observed [1] to very high precision. However, despite this outstanding success, under certain extreme physical conditions general relativity predicts that it cannot predict [2]. We expect general relativity to be a low-energy and low space-time curvature limit of some quantum theory of gravitation that has yet to be found. String cosmology is one approach to discover the cosmological consequences of some of these quantum gravitational corrections to the general theory of relativity. The search for a unification of quantum field theory and general relativity is the most important quest in theoretical physics. Unfortunately, the canonical quantum field approach to quantum gravity is riddled with incurable infinities and so is not well defined. Superstring theory, in contrast, is a very promising candidate for a consistent theory of quantum gravity [3].
    [Show full text]
  • What If String Theory Has No De Sitter Vacua? Arxiv:1804.01120V2 [Hep-Th] 17 Apr 2018
    UUITP-09/18 What if string theory has no de Sitter vacua? Ulf H. Danielssona and Thomas Van Rietb b Institutionen f¨orfysik och astronomi, Uppsala Universitet, Uppsala, Sweden ulf.danielsson @ physics.uu.se cInstituut voor Theoretische Fysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium thomas.vanriet @ fys.kuleuven.be Abstract We present a brief overview of attempts to construct de Sitter vacua in string theory and explain how the results of this 20-year endeavor could point to the fact that string theory harbours no de Sitter vacua at all. Making such a statement is often considered controversial and \bad news for string theory". We discuss how perhaps the opposite can be true. arXiv:1804.01120v2 [hep-th] 17 Apr 2018 Contents 1 Introduction 3 2 dS constructions in string sofar 5 2.1 Conceptual framework . .5 2.2 Classification scheme . .7 2.3 Classical . .8 2.4 Non-geometric . 10 2.5 Quantum . 11 2.5.1 IIB string theory . 12 2.5.2 Other string theories . 16 3 They all have problems? 17 3.1 Classical . 17 3.2 Non-geometric . 19 3.3 Quantum . 20 3.3.1 Anti-brane backreaction inside extra dimensions . 21 3.3.2 Anti-brane backreaction on the moduli . 23 3.3.3 Issues with non-SUSY GKP solutions? . 25 4 What now? 26 4.1 What about dark energy? . 27 4.2 What about the AdS landscape? . 27 4.3 What about dS/CFT? . 29 5 Conclusion 30 2 1 Introduction Since the middle of the 1970s string theory has been argued to be the way in which quantum mechanics and general relativity are to be unified into a theory of quantum gravity.
    [Show full text]
  • Quantum String Cosmology
    universe Review Quantum String Cosmology Maurizio Gasperini 1,2 1 Dipartimento di Fisica, Università di Bari, Via G. Amendola 173, 70126 Bari, Italy; [email protected] 2 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via E. Orabona 4, 70125 Bari, Italy Abstract: We present a short review of possible applications of the Wheeler-De Witt equation to cosmological models based on the low-energy string effective action, and characterised by an initial regime of asymptotically flat, low energy, weak coupling evolution. Considering in particular a class of duality-related (but classically disconnected) background solutions, we shall discuss the possibility of quantum transitions between the phases of pre-big bang and post-big bang evolution. We will show that it is possible, in such a context, to represent the birth of our Universe as a quantum process of tunneling or “anti-tunneling” from an initial state asymptotically approaching the string perturbative vacuum. Keywords: string cosmology; quantum cosmology; Wheeler-DeWitt equation 1. Introduction In the standard cosmological context the Universe is expected to emerge from the big bang singularity and to evolve initially through a phase of very high curvature and density, well inside the quantum gravity regime. Quantum cosmology, in that context, turns out to be a quite appropriate formalism to describe the “birth of our Universe”, possibly in a state approaching the de Sitter geometric configuration typical of inflation (see, e.g., [1] for a review). In the context of string cosmology, in contrast, there are scenarios where the Universe Citation: Gasperini, M. Quantum emerges from a state satisfying the postulate of “asymptotic past triviality” [2] (see [3] String Cosmology.
    [Show full text]
  • Duality Invariant Cosmology to All Orders in Α′
    PHYSICAL REVIEW D 100, 126011 (2019) Editors' Suggestion Duality invariant cosmology to all orders in α0 Olaf Hohm1 and Barton Zwiebach2 1Institute for Physics, Humboldt University Berlin, Zum Großen Windkanal 6, D-12489 Berlin, Germany 2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 14 June 2019; published 10 December 2019) While the classification of α0 corrections of string inspired effective theories remains an unsolved problem, we show how to classify duality invariant α0 corrections for purely time-dependent (cosmological) backgrounds. We determine the most general duality invariant theory to all orders in α0 for the metric, b-field, and dilaton. The resulting Friedmann equations are studied when the spatial metric is a time- dependent scale factor times the Euclidean metric and the b-field vanishes. These equations can be integrated perturbatively to any order in α0. We construct nonperturbative solutions and display duality invariant theories featuring string-frame de Sitter vacua. DOI: 10.1103/PhysRevD.100.126011 I. INTRODUCTION geometry where the diffeomorphism invariance of general relativity is replaced by a suitably generalized notion of String theory is arguably the most promising candidate diffeomorphisms, which in turn partly determines the α0 for a theory of quantum gravity. As a theory of gravity, the “ ” prospect for a confrontation between string theory and corrections. These ideas play a key role in the chiral observation seems to be particularly promising in the realm string theory of [15], which is the only known gravitational of cosmology, where the effects of fundamental physics at field theory that is exactly duality invariant and has α0 very small scales may be amplified to very large scales.
    [Show full text]
  • Parallel Worlds
    www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page i PARALLEL WORLDS www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page ii www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page iii Also by Michio Kaku Beyond Einstein Hyperspace Visions Einstein’s Cosmos www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page iv MICHIO KAKU DOUBLEDAY New York London Toronto Sydney Auckland www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page v PARALLEL WORLDS A JOURNEY THROUGH CREATION, HIGHER DIMENSIONS, AND THE FUTURE OF THE COSMOS www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page vi published by doubleday a division of Random House, Inc. doubleday and the portrayal of an anchor with a dolphin are regis- tered trademarks of Random House, Inc. Book design by Nicola Ferguson Illustrations by Hadel Studio Library of Congress Cataloging-in-Publication Data Kaku, Michio. Parallel worlds : a journey through creation, higher dimensions, and the future of the cosmos/Michio Kaku.—1st ed. p. cm. Includes bibliographical references 1. Cosmology. 2. Big bang theory. 3. Superstring theories. 4. Supergravity. I. Title. QB981.K134 2004 523.1—dc22 2004056039 eISBN 0-385-51416-6 Copyright © 2005 Michio Kaku All Rights Reserved v1.0 www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page vii This book is dedicated to my loving wife, Shizue. www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page viii www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page ix CONTENTS acknowledgments xi
    [Show full text]