Seismic Characteristics of Supershear and Sub-Rayleigh Earthquakes: Implication from Simple Cases, Geophys

Total Page:16

File Type:pdf, Size:1020Kb

Seismic Characteristics of Supershear and Sub-Rayleigh Earthquakes: Implication from Simple Cases, Geophys Geophysical Research Letters RESEARCH LETTER Seismic characteristics of supershear and sub-Rayleigh 10.1002/2017GL074158 earthquakes: Implication from simple cases Key Points: • The common conclusion that Zhenguo Zhang1 , Jiankuan Xu1 , Hanqing Huang2 , and Xiaofei Chen1 supershear earthquake transmits farther distance than subshear one is 1Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China, 2School of confirmed by numerical simulations • Shaking of subshear earthquake Earth and Space Sciences, University of Science and Technology of China, Hefei, China is more intensive than that of supershear one at short distance to the fault plane Abstract Numerous investigations of supershear earthquakes make a conclusion that a supershear • The supershear earthquake has earthquake produces a seismic shock wave on the ground that may increase the resulting destruction. relatively quiet aftershock potential based on Coulomb We investigate a supershear rupture promoted by the free surface and find out that although the seismic failure stress analysis energy of a supershear earthquake can be transmitted further with large amplitudes, the peak slip velocity on a fault near the free surface is smaller than that caused by a subshear rupture earthquake. Our results Correspondence to: show that the free-surface-induced supershear rupture mitigates the amplitudes of ground motions near X. Chen, the fault plane compared with the subshear rupture. The Coulomb failure change derived from dynamic [email protected] modeling further suggests that this free-surface-induced supershear reduces aftershock potential compared to a subshear rupture. Both ground motion at near-fault and aftershock possibility show low Citation: risk for the free-surface-induced supershear rupture earthquake than subshear earthquake, contrary to the Zhang, Z., J. Xu, H. Huang, and traditional concept. X. Chen (2017), Seismic characteristics of supershear and sub-Rayleigh earthquakes: Implication from simple cases, Geophys. Res. Lett., 44, 6712–6717, doi:10.1002/ 1. Introduction 2017GL074158. The rupture speed of an earthquake is an important parameter that results in high frequencies and strong seis- mic radiation, particularly the transition from a speed slower than Rayleigh wave speeds (subshear rupture) Received 14 MAY 2017 to that faster than shear wave speeds (supershear rupture) of the surrounding medium [Madariaga, 1983]. Accepted 26 JUN 2017 Earthquake simulations with specific rupture velocities indicate that supershear rupture, compared with the Accepted article online 28 JUN 2017 Published online 11 JUL 2017 subshear case, radiates S waves as a Mach front that causes extensive shaking at places far away the fault [Aagaard and Heaton, 2004; Bernard and Baumont, 2005; Dunham and Archuleta, 2005]. This Mach cone effect is further supported by dynamic modeling [Andrews, 2010], laboratory earthquakes [Rosakis et al., 1999; Xia et al., 2004], and supershear earthquake observations [Vallée et al., 2008]. Theoretical analysis and numerical experiments have demonstrated that the rupture pattern of an earthquake depends primarily on the rela- tionship between the shear stress and strength of the fault, which can be denoted by the quantitative seismic ratio S. For a planar fault embedded in a homogeneous medium, a sufficiently small S can accelerate a rup- ture to a supershear one [Burridge, 1973; Andrews, 1976; Das and Aki, 1977; Dunham, 2007]. This mechanism of supershear transition is usually called the Burridge-Andrews mechanism (BAM). Moreover, recent numer- ical simulations also prove the existence of another rupture type that increases the speed to supershear [Liu et al., 2014]. It has been identified that the rupture speeds of a few crustal earthquakes exceed the shear wave velocities [Archuleta, 1984; Bouchon et al., 2000, 2001; Bouchon and Vallée, 2003; Dunham and Archuleta, 2004; Wang and Mori, 2012; Wang et al., 2012; Yueetal., 2013]. These crustal supershear earthquakes are all strike-slip and reach the Earth’s surface, which is consistent with the theoretical studies that the flat free surface will always induce the supershear transition given a long enough propagation distance for a strike-slip rupture [Xu et al., 2015]. This