COP and Clathrin-Coated Vesicle Budding: Different Pathways, Common Approaches Harvey T Mcmahon1 and Ian G Mills2

Total Page:16

File Type:pdf, Size:1020Kb

COP and Clathrin-Coated Vesicle Budding: Different Pathways, Common Approaches Harvey T Mcmahon1 and Ian G Mills2 COP and clathrin-coated vesicle budding: different pathways, common approaches Harvey T McMahon1 and Ian G Mills2 Vesicle and tubule transport containers move proteins and of these coated vesicles have now been purified: COPI- lipids from one membrane system to another. Newly forming (coatomer) and COPII-coated vesicles (where COP transport containers frequently have electron-dense coats. stands for coat protein complex) and clathrin-coated Coats coordinate the accumulation of cargo and sculpt the vesicles [2–6] (Figure 1). Coat components are needed membrane. Recent advances have shown that components of for generation of highly curved membrane areas, recruit- both COP1 and clathrin-adaptor coats share the same structure ment of cargo (and exclusion of non-cargo proteins/ and the same motif-based cargo recognition and accessory lipids), vesicle scission and uncoating factor recruitment. factor recruitment mechanisms, which leads to insights on Not all budding pathways lead to small vesicles, but the conserved aspects of coat recruitment, polymerisation and high membrane curvature of these transporters makes membrane deformation. These themes point to the way in them intrinsically more fusogenic than larger vesicle which evolutionarily conserved features underpin these structures like macro-phagosomes. There may be many diverse pathways. ways to bud a membrane but we would argue that producing a small vesicle that concentrates cargo mole- Addresses cules requires a coat. 1MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK Just as a SNARE-based fusion underpins the hypothesis e-mail: [email protected] 2Department of Oncology, University of Cambridge, Hutchison MRC of a common mechanism for all membrane fusion, so a Cancer Research Centre, Hills Road, Cambridge, CB2 2XZ, UK coat-based budding hypothesis has emerged as a common e-mail: [email protected] theme in vesicle budding. This review highlights con- served mechanisms underpinning diverse budding path- ways and the differences that often reflect specificity and Current Opinion in Cell Biology 2004, 16:379–391 regulation. This review comes from a themed issue on Membranes and organelles Background to coated vesicle budding Edited by Judith Klumperman and Gillian Griffiths Clathrin-coated vesicles are named after the protein that Available online 20th June 2004 self-polymerises into a lattice around these vesicles as they bud from the plasma membrane, trans-Golgi net- 0955-0674/$ – see front matter work (TGN) and endosomes [7,8]. For all clathrin-coated ß 2004 Elsevier Ltd. All rights reserved. vesicles, clathrin is the central organiser (Box 1). It con- centrates cargo adaptors, leading to a diverse protein and DOI 10.1016/j.ceb.2004.06.009 lipid load in the forming vesicle, and its polymerisation into a curved lattice stabilises the nascent membrane bud Abbreviations AP adaptor protein as it forms. Each clathrin molecule contains an N- Arf ADP ribosylation factor substrate terminal domain that has a b-propeller structure and binds ARH autosomal recessive hypercholesterolemia protein to peptide motifs between its blades [9]. This multi- COP coat protein complex bladed propeller allows for multiple protein interactions ER endoplasmic reticulum with various specificities [10], recruiting a versatile array GGA Golgi-localised, g-ear containing, ADP-ribosylation factor-binding protein of different cargo adaptors and membrane attachment Hrs hepatocyte growth factor receptor tyrosine kinase substrate proteins [11,12,13 ,14]. TGN trans-Golgi network The main cargo adaptor proteins characterised to date are the classical adaptor protein (AP) complexes, AP1, AP2, Introduction: The coated vesicle budding AP3 and AP4 [15–19] (Table 1). Most AP complexes hypothesis adapt and/or link clathrin to selected membrane cargo and Early electron microscopy studies of cells led to a vesicle- lipids, and they also bind accessory proteins that regulate transport hypothesis for protein trafficking. Vesicular coat assembly and disassembly (such as AP180, epsins transport intermediates bud from a donor organelle and and auxilin; see Table 2). ‘Alternative adaptors’ can also then fuse with an acceptor organelle. Budding intermedi- function in clathrin-mediated vesicle budding. These ates were initially identified by their electron-dense adaptors are sometimes called ‘monomeric adaptors’ ‘coats’ and were found on the plasma membrane and but this does not accurately describe some of the mem- intracellular organelles [1] (Figure 1). Three major classes bers of this group, which are dimeric. GGA adaptors www.sciencedirect.com Current Opinion in Cell Biology 2004, 16:379–391 380 Membranes and organelles Figure 1 (a) (b) (d) (c) Current Opinion in Cell Biology Current Opinion in Cell Biology 2004, 16:379–391 www.sciencedirect.com COP and clathrin-coated vesicle budding McMahon and Mills 381 Box 1 Definitions factors (Figure 1 and Table 1) [20,21]. GGAs