A Study of the Solid Reaction Between Zinc Oxide and Ferric Oxide by the Use of Fission Product Rare Gas

Total Page:16

File Type:pdf, Size:1020Kb

A Study of the Solid Reaction Between Zinc Oxide and Ferric Oxide by the Use of Fission Product Rare Gas 169 A Study of the Solid Reaction between Zinc Oxide and Ferric Oxide by the Use of Fission Product Rare Gas Sumio Ichiba SYNOPSIS In order to study the solid reaction between zinc oxide and ferric oxide over a wide temperature range the fission gas emanation method was applied. It was found that the reaction occurs in two processes, the first which occurs at temperature below about 900•Ž is due to the structure sensitive properties of ferric oxide and the second is attributed to the lattice loosening of the zinc oxide. The reaction process could be investigated more sensitively by the fission gas emanation method than by the radon emanation method. (Received July 12, 1962) I Introduction In the preceding papers it was reported by the author that the solid reactions of fine powder, such as crystal structure change, dehydration, decomposition, oxidation and reduction reactions can be observed by the heating curves of emanating radioactive xenon which was previously incorporated into fine powders by fission recoiling. It was further pointed outs' that the heating curves of fine powders like graphite in which no phase change occurs may represent the characteristic properties involved in particle size distribution, imperfections, surface area, pretreatment, etc. The radioactive xenon captured by imperfections of the crystalline powder will be released successively as the imperfections disppear with rising temperature. Since the heating curve of emanating xenon represent the characteristic property of fine powder, the reaction process between solid powders will be observed continuously. In the present experiment, the process of solid state reaction between zinc oxide and ferric oxide was studied by the fission gas emanation method. The solid reaction between zinc oxide and ferric oxide has been studied by many workers". Especially, W. SchrSder" studied extensively the reaction process by Hahn's emanation method, which uses radon as tracer. By the author's method in which xenon is used as tracer, the reaction process can be studied more sensitively, and the relation between the reactivity and the powder property of the re- actants could be made clear. II Sample Zinc carbonate of G. R. grade of Kanto Kagaku K. K. was used in the present work. The zinc oxide, samples fo Nos. I and 2, was prepared by thermal decomposition of zinc carbonate by heating at 300•Ž and 1000•Ž, respectively, for 30 min. In all cases, zinc carbonate and zinc oxide powders were ground in a agar mortar and filtered through a 250 mesh sieve. The preparation methods of ferric oxide samples are shown in Table 1. The ferric oxide samples were also ground in a agar mortar and filtered through a 250 mesh sieve. * Presented at the Annual Meeting of Japan Society of Powder Metallurgy, Tokyo, May, 1962. ** Chemistry Division, Japan Atomic Energy Resarch Institute. 昭 和37年10月 (7) 170 A Study of the Solid Reaction between Zinc Oxide and Ferric Oxide by the Use of Fission Product Rare Gas Table 1 The preparation methods of the ferric oxide samples The sample powder was mixed with formvar films containing uranium dioxide powder of small size, then irradiated with thermal neutrons of about 5•~10 15 per cm2 in a pneumatic tube of JRR-1 or JRR-2 and cooled for a day. Ethyl alcohol was added to the irradiated sample. The sample powder was separated from the films, after irradiation ; the whole procedure consists of the procedures of passing through a wire gauze, a filtration by filter paper and subsquent drying. In order to prepare the mixture for the solid reaction, another nonactive reactant powder was added to the specimen previously incorporated with the fission product rare gas, which was suspended in the ethyl alcohol. The resultant mixture was separated by pouring on a wire gauze with hard stirring. III Apparatus and Measurements The apparatus used in the experiment was the same as that for the previous experiment. In order to obtain the heating curves, the sample incorporated with the fission rare gas was placed in the heating tube surrounded by an electric furnace, then the tube was evacuated with a vacuum pump. The tube was filled with purified argon and then argon was flowed at a constant rate of 50ml/min. The temperature of the furnace was raised at a constant rate of 5•Ž/min. up to 1150•Ž. The radioactivity of the released xenon, which was carried by the flowing argon, was continuously measured by passing the stream through the counting cell inserted in a well of Nal scintillation crystal. Thus the heating curve could be obtained by