free-surface-induced (FSI) supershear rupture, which is caused by the SV-P phase conversion at the free surface [Kaneko and Lapusta, 2010], behaves quite differently compared to those induced by BAM and can be prevented by inhomogeneities such as low velocity media [Kaneko and Lapusta, 2010], an irregular surface [Zhang et al., 2016], or a barrier [Xu et al., 2016]. It is necessary to evaluate the seismic hazard characteristics of a FSI supershear rupture because it is common for faults to reach the Earth’s surface. Is the ground motion caused by a FSI supershear earthquake stronger than that caused by a subshear earthquake? We report the ©2017. American Geophysical Union. characteristics of a FSI supershear rupture in this study and find that the answer for this question is negative All Rights Reserved. from both near-source ground motion and aftershock triggering. ZHANG ET AL. SUPERSHEAR AND SUB-RAYLEIGH EARTHQUAKES 6712 Geophysical Research Letters 10.1002/2017GL074158 2. Models and Method This work focuses on the seismic hazards caused by a free-surface-induced supershear earthquake. For a strike-slip fault, a supershear rupture is promoted from subshear rupture at the free surface due to SV-P wave conversion [Kaneko and Lapusta, 2010; Xu et al., 2015]. To discuss seismic hazards, a subshear rupture, with initial conditions and dynamic parameters identical to those of the supershear rupture, must be compared and analyzed. Then, the free-surface-induced supershear rupture must be prevented without changing the initial conditions and parameters. Numerical experiments indicate that an irregular topography can prevent the supershear rupture transition [Zhang et al., 2016]. In this work, this supershear transition is prevented by a topographical perturbation, causing a subshear on the entire fault plane. The supershear and subshear have the same initial stress, dynamic stress drop, and other parameters, but they have different rupture velocities. Note that the model of earthquake faulting is relative simple, it considers a vertical planar fault surrounded by a homogeneous media and driven by uniform stress field except for the nucleation patch. The condi- tions that trigger an earthquake might have much complexity in stress, media, fault geometry, and so on. However, to differentiate the seismic radiations between supershear and subshear rupture earthquakes, the simplified model is chosen to run simulation and analyze the associated phenomena. Moreover, all the supershear earthquakes observed in the upper crust are all the strike-slipping faults reaching Earth’s surface. Three-dimensional (3-D) numerical simulations indicate that a long enough fault in the strike direc- tion is required to accelerate rupture from subshear to supershear speed. With these considerations, we choose the following 3-D models to compare the seismic dangers between subshear and supershear rupture earthquakes. We investigate supershear rupture induced by interaction with Earth’s surface using 3-D rupture dynamics modeling. A vertical planar fault with 110 km length and 20 km width is modeled under the slip-weakening . friction law [Ida, 1972]. In the dynamic modeling, the critical distance d0 = 0 4 m, the static and dynamic . . frictions are set to s = 0 677 and d = 0 525, respectively. The medium is homogeneous with P wave speed 3 vp = 6000 m/s, S wave speed vs = 3464 m/s, and density = 2670 kg/m . A homogeneous initial stress field (the normal and shear stresses are 120 MPa and 70.0 MPa, respectively) is employed over the whole fault plane except for the nucleation patch with a size of 3 km × 3 km, within which a stress slightly higher than the strength of the fault is used to trigger the dynamic rupture. The square nucleation zone, located 10 km away from the left, bottom, and flat free-surface boundaries, initializes the dynamic rupture. The subsequent rupture spontaneously propagates over the entire fault plane until it is stopped by surrounding barriers with sufficiently high strength. For the supershear rupture model, a vertical planar fault of 110 km length and 20 km width is considered. The flat surface is used to generate FSI supershear rupture. A canyon, defined by z(r)=1000 exp(−r2/15002), where r is the distance to the canyon center, is added to prevent the free-surface-induced supershear rupture. The fault plane crosses the center of canyon. We use the curved grid finite-difference method (CG-FDM) [Zhangetal., 2014] to simulate the dynamic rupture dynamic on a fault with flat and canyon-shaped surfaces. This method was verified by modeling benchmarks released by the Southern California Earthquake Center [Harris et al., 2009]. By using curvilinear grids that can fit the irregular interfaces and adopting of split nodes to represent the discontinuous condition across the two sides of a fault, the CG-FDM can model the rupture dynamics on a generic fault with complex geometry, including one with irregular surface topographies. 