and Hrs (hepatocyte growth factor receptor tyrosine kinase sub- Clathrin Clathrin is a trimer with a central hub domain from which extends strate) have similar but not identical domain compositions three legs ending in terminal (b-propeller/WD40) domains. This (Figure 1). By analogy with cargo binding to the GGA building block of a cage structure is known as a triskelion. During VHS domain, Hrs may also bind cargo, but this protein is polymerisation the legs on neighbouring triskelia twist around each targeted via its FYVE domain to endosomes. Arrestins, other and make a lattice. Recruitment proteins bind to these terminal domains and help to concentrate clathrin on membranes. epsins, disabled-2 and ARH (autosomal recessive Concentrated clathrin self-assembles [7]. hypercholesterolemia protein) can also be classified as alternative adaptors as they also link cargo and mem- Cargo adaptors Proteins that link cargo into the clathrin-coated pit branes to the clathrin lattice (Table 2) [11,13 ,14,22]. These may work in some cases alongside or indepen- Classical clathrin adaptors: AP1, AP2, AP3 and AP4 complexes each have four subunits: two dently of classical adaptors to recruit their cargo into large, one medium and one small, which are believed to be stably budding vesicles [23 ]. Since multiple adaptors are found associated in the cell. AP1 is involved in protein sorting from the TGN in individual coated pits, it is not necessary for all adaptors and endosomes; AP2 traffics from the plasma membrane; AP3 to have a direct clathrin interaction. traffics to lysosomes and AP4 is found on vesicles in the vicinity of the TGN [19]. COP coats come in two very different flavours, belying Alternative clathrin adaptors the homologous nomenclature (Figure 1 and Table 1). Monomeric and dimeric cargo/clathrin adaptors like GGAs and Hrs COPI coat components have sequence homology to cla- Accessory proteins thrin AP complex proteins [24–28]. Just as clathrin and Clathrin recruitment, membrane bending and scission molecules. This group can cover all proteins involved in clathrin-mediated adaptors come together to form clathrin-coated vesicles, endocytosis except clathrin. But the definition is more usefully so the two subcomplexes of COPI coats come together to applied when it neither covers clathrin nor cargo adaptors. recruit cargo into buds [28]. COPI coat components traffic COP coat subcomplexes primarily from the Golgi to the endoplasmic reticulum There are seven COPI subunits (a, b, b’, d, g, e and z) divided into two (ER) and between Golgi cisternae. subcomplexes: the F subcomplex composed of b, d, g and z-COPs, of which the b and g subunits display homology to AP complex COPII-coated vesicles traffic from the ER to the Golgi. appendage domains, and the B subcomplex, within which the a and b’ subunits contain WD40 repeats akin to clathrin terminal There are again two subcomplexes (Figure 1 and Table 1) domains [28]. that come together to recruit cargo into buds. In the clathrin-like subcomplex of COPI coats (the B-subcom- COPII coat proteins can also be considered as subcomplexes consisting of Sec13/31p and Sec23/Sec24p. Both Sec13/31p have plex) and in the Sec13/31p subcomplex of COPII coats WD40 repeats akin to clathrin whereas Sec23/24p functionally there are b-propeller domains (made from WD40 repeats) resemble the AP complexes in a cargo recruitment capacity. [29] that form a protein interaction face just like the b- Motif domains propeller clathrin terminal domains. COP coats are there- Generally regions lacking tertiary structure in proteins containing fore also multisubunit protein complexes, whose compo- short sequence motifs that serve as binding sites for ligand. This is a nents select cargo, drive membrane curvature and vesicle generic term that can be applied to all proteins with similar domains budding (Table 1). We will now look at some common- across the proteome and stands in contrast to ‘structured domains’. It is likely that many of these domains have a limited structure. alities in these diverse vesicle budding pathways. Conservation of coat recruitment and (Golgi-localized, g-ear containing, ADP-ribosylation- membrane curving mechanisms factor-binding proteins) are associated with TGN clathrin A long-recognised commonality between COPI, COPII coats and bind cargo, membranes, clathrin and accessory and many clathrin budding pathways is that small (Figure 1 Legend) Structural and functional homology between COP1 coats and clathrin-adaptor coats. (a) The ‘classical’ AP2 clathrin adaptor with its four subunits forms a complex that links cargo recruitment to clathrin. Clathrin is a trimer and each terminal domain is represented as being bound to a b2 adaptin appendage and hinge domain. The other heterotetrameric AP complexes, AP1, AP3 and AP4, have the same overall structure. (b) The COPI F-subcomplex probably has a similar topology to the AP complex and the B-subcomplex is likely to be the functional equivalent of clathrin. (c) Likewise, COPII has two subcomplexes, Sec23/24 and Sec13/31. (d) Alternative clathrin adaptors GGAs and Hrs are like the large subunits of AP complexes in that they bind to cargo, clathrin and membranes.