plotting the released xenon activities against temperatures. IV Results and Discussion The heating curves of zinc carbonate and zinc oxides mixture are shown in Fig. 1. The peak at 235•Ž of curve (a) shows the decomposition of the zinc carbonate. The peaks of curve (b) represent the peak due to the imperfections in zinc oxide crystalline powder of sample No. 1 but the peaks disappeared in curve (c) of sample No. 2 of zinc oxide because of its high decomposition temperature of 1000•Ž. The rise of curve (c) in the high temperature range may be attributed to the lattice loosening which occurs at higher temperature than "Tamman temperature". The X-ray diffraction diagrams of the zinc oxide samples show that the crystal- lization was completed in sample No. 2 (Fig. 2). The heating curves of ferric oxides are shown in Fig. 3. All the ferric oxides were iden- tified as et-Fe2O3 by X-ray analysis, but their heating curves differ as shown in Fig. 3. Three peaks appeared in curve (a) of sampe No. 1 ; these may also correspond to the imper- fections existing in ferric oxide crystalline, as in the case of zinc oxide of sample No. 1. In curve (b) of sample No. 2, however, those peaks appearing on the lower temperature side in curve (a) disappeared, and only a single high peak remained. In sample No. 3 (curve (c)) * Japan Resarch Reactor-1, water boiler type, operated at 50KW thermal out-put. ** Japan Resarch Reactor-2 , CP-5 type, operated at 3000KW thermal out-put. (8) •u•²‘Ì‚¨‚æ‚Ñ•²–––è‹à•v‘æ9Šª‘æ5•† Sumio Ichiba 171 Fig. I Heating curves of zinc carbonate and zinc oxide samples. (a) : ZnCO3, (b):ZnO (No.1), and (c):ZnO (No.2). Fig. 2 X-ray diffraction diagrams of oxide samples.(a):ZnO sample of No. 1 and (b) : ZnO sample of No, 2. the same peak shifted to higher temperature, due to the longer duration of heating at the decomposition temperature. Furthermore, in samples Nos. 4 and 5 (curves (d) and (e)), the peak shifted to higher temperatures correspording to the respective decomposition temp- eratures. 昭和37年10月 (9) 172 A Study of the Solid Reaction Between Zinc Oxide and Ferric Oxide by the Use of Fission Product Rare Gas Fig. 3 Heating curves of xenon release of ferric oxide samples. The peak height of these curves will vary with thermal neutron dosage ; the numbers of imperfections formed in different samples cannot be compared with one another by the comparison of peak height. In the single curve, however, the relative aboundances of imperfections corresponding to each peak may be estimated from the peak height. To investigate the solid reaction between ferric oxide and zinc oxide the radioactive xenon must be retained in zinc oxide powder up to high temperatures. Therefore , the zinc oxide of sample No. 2 incorporated with radioactive xenon was used as one reactant and the ferric oxide samples as the other reactants. The heating curves of the several mixtures are shown in Fig. 4. In the mixture with sample No.1 (curve (a)), a peak appeared at 590•Ž . The X-ray diffraction diagrams (Fig. 5) of the same mixtures which were heated up to 400•K 630•‹and 800•Ž, corresponding to the changing points on the curve (a), showed that the reaction occurred at 400°C and was completed at 800°C. However, in the cases of (b) , (c), (d) and (e), two peaks appeared in each curve, and it was ascertained by X-ray diffraction that the reaction proceeds through two processes. The X-ray diffraction diagrams of the mixtures of ferric oxide of sample No. 3 and zinc oxide which were heated up to the changing (10) 「粉体 お よび 粉 末 冶金 」 第9巻 第5号 Sumio Tchiha 173 Fig. 4 Heating curves of the mixtures of Fe2O3 samples and labelled ZnO of sample No.2. points of curve (c) are shown in Fig. 6. The spinel pattern of zinc ferrite appeared at the the reaction temperature corresponding to the first peak of curve (c) of Fig. 4 ; it does not grow remarkably at the temperature range near to the first peak, but grows rapidly at the temperature of the second peak. The diffraction patterns of the starting materials can still be observed at the ascending part of the peak, and disappear at the temperatures beyond the peak and the spinel formation is completed. The relation between reactivity of ferric oxide and structure sensitivity may be seen in Fig. 3 and 4. That is, the first peak is predominant when ferric oxides were prepared by thermal decomposition at lower temperatures or for shorter heating period; the height decreases, as compared with the second peak, with increasing decomposition temperature and duration, and the situation is reversed in curve (e). The ferric oxide sample of No. 5 incorporated with fission rare gas was used as one reactant and zinc carbonate and zinc oxides samples as the other reactants. In this case, the curves do not differ remarkably from one another, as shown in Fig.