3. Results Previous investigations have indicated that a strike-slip earthquake rupture with a flat free surface would be accelerated into a supershear rupture, given a long enough propagating distance [Xu et al., 2015]. However, when the free surface is topographically irregular, the same strike-slip
Recommended publications
  • New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement
    Bulletin of the Seismological Society of America, Vol. 84, No. 4, pp. 974-1002, August 1994 New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement by Donald L. Wells and Kevin J. Coppersmith Abstract Source parameters for historical earthquakes worldwide are com­ piled to develop a series of empirical relationships among moment magnitude (M), surface rupture length, subsurface rupture length, downdip rupture width, rupture area, and maximum and average displacement per event. The resulting data base is a significant update of previous compilations and includes the ad­ ditional source parameters of seismic moment, moment magnitude, subsurface rupture length, downdip rupture width, and average surface displacement. Each source parameter is classified as reliable or unreliable, based on our evaluation of the accuracy of individual values. Only the reliable source parameters are used in the final analyses. In comparing source parameters, we note the fol­ lowing trends: (1) Generally, the length of rupture at the surface is equal to 75% of the subsurface rupture length; however, the ratio of surface rupture length to subsurface rupture length increases with magnitude; (2) the average surface dis­ placement per event is about one-half the maximum surface displacement per event; and (3) the average subsurface displacement on the fault plane is less than the maximum surface displacement but more than the average surface dis­ placement. Thus, for most earthquakes in this data base, slip on the fault plane at seismogenic depths is manifested by similar displacements at the surface. Log-linear regressions between earthquake magnitude and surface rupture length, subsurface rupture length, and rupture area are especially well correlated, show­ ing standard deviations of 0.25 to 0.35 magnitude units.
    [Show full text]
  • Earthquake Rupture on Multiple Splay Faults and Its Effect on Tsunamis
    manuscript submitted to Geophysical Research Letters 1 Earthquake rupture on multiple splay faults and its 2 effect on tsunamis 1;2 3 4 1;5 3 I. van Zelst , L. Rannabauer , A.-A. Gabriel , Y. van Dinther 1 4 Seismology and Wave Physics, Institute of Geophysics, Department of Earth Sciences, ETH Z¨urich, 5 Z¨urich, Switzerland 2 6 Institute of Geophysics and Tectonics, School of Earth and Environment, University of Leeds, Leeds, LS2 7 9JT, United Kingdom 3 8 Department of Informatics, Technical University of Munich, Munich, Germany 4 9 Geophysics, Department of Earth and Environmental Sciences, LMU Munich, Munich, Germany 5 10 Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands 11 Key Points: 12 • Multiple splay faults can be activated during an earthquake by slip on the megath- 13 rust, dynamic stress transfer, or stress changes from waves 14 • Splay fault activation is partially facilitated by their alignment with the local stress 15 field and closeness to failure 16 • The tsunami has a high crest due to slip on the longest splay fault and a second 17 broad wave packet due to slip on multiple smaller faults Corresponding author: Iris van Zelst, [email protected] / [email protected] {1{ manuscript submitted to Geophysical Research Letters 18 Abstract 19 Detailed imaging of accretionary wedges reveal complex splay fault networks which 20 could pose a significant tsunami hazard. However, the dynamics of multiple splay fault 21 activation and interaction during megathrust events and consequent effects on tsunami 22 generation are not well understood. We use a 2D dynamic rupture model with six com- 23 plex splay fault geometries consistent with initial stress and strength conditions constrained 24 by a geodynamic seismic cycle model.