Recommended publications
  • Mea6 Controls VLDL Transport Through the Coordinated Regulation of COPII Assembly
    Cell Research (2016) 26:787-804. npg © 2016 IBCB, SIBS, CAS All rights reserved 1001-0602/16 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Mea6 controls VLDL transport through the coordinated regulation of COPII assembly Yaqing Wang1, *, Liang Liu1, 2, *, Hongsheng Zhang1, 2, Junwan Fan1, 2, Feng Zhang1, 2, Mei Yu3, Lei Shi1, Lin Yang1, Sin Man Lam1, Huimin Wang4, Xiaowei Chen4, Yingchun Wang1, Fei Gao5, Guanghou Shui1, Zhiheng Xu1, 6 1State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 2University of Chinese Academy of Sciences, Beijing 100101, China; 3School of Life Science, Shandong University, Jinan 250100, China; 4Institute of Molecular Medicine, Peking University, Beijing 100871, China; 5State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 6Translation- al Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Lipid accumulation, which may be caused by the disturbance in very low density lipoprotein (VLDL) secretion in the liver, can lead to fatty liver disease. VLDL is synthesized in endoplasmic reticulum (ER) and transported to Golgi apparatus for secretion into plasma. However, the underlying molecular mechanism for VLDL transport is still poor- ly understood. Here we show that hepatocyte-specific deletion of meningioma-expressed antigen 6 (Mea6)/cutaneous T cell lymphoma-associated antigen 5C (cTAGE5C) leads to severe fatty liver and hypolipemia in mice. Quantitative lip- idomic and proteomic analyses indicate that Mea6/cTAGE5 deletion impairs the secretion of different types of lipids and proteins, including VLDL, from the liver.
    [Show full text]
  • Coatomer-Rich Endoplasmic Reticulum LELIO ORCI*, ALAIN PERRELET*, MARIELLA RAVAZZOLA*, Myltne AMHERDT*, JAMES E
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 11924-11928, December 1994 Cell Biology Coatomer-rich endoplasmic reticulum LELIO ORCI*, ALAIN PERRELET*, MARIELLA RAVAZZOLA*, MYLtNE AMHERDT*, JAMES E. ROTHMANt, AND RANDY SCHEKMAN* *Department of Morphology, University of Geneva Medical School, 1211 Geneva 4, Switzerland; tDivision of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and tCellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 Contributed by Randy Schekman, August 30, 1994 ABSTRACT We identify in normal cells the existence of digestion and incubated at normal (370C) or low (220C, 15'C, two distinct sites of the transitional endoplasmic reticulum 40C) temperatures under continuous shaking and gassing with (ER), one housing the Sec23p protein complex (the classical 95% 02/5% CO2. Monolayer cultures ofpancreatic endocrine transitional element), the other the coatomer protein complex cells (24) were exposed to low temperatures as for isolated (the coatomer-rich ER). Experimental conditions that reduce islets. ATP depletion in both preparations was induced at transport from the ER to the Golgi complex lead to the 370C with 10 ImM antimycin or 1 mM dinitrophenol or by overexpression of this newly defined coatomer-rich ER. gassing the cells with N2 instead of the 02/CO2 mixture. At the end of the incubations, the samples were fixed with Progress in the identification and characterization of the 1% glutaraldehyde in 0.1 M sodium phosphate buffer (pH 7.4) carriers involved in membrane traffic from the endoplasmic for 1 hr at the final temperature of the incubation protocol, reticulum (ER) to and through the Golgi complex was pos- washed with buffer, and processed for Epon embedding sible by combining morphological and biochemical methods, (conventional thin sections) or for cryoultramicrotomy ac- cell-free assay systems, and yeast genetics (for review see refs.