Recommended publications
  • Sunscreen Faqs
    Sunscreen FAQs What type of sunscreen should I use? There are two main types of sunscreen ingredients: physical sun blockers and chemical sunscreens. Physical sunscreens prevent ultraviolet light from reaching your skin, and contain either zinc oxide or titanium dioxide. Physical sunscreens protect against UVA and UVB damage. Physical sunscreens are preferred for patients with sensitive skin or children. Chemical sunscreens rely on an interaction between the sun and the chemical to protect your skin. Examples of such chemicals are avobenzone, octinoxate, homosalate, padimate O, and many others. Chemical sunscreens can protect against UVA, UVB, or both types of damage, depending on which ingredient is used. Read the label to ensure coverage for both UVA and UVB exposure. There are new ingredients being developed that take chemical sunscreens and stabilize them to prolong their activity (i.e., Helioplex, Mexoryl). Does the SPF really matter? In laboratory testing, there are minor differences between SPF 15 and SPF 30 or greater products. However, that data is based on using 1 oz. (30 gm.) of sunscreen for each full body application (the size of a shot glass). Most people use far less in real-life settings. For that reason, we recommend an SPF of at least 30. It is common to find good sunscreens with SPF ranging from 45-70. To maintain protection, reapply sunscreen every 1-3 hours, depending on sweating, water exposure, and sun intensity. Is sunscreen alone enough to protect my skin in the sun? In some cases, yes. However, if you are in the sun for longer periods on a regular basis (such as gardening, golfing, boating, sports), it may be better to add sun protective clothing or habits.
    [Show full text]
  • Synergistic Effects of Zinc Oxide Nanoparticles and Bacteria Reduce Heavy Metals Toxicity in Rice (Oryza Sativa L.) Plant
    toxics Article Synergistic Effects of Zinc Oxide Nanoparticles and Bacteria Reduce Heavy Metals Toxicity in Rice (Oryza sativa L.) Plant Nazneen Akhtar 1, Sehresh Khan 1, Shafiq Ur Rehman 2, Zia Ur Rehman 1, Amana Khatoon 3, Eui Shik Rha 4,* and Muhammad Jamil 1,* 1 Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat 26000, Pakistan; [email protected] (N.A.); [email protected] (S.K.); [email protected] (Z.U.R.) 2 Department of Biology, University of Haripur, Haripur 22620, Pakistan; drshafi[email protected] 3 Department of Environmental and Botanical Sciences, Kohat University of Science & Technology (KUST), Kohat 26000, Pakistan; [email protected] 4 Department of Well-Being Resources, Sunchon National University, Suncheon 540-742, Korea * Correspondence: [email protected] (E.S.R.); [email protected] (M.J.) Abstract: Heavy metals (HMs) are toxic elements which contaminate the water bodies in developing countries because of their excessive discharge from industrial zones. Rice (Oryza sativa L) crops are submerged for a longer period of time in water, so irrigation with HMs polluted water possesses toxic effects on plant growth. This study was initiated to observe the synergistic effect of bacteria (Bacillus cereus and Lysinibacillus macroides) and zinc oxide nanoparticles (ZnO NPs) (5, 10, 15, 20 and 25 mg/L) on the rice that were grown in HMs contaminated water. Current findings have revealed that bacteria, along with ZnO NPs at lower concentration, showed maximum removal of HMs from polluted water at pH 8 (90 min) as compared with higher concentrations. Seeds primed with bacteria grown in Citation: Akhtar, N.; Khan, S.; HM polluted water containing ZnO NPs (5 mg/L) showed reduced uptake of HMs in root, shoot Rehman, S.U.; Rehman, Z.U.; and leaf, thus resulting in increased plant growth.