    [Show full text]
  • The 2018 Mw 7.5 Palu Earthquake: a Supershear Rupture Event Constrained by Insar and Broadband Regional Seismograms
    remote sensing Article The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms Jin Fang 1, Caijun Xu 1,2,3,* , Yangmao Wen 1,2,3 , Shuai Wang 1, Guangyu Xu 1, Yingwen Zhao 1 and Lei Yi 4,5 1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; [email protected] (J.F.); [email protected] (Y.W.); [email protected] (S.W.); [email protected] (G.X.); [email protected] (Y.Z.) 2 Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China 3 Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China 4 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; [email protected] 5 Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China * Correspondence: [email protected]; Tel.: +86-27-6877-8805 Received: 4 April 2019; Accepted: 29 May 2019; Published: 3 June 2019 Abstract: The 28 September 2018 Mw 7.5 Palu earthquake occurred at a triple junction zone where the Philippine Sea, Australian, and Sunda plates are convergent. Here, we utilized Advanced Land Observing Satellite-2 (ALOS-2) interferometry synthetic aperture radar (InSAR) data together with broadband regional seismograms to investigate the source geometry and rupture kinematics of this earthquake. Results showed that the 2018 Palu earthquake ruptured a fault plane with a relatively steep dip angle of ~85◦.
    [Show full text]
  • Foreshock Sequences and Short-Term Earthquake Predictability on East Pacific Rise Transform Faults
    NATURE 3377—9/3/2005—VBICKNELL—137936 articles Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults Jeffrey J. McGuire1, Margaret S. Boettcher2 & Thomas H. Jordan3 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, and 2MIT-Woods Hole Oceanographic Institution Joint Program, Woods Hole, Massachusetts 02543-1541, USA 3Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-7042, USA ........................................................................................................................................................................................................................... East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominately aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion. On average, before large earthquakes occur, local seismicity rates support the inference of slow slip transients, but the subject remains show a significant increase1. In continental regions, where dense controversial23.
    [Show full text]
  • The Moment Magnitude and the Energy Magnitude: Common Roots
    The moment magnitude and the energy magnitude : common roots and differences Peter Bormann, Domenico Giacomo To cite this version: Peter Bormann, Domenico Giacomo. The moment magnitude and the energy magnitude : com- mon roots and differences. Journal of Seismology, Springer Verlag, 2010, 15 (2), pp.411-427. 10.1007/s10950-010-9219-2. hal-00646919 HAL Id: hal-00646919 https://hal.archives-ouvertes.fr/hal-00646919 Submitted on 1 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Click here to download Manuscript: JOSE_MS_Mw-Me_final_Nov2010.doc Click here to view linked References The moment magnitude Mw and the energy magnitude Me: common roots 1 and differences 2 3 by 4 Peter Bormann and Domenico Di Giacomo* 5 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 6 *Now at the International Seismological Centre, Pipers Lane, RG19 4NS Thatcham, UK 7 8 9 Abstract 10 11 Starting from the classical empirical magnitude-energy relationships, in this article the 12 derivation of the modern scales for moment magnitude M and energy magnitude M is 13 w e 14 outlined and critically discussed. The formulas for Mw and Me calculation are presented in a 15 way that reveals, besides the contributions of the physically defined measurement parameters 16 seismic moment M0 and radiated seismic energy ES, the role of the constants in the classical 17 Gutenberg-Richter magnitude-energy relationship.
    [Show full text]
  • Rupture Process of the 2019 Ridgecrest, California Mw 6.4 Foreshock and Mw 7.1 Earthquake Constrained by Seismic and Geodetic Data, Bull
    Rupture process of the 2019 Ridgecrest, M M California w 6.4 Foreshock and w 7.1 Earthquake Constrained by Seismic and Geodetic Data Kang Wang*1,2, Douglas S. Dreger1,2, Elisa Tinti3,4, Roland Bürgmann1,2, and Taka’aki Taira2 ABSTRACT The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California M since the 1999 w 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data M M to study the rupture process of both the 4 July w 6.4 foreshock and the 6 July w 7.1 main- M shock. The results show that the w 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral M slip. Although most moment release during the w 6.4 foreshock was along the southwest- striking fault, slip on the northwest-striking fault seems to have played a more important role M ∼ M in triggering the w 7.1 mainshock that happened 34 hr later. Rupture of the w 7.1 main- shock was characterized by dominantly right-lateral slip on a series of overall northwest- striking fault strands, including the one that had already been activated during the nucleation M ∼ of the w 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was 5m, – M located at a depth range of 3 8kmnearthe w 7.1 epicenter, corresponding to a shallow slip deficit of ∼ 20%–30%. Both the foreshock and mainshock had a relatively low-rupture veloc- ity of ∼ 2km= s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults.