    [Show full text]
  • An Arf1 Synthetic Lethal Screen Identifies a New Clathrin Heavy
    Copyright 1998 by the Genetics Society of America An arf1D Synthetic Lethal Screen Identi®es a New Clathrin Heavy Chain Conditional Allele That Perturbs Vacuolar Protein Transport in Saccharomyces cerevisiae Chih-Ying Chen and Todd R. Graham Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235 Manuscript received March 5, 1998 Accepted for publication June 16, 1998 ABSTRACT ADP-ribosylation factor (ARF) is a small GTP-binding protein that is thought to regulate the assembly of coat proteins on transport vesicles. To identify factors that functionally interact with ARF, we have performed a genetic screen in Saccharomyces cerevisiae for mutations that exhibit synthetic lethality with an arf1D allele and de®ned seven genes by complementation tests (SWA1-7 for synthetically lethal with arf1D). Most of the swa mutants exhibit phenotypes comparable to arf1D mutants such as temperature-conditional growth, hypersensitivity to ¯uoride ions, and partial protein transport and glycosylation defects. Here, we report that swa5-1 is a new temperature-sensitive allele of the clathrin heavy chain gene (chc1-5), which carries a frameshift mutation near the 39 end of the CHC1 open reading frame. This genetic interaction between arf1 and chc1 provides in vivo evidence for a role for ARF in clathrin coat assembly. Surprisingly, strains harboring chc1-5 exhibited a signi®cant defect in transport of carboxypeptidase Y or carboxypepti- dase S to the vacuole that was not observed in other chc1 ts mutants. The kinetics of invertase secretion or transport of alkaline phosphatase to the vacuole were not signi®cantly affected in the chc1-5 mutant, further implicating clathrin speci®cally in the Golgi to vacuole transport pathway for carboxypeptidase Y.
    [Show full text]
  • Formation of COPI-Coated Vesicles at a Glance Eric C
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs209890. doi:10.1242/jcs.209890 CELL SCIENCE AT A GLANCE Formation of COPI-coated vesicles at a glance Eric C. Arakel1 and Blanche Schwappach1,2,* ABSTRACT unresolved, this review attempts to refocus the perspectives of The coat protein complex I (COPI) allows the precise sorting of lipids the field. and proteins between Golgi cisternae and retrieval from the Golgi KEY WORDS: Arf1, ArfGAP, COPI, Coatomer, Golgi, Endoplasmic to the ER. This essential role maintains the identity of the early reticulum, Vesicle coat secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI- Introduction coated vesicle formation and revisit decades of research in the Vesicle coat proteins, such as the archetypal clathrin and the coat context of recent advances in the elucidation of COPI coat structure. protein complexes II and I (COPII and COPI, respectively) are By calling attention to an array of questions that have remained molecular machines with two central roles: enabling vesicle formation, and selecting protein and lipid cargo to be packaged within them. Thus, coat proteins fulfil a central role in the 1Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee homeostasis of the cell’s endomembrane system and are the basis 23, 37073 Göttingen, Germany. 2Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. of functionally segregated compartments. COPI operates in retrieval from the Golgi to the endoplasmic reticulum (ER) and in intra-Golgi *Author for correspondence ([email protected]) transport (Beck et al., 2009; Duden, 2003; Lee et al., 2004a; Spang, E.C.A., 0000-0001-7716-7149; B.S., 0000-0003-0225-6432 2009), and maintains ER- and Golgi-resident chaperones and enzymes where they belong.