    [Show full text]
  • 42 the Reaction Between Zinc and Copper Oxide
    The reaction between zinc and copper oxide 42 In this experiment copper(II) oxide and zinc metal are reacted together. The reaction is exothermic and the products can be clearly identified. The experiment illustrates the difference in reactivity between zinc and copper and hence the idea of competition reactions. Lesson organisation This is best done as a demonstration. The reaction itself takes only three or four minutes but the class will almost certainly want to see it a second time. The necessary preparation can usefully be accompanied by a question and answer session. The zinc and copper oxide can be weighed out beforehand but should be mixed in front of the class. If a video camera is available, linked to a TV screen, the ‘action’ can be made more dramatic. Apparatus and chemicals Eye protection Bunsen burner • Heat resistant mat Tin lid Beaker (100 cm3) Circuit tester (battery, bulb and leads) (Optional) Safety screens (Optional) Test-tubes, 2 (Optional – see Procedure g) Test-tube rack Access to a balance weighing to the nearest 0.1 g The quantities given are for one demonstration. Copper(II) oxide powder (Harmful, Dangerous for the environment), 4 g Zinc powder (Highly flammable, Dangerous for the environment), 1.6 g Dilute hydrochloric acid, approx. 2 mol dm-3 (Irritant), 20 cm3 Zinc oxide (Dangerous for the environment), a few grams Copper powder (Low hazard), a few grams. Concentrated nitric acid (Corrosive, Oxidising), 5 cm3 (Optional – see Procedure g) Technical notes Copper(II) oxide (Harmful, Dangerous for the environment) Refer to CLEAPSS® Hazcard 26. Zinc powder (Highly flammable, Dangerous for the environment) Refer to CLEAPSS® Hazcard 107 Dilute hydrochloric acid (Irritant at concentration used) Refer to CLEAPSS® Hazcard 47A and Recipe Card 31 Concentrated nitric acid (Corrosive, Oxidising) Refer to CLEAPSS® Hazcard 67 Copper powder (Low hazard) Refer to CLEAPSS® Hazcard 26 Zinc oxide (Dangerous for the environment) Refer to CLEAPSS® Hazcard 108.
    [Show full text]
  • Zinc Oxide Sulfide Scavenger Contains a High-Quality Zinc Oxide
    ZINC OXIDE ZINC OXIDE sulfide scavenger contains a high-quality ZINC OXIDE. The very fine particle-size of ZINC OXIDE scavenger results in a maximum amount of surface area for fast, efficient sulfide scavenging. It reacts with sulfides (see APPLICATIONS below) to form ZnS. This precipitate is an insoluble, inert, fine solid that remains harmlessly in the mud system or is removed by the solids-control equipment. Typical Physical Properties Physical appearance ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ White to off-white powder Specific gravity .......................................................................................................................................................................................................................... 5.4 – 5.6 Bulk density ........................................................................................................................................................................................................ 164 lb/ft3 (2627 kg/m3) Applications Under operating conditions, ZINC OXIDE scavenger reacts with sulfides to form ZnS, as shown in these equations: Zn2+ + HS- + OH- → ZnS ↓ + 2+ 2- H2O Zn + S → ZnS ↓ INC XIDE Z O scavenger is effective at the pH levels found in drilling fluids. It is recommended that a pH above 11 be maintained whenever H2S is - 2- expected. This high alkalinity converts the dangerous H2S gas to less toxic bisulfide
    [Show full text]
  • Controlling of Optical Band Gap of the Cdo Films by Zinc Oxide