    [Show full text]
  • This Article Was Published in an Elsevier Journal. the Attached Copy Is Furnished to the Author for Non-Commercial Research
    This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy ARTICLE IN PRESS Journal of the Mechanics and Physics of Solids 56 (2008) 25–50 www.elsevier.com/locate/jmps Transition of mode II cracks from sub-Rayleigh to intersonic speeds in the presence of favorable heterogeneity Yi Liua, Nadia Lapustab,Ã aDivision of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA bDivision of Engineering and Applied Science and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA Received 22 January 2007; received in revised form 8 June 2007; accepted 11 June 2007 Abstract Understanding sub-Rayleigh-to-intersonic transition of mode II cracks is a fundamental problem in fracture mechanics with important practical implications for earthquake dynamics and seismic radiation. In the Burridge–Andrews mechanism, an intersonic daughter crack nucleates, for sufficiently high prestress, at the shear stress peak traveling with the shear wave speed in front of the main crack.
    [Show full text]
  • Notice This Manuscript Is a Non-Peer Reviewed Preprint Submitted To
    Notice This manuscript is a non-peer reviewed preprint submitted to EarthArXiv. It has been submitted for publication to GRL on 01/10/2019 with reference number #2019GL085649. Newer versions may be moderately different with slight variations in content. Manuscript details Title: Does a damaged-fault zone mitigate the near-field impact of supershear earthquakes?—Application to the 2018 Mw 7.5 Palu earthquake Authors: Elif Oral, Huihui Weng and Jean-Paul Ampuero Contact: [email protected] manuscript submitted to Geophysical Research Letters 1 Does a damaged-fault zone mitigate the near-field 2 impact of supershear earthquakes?—Application to the 3 2018 Mw 7.5 Palu earthquake 1 1 1,2 4 Elif Oral , Huihui Weng , and Jean Paul Ampuero 1 5 Universit´eCˆote d’Azur, IRD, CNRS, Observatoire de la Cˆote d’Azur, G´eoazur, France 2 6 California Institute of Technology, Seismological Laboratory, Pasadena, CA, USA 7 Key Points: 8 • The unexpectedly low rupture speed of the 2018 Palu supershear earthquake can 9 be explained by a fault damage zone. 10 • The reduction of rupture speed by a fault damage zone mitigates the near-field 11 ground motion and landslide hazard. 12 • Fault zone waves amplify ground motions, but not enough to compensate for the 13 mitigation e↵ect of rupture speed. Corresponding author: Elif Oral, [email protected] –1– manuscript submitted to Geophysical Research Letters 14 Abstract 15 The impact of earthquakes can be severely aggravated by cascading secondary hazards. 16 The 2018 Mw 7.5 Palu, Indonesia earthquake led to devastating tsunamis and landslides, 17 while triggered submarine landslides possibly contributed substantially to generate the 18 tsunami.
    [Show full text]
  • Coherence of Mach Fronts During Heterogeneous Supershear Earthquake Rupture Propagation: Simulations and Comparison with Observations A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, B08301, doi:10.1029/2009JB006819, 2010 Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations A. Bizzarri,1 Eric M. Dunham,2,3 and P. Spudich4 Received 24 July 2009; revised 18 February 2010; accepted 25 February 2010; published 3 August 2010. [1] We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike‐slip fault embedded in a three‐dimensional, homogeneous, linear elastic half‐space. Ruptures propagate spontaneously in accordance with a linear slip‐weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3‐D homogeneous case, rupture fronts are curved owing to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008a). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008a): (1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. (2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an w−1.7 high frequency falloff in the FAS of ground displacement.