    [Show full text]
  • ADP-Ribosylation Factor, a Small GTP-Binding Protein, Is Required for Binding of the Coatomer Protein Fl-COP to Golgi Membranes JULIE G
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6408-6412, July 1992 Biochemistry ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein fl-COP to Golgi membranes JULIE G. DONALDSON*, DAN CASSEL*t, RICHARD A. KAHN*, AND RICHARD D. KLAUSNER* *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, and tLaboratory of Biological Chemistry, Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Communicated by Marc Kirschner, April 20, 1992 (receivedfor review February 11, 1992) ABSTRACT The coatomer is a cytosolic protein complex localized to the Golgi complex, although their functions have that reversibly associates with Golgi membranes and is Impli- not been defined. Distinct among these proteins is the ADP- cated in modulating Golgi membrane transport. The associa- ribosylation factor (ARF), originally identified as a cofactor tion of 13-COP, a component of coatomer, with Golgi mem- required for in vitro cholera toxin-catalyzed ADP- branes is enhanced by guanosine 5'-[v-thioltriphosphate ribosylation of the a subunit of the trimeric GTP-binding (GTP[yS]), a nonhydrolyzable analogue of GTP, and by a protein G, (G,.) (19). ARF is an abundant cytosolic protein mixture of aluminum and fluoride ions (Al/F). Here we show that reversibly associates with Golgi membranes (20, 21). that the ADP-ribosylation factor (ARF) is required for the ARF has been shown to be present on Golgi coated vesicles binding of (-COP. Thus, 13-COP contained in a coatomer generated in the presence of GTP[yS], but it is not a com- fraction that has been resolved from ARF does not bind to Golgi ponent of the cytosolic coatomer (22).
    [Show full text]
  • Mechanisms of Synaptic Plasticity Mediated by Clathrin Adaptor-Protein Complexes 1 and 2 in Mice
    Mechanisms of synaptic plasticity mediated by Clathrin Adaptor-protein complexes 1 and 2 in mice Dissertation for the award of the degree “Doctor rerum naturalium” at the Georg-August-University Göttingen within the doctoral program “Molecular Biology of Cells” of the Georg-August University School of Science (GAUSS) Submitted by Ratnakar Mishra Born in Birpur, Bihar, India Göttingen, Germany 2019 1 Members of the Thesis Committee Prof. Dr. Peter Schu Institute for Cellular Biochemistry, (Supervisor and first referee) University Medical Center Göttingen, Germany Dr. Hans Dieter Schmitt Neurobiology, Max Planck Institute (Second referee) for Biophysical Chemistry, Göttingen, Germany Prof. Dr. med. Thomas A. Bayer Division of Molecular Psychiatry, University Medical Center, Göttingen, Germany Additional Members of the Examination Board Prof. Dr. Silvio O. Rizzoli Department of Neuro-and Sensory Physiology, University Medical Center Göttingen, Germany Dr. Roland Dosch Institute of Developmental Biochemistry, University Medical Center Göttingen, Germany Prof. Dr. med. Martin Oppermann Institute of Cellular and Molecular Immunology, University Medical Center, Göttingen, Germany Date of oral examination: 14th may 2019 2 Table of Contents List of abbreviations ................................................................................. 5 Abstract ................................................................................................... 7 Chapter 1: Introduction ............................................................................
    [Show full text]
  • COPI Activity Coupled with Fatty Acid Biosynthesis Is Required for Viral Replication
    COPI Activity Coupled with Fatty Acid Biosynthesis Is Required for Viral Replication Sara Cherry1*, Amit Kunte2, Hui Wang3, Carolyn Coyne4, Robert B. Rawson2, Norbert Perrimon3 1 University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America, 2 University of Texas Southwestern Medical Center, Dallas, Texas, United States of America, 3 Harvard Medical School, Howard Hughes Medical Institute, Boston, Massachusetts, United States of America, 4 Children’s Hospital of Pennsylvania, Philadelphia, Pennsylvania, United States of America During infection by diverse viral families, RNA replication occurs on the surface of virally induced cytoplasmic membranes of cellular origin. How this process is regulated, and which cellular factors are required, has been unclear. Moreover, the host–pathogen interactions that facilitate the formation of this new compartment might represent critical determinants of viral pathogenesis, and their elucidation may lead to novel insights into the coordination of vesicular trafficking events during infection. Here we show that in Drosophila cells, Drosophila C virus remodels the Golgi apparatus and forms a novel vesicular compartment, on the surface of which viral RNA replication takes place. Using genome-wide RNA interference screening, we found that this step in the viral lifecycle requires at least two host encoded pathways: the coat protein complex I (COPI) coatamer and fatty acid biosynthesis. Our results integrate, clarify, and extend numerous observations concerning the cell biology of viral replication, allowing us to conclude that the coupling of new cellular membrane formation with the budding of these vesicles from the Golgi apparatus allows for the regulated generation of this new virogenic organelle, which is essential for viral replication.