    Materials Science-Poland, 37(1), 2019, pp. 136-141 http://www.materialsscience.pwr.wroc.pl/ DOI: 10.2478/msp-2018-0104 Controlling of optical band gap of the CdO films by zinc oxide NIDA KATI∗ Firat University, Faculty of Technology, Metallurgy and Material Engineering Department, 2311, Turkey In this study, CdZnO films prepared at different ratios of dopants (CdO:ZnO = 5:5, CdO:ZnO = 6:4, and CdO:ZnO = 8:2) were coated on glass surface by using the sol-gel spin coating technique. After this process, surface structure and optical properties of the CdZnO films was investigated by atomic force microscopy (AFM) and UV-Vis spectroscopy. The surface structure of the CdZnO films depended on the content of ZnO and CdO in the films. Low percentage of CdO films were very similar to the ZnO film but higher amount of CdO resuted in granular structures together with pure structure of ZnO in the films. Eg values of produced CdZnOs depended on the additions of CdO and ZnO. The obtained Eg values of the produced CdO:ZnO = 5:5 (S3), CdO:ZnO = 6:4 (S4), and CdO:ZnO = 8:2 (S5) films are 2.5 eV, 2.49 eV, and 2.4 eV, respectively. Keywords: thin film; spin coating; ZnO; CdO; optical properties 1. Introduction semiconductors have attracted attention of re- searchers over the last few years. Due to their wide Indium oxide, tin oxide, cadmium oxide, and band gap, they find applications in light emitting zinc oxide are transparent conductive films. These diodes (LEDs) and laser diodes. Among the semi- films have semimetallic electrical conductivity and conductors, ZnO has a wide band gap (3.37 eV) high optical transparency in the visible region [1].
    [Show full text]
  • Zinc in Drinking-Water
    WHO/SDE/WSH/03.04/17 English only Zinc in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality __________________ Originally published in Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva, 1996. © World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications - whether for sale or for noncommercial distribution - should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does
    [Show full text]
  • ZINC OXIDE file:///Users/filemaker/Desktop/MSDS%27S%202009/Zinc%20
    ZINC OXIDE file:///Users/filemaker/Desktop/MSDS%27s%202009/Zinc%20... MSDS Number: Z3705 * * * * * Effective Date: 12/05/05 * * * * * Supercedes: 05/07/03 ZINC OXIDE 1. Product Identification Synonyms: Chinese white; zinc white; flowers of zinc; calamine CAS No.: 1314-13-2 Molecular Weight: 81.38 Chemical Formula: ZnO Product Codes: J.T. Baker: 4358, 4360, 5070 Mallinckrodt: 3419, 7030, 8824, 8825, 8832, 8843 2. Composition/Information on Ingredients Ingredient CAS No Percent Hazardous --------------------------------------- ------------ ------------ --------- Zinc Oxide 1314-13-2 99 - 100% Yes 3. Hazards Identification Emergency Overview -------------------------- CAUTION! MAY IRRITATE RESPIRATORY TRACT. SAF-T-DATA(tm) Ratings (Provided here for your convenience) ----------------------------------------------------------------------------------------------------------- Health Rating: 2 - Moderate Flammability Rating: 1 - Slight Reactivity Rating: 0 - None Contact Rating: 1 - Slight Lab Protective Equip: GOGGLES; LAB COAT; VENT HOOD; PROPER GLOVES Storage Color Code: Green (General Storage) ----------------------------------------------------------------------------------------------------------- Potential Health Effects ---------------------------------- Inhalation: May cause irritation to the respiratory tract. Symptoms may include coughing and shortness of breath. Inhalation can cause a flu-like illness (metal fume fever). This 24- to 48-hour illness is characterized by chills, fever, aching muscles, dryness in the mouth and throat and headache. 1 of 6 7/14/09 10:55 AM ZINC OXIDE file:///Users/filemaker/Desktop/MSDS%27s%202009/Zinc%20... Ingestion: Large oral doses may cause irritation to the gastrointestinal tract. Skin Contact: Not expected to be a health hazard from skin exposure. Eye Contact: Not expected to be a health hazard. Chronic Exposure: No information found. Aggravation of Pre-existing Conditions: Persons with a pre-existing heart condition or impaired respiratory function may be more susceptible to the effects of this substance.