    [Show full text]
  • Laboratory Earthquakes
    International Journal of Fracture (2006) 138:211–218 DOI 10.1007/s10704-006-0030-6 © Springer 2006 Laboratory earthquakes ARES J. ROSAKIS1,∗, HIROO KANAMORI2 and KAIWEN XIA3 1Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125, USA 2Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA 3Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada ∗Author for correspondence (E-mail: [email protected]) Received 1 March 2005; accepted 1 December 2005 Abstract. We report on the experimental observation of the phenomenon of, spontaneously nucleated, supershear rupture and on the visualization of the mechanism of subRayleigh to supershear rupture transition in frictionally-held interfaces. The laboratory experiments mimic natural earthquakes. The results suggest that under certain conditions supershear rupture propagation can be facilitated during large earthquakes. Key words: Earthquake rupture, supershear, subRayleigh, transition. 1. Introduction Vertically dipping crustal faults are long pre-existing weak planes that extend tens of kilometers perpendicularly to the earth’s surface and often host catastrophic earth- quake rupture events. The geometry (planarity and length) of such faults is often sim- ple enough to apply appropriately modified concepts of dynamic fracture mechanics to the study of the physics underlying their rupture process. Due to the nature of earthquakes however, direct full field and real time observations of the rupture pro- cess are prohibited while even strong motion data have limitations of spatial resolu- tion. As a result, most efforts to date have focused on complicated analytical studies and on extensive numerical modeling of dynamic rupture processes using finite ele- ment, finite difference, and boundary element methods.
    [Show full text]
  • Earthquake Rupture Below the Brittle-Ductile Transition in Continental Lithospheric Mantle G.A
    Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle G.A. Prieto, B. Froment, C. Yu, P. Poli, R. Abercrombie To cite this version: G.A. Prieto, B. Froment, C. Yu, P. Poli, R. Abercrombie. Earthquake rupture below the brittle- ductile transition in continental lithospheric mantle. Science Advances , American Association for the Advancement of Science (AAAS), 2017, 3 (3), pp.e1602642. 10.1126/sciadv.1602642. hal-02546125 HAL Id: hal-02546125 https://hal.archives-ouvertes.fr/hal-02546125 Submitted on 25 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SCIENCE ADVANCES | RESEARCH ARTICLE GEOLOGY 2017 © The Authors, some rights reserved; Earthquake rupture below the brittle-ductile transition exclusive licensee American Association in continental lithospheric mantle for the Advancement of Science. Distributed 1 2 3,4 3 5 under a Creative Germán A. Prieto, * Bérénice Froment, Chunquan Yu, Piero Poli, Rachel Abercrombie Commons Attribution NonCommercial Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of tem- License 4.0 (CC BY-NC). perature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes.
    [Show full text]
  • Common Dependence on Stress for the Two Fundamental Laws of Statistical Seismology
    Vol 462 | 3 December 2009 | doi:10.1038/nature08553 LETTERS Common dependence on stress for the two fundamental laws of statistical seismology Cle´ment Narteau1, Svetlana Byrdina1,2, Peter Shebalin1,3 & Danijel Schorlemmer4 Two of the long-standing relationships of statistical seismology their respective aftershocks (JMA). To eliminate swarms of seismicity are power laws: the Gutenberg–Richter relation1 describing the in the different volcanic areas of Japan, we also eliminate all after- earthquake frequency–magnitude distribution, and the Omori– shock sequences for which the geometric average of the times from Utsu law2 characterizing the temporal decay of aftershock rate their main shocks is larger than 4 hours. Thus, we remove spatial following a main shock. Recently, the effect of stress on the slope clusters of seismicity for which no clear aftershock decay rate exist. (the b value) of the earthquake frequency–magnitude distribution In order to avoid artefacts arising from overlapping records, we was determined3 by investigations of the faulting-style depen- focus on aftershock sequences produced by intermediate-magnitude dence of the b value. In a similar manner, we study here aftershock main shocks, disregarding the large ones. For the same reason, we sequences according to the faulting style of their main shocks. We consider only the larger aftershocks and we stack them according to show that the time delay before the onset of the power-law after- the main-shock time to compensate for the small number of events in shock decay rate (the c value) is on average shorter for thrust main each sequence. Practically, two ranges of magnitudeÂÃ have to be M M shocks than for normal fault earthquakes, taking intermediate definedÂÃ for main shocks and aftershocks, Mmin, Mmax and A A values for strike-slip events.
    [Show full text]