    [Show full text]
  • ADP-Ribosylation Factor and Coatomer Couple Fusion to Vesicle Budding Zvulun Elazar,* Lelio Orci,T Joachim Ostermann,* Myl~Nc Amherdt,* Gary Tanigawa,* and James E
    ADP-Ribosylation Factor and Coatomer Couple Fusion to Vesicle Budding Zvulun Elazar,* Lelio Orci,t Joachim Ostermann,* Myl~nc Amherdt,* Gary Tanigawa,* and James E. Rothman* * Program in Cellular Biochemistry and Biophysics, Memorial Sloan Kettering Cancer Center, New York 10021; and ¢Institute of Histology and Embryology, University of Geneva Medical School, 1211 Geneva 4, Switzerland Abstract. The coat proteins required for budding pair directly without an intervening vesicle. Coupling COP-coated vesicles from Golgi membranes, coatomer may therefore result from the sequestration of fuso- and ADP-ribosylation factor (ARF) protein, are shown genic membrane proteins into assembling coated vesi- to be required to reconstitute the orderly process of cles that are only exposed when the coat is removed transport between Golgi cisternae in which fusion of after budding is complete. This mechanism of cou- transport vesicles begins only after budding ends. pling explains the phenomenon of "retrograde transport" When either coat protein is omitted, fusion is uncou- triggered by uncouplers such as the drug brefeldin A. pled from budding-donor and acceptor compartments ow is membrane fusion coupled to vesicle budding? Orci et al., 1989). Purification of COP-coated vesicles (Mal- A transport vesicle must fuse with its target only hotra et al., 1989; Serafini et al., 1991a,b) revealed that their H after its budding from the parental membrane is coats consist of a small GTP-binding protein (ADP-ribosyla- completed. Otherwise, the various membrane-bound com- tion factor, ARF) ~ and a complex of seven distinct proteins partments connected by vesicle shuttles would fuse and the termed coatomer (Waters et al., 1992a; Stenbeck et al., topological organization of the endomembrane system in 1993), whose subunits are or, B, B', 3', ~, e, and ~'-COPs.
    [Show full text]
  • Sec13 Safeguards the Integrity of the Endoplasmic Reticulum and Organogenesis of the Digestive System in Zebrafish
    Developmental Biology 367 (2012) 197–207 Contents lists available at SciVerse ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Sec13 safeguards the integrity of the endoplasmic reticulum and organogenesis of the digestive system in zebrafish Xubo Niu a,1, Chuan Gao b,1, Li Jan Lo a, Yue Luo a, Chunmei Meng c, Jian Hong c, Wanjin Hong d,e, Jinrong Peng a,n a Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, PR China b Department of Biological Sciences, National University of Singapore, Singapore c Institute of Biotechnology, Zhejiang University, Hangzhou, PR China d School of Pharmaceutical Sciences, Xiamen University, Xiamen, PR China e Institute of Molecular and Cell Biology, Agency for Science and Technology Research (A*STAR), Singapore article info abstract Article history: The Sec13-Sec31 heterotetramer serves as the outer coat in the COPII complex, which mediates protein Received 25 October 2011 trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. Although it has been studied in Received in revised form depth in yeast and cultured cells, the role of COPII in organogenesis in a multicellular organism has not. 12 April 2012 We report here that a zebrafish sec13sq198 mutant, which exhibits a phenotype of hypoplastic digestive Accepted 4 May 2012 organs, has a mutation in the sec13 gene. The mutant gene encodes a carboxyl-terminus-truncated Available online 15 May 2012 Sec13 that loses its affinity to Sec31a, which leads to disintegration of the ER structure in various Keywords: differentiated cells in sec13sq198, including chondrocytes, intestinal epithelial cells and hepatocytes.