    [Show full text]
  • Experimental Study on Influence of Al2o3, Cao and Sio2 On
    minerals Article Experimental Study on Influence of Al2O3, CaO and SiO2 on Preparation of Zinc Ferrite Jinlin Yang 1,2, Shuo Xu 1, Wentao Zhou 3 , Pengyan Zhu 1, Jiguang Liu 1 and Shaojian Ma 1,2,* 1 College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; [email protected] (J.Y.); [email protected] (S.X.); [email protected] (P.Z.); [email protected] (J.L.) 2 Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, Guangxi University, Nanning 530004, China 3 College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0771-3232200 Abstract: Gossan ore of sulfide zinc deposit contains abundant zinc, iron, and other metal elements, which is a significant resource with complex components and can be utilized. In this study, a new technology of preparing zinc ferrite from zinc sulfide deposit gossan was proposed. The effects of Al2O3, CaO, and SiO2 in gossan on the formation of zinc ferrite were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and specific surface area and pore size analysis (BET). The results show that the presence of Al2O3 and CaO could hinder the formation of zinc ferrite, while silica had no effect on the formation of zinc ferrite. Under the conditions of the molar ratio of ZnO and Fe2O3 to Al2O3, CaO, and SiO2 of 1:1:1, an activation time of 60 min, and a roasting temperature of 750 ◦C for 120 min, the products, which had good crystallinity, smooth particle surface, and uniform particle size could be obtained.
    [Show full text]
  • The Unique Interplay Between Copper and Zinc During Catalytic Carbon Dioxide Hydrogenation to Methanol ✉ Maxim Zabilskiy 1 , Vitaly L
    ARTICLE https://doi.org/10.1038/s41467-020-16342-1 OPEN The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol ✉ Maxim Zabilskiy 1 , Vitaly L. Sushkevich1, Dennis Palagin 1, Mark A. Newton2, Frank Krumeich 2 & ✉ Jeroen A. van Bokhoven 1,2 fi 1234567890():,; In spite of numerous works in the eld of chemical valorization of carbon dioxide into methanol, the nature of high activity of Cu/ZnO catalysts, including the reaction mechanism and the structure of the catalyst active site, remains the subject of intensive debate. By using high-pressure operando techniques: steady-state isotope transient kinetic analysis coupled with infrared spectroscopy, together with time-resolved X-ray absorption spectroscopy and X-ray powder diffraction, and supported by electron microscopy and theoretical modeling, we present direct evidence that zinc formate is the principal observable reactive intermediate, which in the presence of hydrogen converts into methanol. Our results indicate that the copper–zinc alloy undergoes oxidation under reaction conditions into zinc formate, zinc oxide and metallic copper. The intimate contact between zinc and copper phases facilitates zinc formate formation and its hydrogenation by hydrogen to methanol. 1 Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland. 2 Institute for Chemistry and Bioengineering, ETH ✉ Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2020) 11:2409 | https://doi.org/10.1038/s41467-020-16342-1 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16342-1 arbon dioxide is a principal anthropogenic pollutant, ris- catalyst for this highly important and industrially relevant Cing level of which has a detrimental effect on the envir- reaction.
    [Show full text]
  • Opinion of the SCCNFP on Zinc Oxide
    SCCNFP/0649/03, final THE SCIENTIFIC COMMITTEE ON COSMETIC PRODUCTS AND NON-FOOD PRODUCTS INTENDED FOR CONSUMERS OPINION CONCERNING ZINC OXIDE COLIPA n° S 76 Adopted by the SCCNFP during the 24th plenary meeting of 24-25 June 2003 SCCNFP/0649/03, final Evaluation and opinion on : Zinc oxide ____________________________________________________________________________________________ 1. Terms of Reference 1.1 Context of the question The adaptation to technical progress of the Annexes to Council Directive 76/768/EEC of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products. Request for inclusion of Zinc oxide in Annex VII, part 1 – List of permitted UV Filters which Cosmetic Products may contain – to Council Directive 76/768/EEC. 1.2 Request to the SCCNFP The SCCNFP is requested to answer the following questions : * Is Zinc oxide safe for use in cosmetic products as a UV filter up to 25 %? * Does the SCCNFP propose any restrictions or conditions for its use in cosmetic products? 1.3 Statement on the toxicological evaluation The SCCNFP is the scientific advisory body to the European Commission in matters of consumer protection with respect to cosmetics and non-food products intended for consumers. The Commission’s general policy regarding research on animals supports the development of alternative methods to replace or to reduce animal testing when possible. In this context, the SCCNFP has a specific working group on alternatives to animal testing which, in co-operation with other Commission services such as ECVAM (European Centre for Validation of Alternative Methods), evaluates these methods. The extent to which these validated methods are applicable to cosmetic products and its ingredients is a matter of the SCCNFP.
    [Show full text]
  • Zinc Oxide MSDS # 804.00
    Material Safety Data Sheet Page 1 of 2 Zinc Oxide MSDS # 804.00 Section 1: Product and Company Identification Zinc Oxide Synonyms/General Names: Chinese White; Zinc White Product Use: For educational use only Manufacturer: Columbus Chemical Industries, Inc., Columbus, WI 53925. 24 Hour Emergency Information Telephone Numbers CHEMTREC (USA): 800-424-9300 CANUTEC (Canada): 613-424-6666 ScholAR Chemistry; 5100 W. Henrietta Rd, Rochester, NY 14586; (866) 260-0501; www.Scholarchemistry.com Section 2: Hazards Identification White crystalline powder, no odor. HMIS (0 to 4) Health 2 CAUTION! Moderately toxic by ingestion. Fire Hazard 0 Target organs: None known. Reactivity 0 This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Section 3: Composition / Information on Ingredients Zinc Oxide (1314-13-2), >99.9% Section 4: First Aid Measures Always seek professional medical attention after first aid measures are provided. Eyes: Immediately flush eyes with excess water for 15 minutes, lifting lower and upper eyelids occasionally. Skin: Immediately flush skin with excess water for 15 minutes while removing contaminated clothing. Ingestion: Call Poison Control immediately. Rinse mouth with cold water. Give victim 1-2 cups of water or milk to drink. Induce vomiting immediately. Inhalation: Remove to fresh air. If not breathing, give artificial respiration. Section 5: Fire Fighting Measures When heated to decomposition, emits acrid fumes. 0 Protective equipment and precautions for firefighters: Use foam or dry chemical to extinguish fire. 1 0 Firefighters should wear full fire fighting turn-out gear and respiratory protection (SCBA). Cool container with water spray. Material is not sensitive to mechanical impact or static discharge.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,577,627 GLASS COMPOSITION and METHOD of MAKNG SAME Alexis G
    Patented Dec. 4, 1951 is ..." 2,577,627 UNITED STATES PATENT OFFICE 2,577,627 GLASS COMPOSITION AND METHOD OF MAKNG SAME Alexis G. Pincus, Southbridge, Mass., assignor to American Optical Company, Southbridge, Mass., a voluntary association of Massachusetts No Drawing. Application May 1, 1947, Serial No. 745,239 10. Claims. (CI, 106-4) - - - - - This invention relates to fluoride resistant characteristics have been encountered which glasses and has particular reference to a glass have rendered most of these prior art glasses which is highly resistant to attack by hydro commercially impracticable. There are several fluoric acid, anhydrous hydrogen fluoride and characteristics which are required in glasses of fluorides in general, and to improved composi this nature: tions and methods of making the same. (1) That the glass first has a high resistance One of the principal objects of the .invention to attack by hydrofluoric acid, anhydrous hydro is to provide glasses of the above character, in gen fluoride and fluorides in general; proved compositions therefor and methods of (2) That the compositions be such that they making the same, which can be fabricated in O may be readily fabricated by known commercial large scale commercial production by known means; commercial methods and within the usual tem (3) That they possess characteristics which perature ranges, and which possess characteris will enable refabrication by heat or mechanical tics enabling refabrication while retaining a means without loss of desired transparency and transparent homogenous vitreous nature. 5 homogeneity; . A further object is to provide a glass composi (4) That they possess high resistance to attack tion of the above nature consisting essentially of by water; the metaphosphates of metallic elements of low (5).
    [Show full text]