    [Show full text]
  • SEC13 Antibody (Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap10738c
    苏州工业园区双圩路9号1幢 邮 编 : 215000 电 话 : 0512-88856768 SEC13 Antibody (Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP10738c Specification SEC13 Antibody (Center) - Product info Application WB, FC Primary Accession P55735 Other Accession NP_899195.1 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Clone Names RB23825 Calculated MW 35541 SEC13 Antibody (Center) - Additional info Gene ID 6396 Other Names SEC13 Antibody (Center) (Cat. Protein SEC13 homolog, SEC13-like protein 1, SEC13-related #AP10738c) western blot analysis in protein, SEC13, D3S1231E, SEC13L1, SEC13R HepG2 cell line lysates (35ug/lane).This demonstrates the SEC13 antibody Target/Specificity detected the SEC13 protein (arrow). This SEC13 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 72-100 amino acids from the Central region of human SEC13. Dilution WB~~1:1000 FC~~1:10~50 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. SEC13 Antibody (Center) (Cat. #AP10738c) flow cytometric analysis of Precautions HepG2 cells (right histogram) compared SEC13 Antibody (Center) is for research use only and not for to a negative control cell (left use in diagnostic or therapeutic procedures. histogram).FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis. SEC13 Antibody (Center) - Protein Information Name SEC13 Function Functions as a component of the nuclear pore complex (NPC) and the COPII coat.
    [Show full text]
  • Dynamin Action at the Final Stage of Clathrin- Mediated Endocytosis
    Dynamin Action at the Final Stage of Clathrin- Mediated Endocytosis Ning Fang ( [email protected] ) Georgia State University https://orcid.org/0000-0003-4710-0984 Xiaodong Cheng Georgia State University Kuangcai Chen Georgia State University https://orcid.org/0000-0002-9321-9225 Bin Dong Georgia State University https://orcid.org/0000-0002-3196-0712 Meek Yang Georgia State University Seth Filbrun Georgia State University Yong Myoung Georgia State University Teng-Xiang Huang Georgia State University Yan Gu The Bristol-Myers Squibb Company Gufeng Wang Georgia State University Article Keywords: Dynamin, clathrin-mediated endocytosis, scission, vesicle ssion Posted Date: February 5th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-134570/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Dynamin plays an important role in clathrin-mediated endocytosis by cutting the neck of nascent vesicles from the cell membrane. Gold nanorods were used as imaging probes to observe dynamin action on cargo vesicles during live endocytosis events. Invariant is that at the peak of dynamin accumulation, the cargo-containing vesicle always gives abrupt, right-handed rotations that nishes in a short time (~ 0.28 s). The large and quick twist, herein named the super twist, is the result of the coordinated dynamin helix action upon GTP hydrolysis. After the super twist, the rotational freedom of the vesicle drastically increases, accompanied with simultaneous or delayed translational movement, indicating that it detaches from the cell membrane. These observations suggest that dynamin-mediated scission at the nal stage involves a large torque generated by coordinated actions of multiple dynamins in the helix, which is the main driving force for scission.
    [Show full text]
  • The Structure of the COPI Coat Determined Within the Cell
    RESEARCH ADVANCE The structure of the COPI coat determined within the cell Yury S Bykov1,2, Miroslava Schaffer3, Svetlana O Dodonova1†, Sahradha Albert3, Ju¨ rgen M Plitzko3, Wolfgang Baumeister3*, Benjamin D Engel3*, John AG Briggs1,2* 1Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; 2Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom; 3Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany Abstract COPI-coated vesicles mediate trafficking within the Golgi apparatus and from the Golgi to the endoplasmic reticulum. The structures of membrane protein coats, including COPI, have been extensively studied with in vitro reconstitution systems using purified components. Previously we have determined a complete structural model of the in vitro reconstituted COPI coat (Dodonova et al., 2017). Here, we applied cryo-focused ion beam milling, cryo-electron tomography and subtomogram averaging to determine the native structure of the COPI coat within vitrified Chlamydomonas reinhardtii cells. The native algal structure resembles the in vitro mammalian structure, but additionally reveals cargo bound beneath b’–COP. We find that all coat components *For correspondence: disassemble simultaneously and relatively rapidly after budding. Structural analysis in situ, [email protected] (WB); maintaining Golgi topology, shows that vesicles change their size, membrane thickness, and cargo [email protected] (BDE); content as they progress from cis to trans, but the structure of the coat machinery remains [email protected] constant. (JAGB) DOI: https://doi.org/10.7554/eLife.32493.001 Present address: †Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Go¨ ttingen, Germany Introduction Vesicular transport between cellular compartments is a fundamental mechanism of eukaryotic cells.
    [Show full text]