Pseudophyllomitus Vesiculosus (Larsen and Patterson 1990) Lee, 2002, a Poorly Studied Phagotrophic Biflagellate Is the First

Total Page:16

File Type:pdf, Size:1020Kb

Pseudophyllomitus Vesiculosus (Larsen and Patterson 1990) Lee, 2002, a Poorly Studied Phagotrophic Biflagellate Is the First 1 Pseudophyllomitus vesiculosus (Larsen and Patterson 1990) Lee, 2002, a poorly studied 2 phagotrophic biflagellate is the first characterized member of stramenopile environmental 3 clade MAST-6 4 5 Takashi Shiratoria,1, Rabindra Thakurb, and Ken-ichiro Ishidaa 6 7 aFaculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 8 305-8572, Japan 9 b Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 10 Ibaraki 305-8572, Japan 11 12 Running title: A first characterized member of MAST-6 13 1Corresponding Author: Fax: +81 298 53 4533 E-mail: [email protected] (T. Shiratori) 1 1 Abstract 2 There are many eukaryotic lineages that exclusively composed of environmental sequences 3 and lack information about which species are included. Regarding stramenopiles, at least 18 4 environmental lineages, known as marine stramenopiles (MAST), have been recognized. 5 Since each MAST lineage forms deep branches in the stramenopiles, the characterization of 6 MAST members is key to understanding the diversity and evolution of stramenopiles. In 7 this study, we established a culture of Pseudophyllomitus vesiculosus, which is a poorly 8 studied phagotrophic flagellate of uncertain taxonomic position. Our molecular 9 phylogenetic analyses based on small subunit ribosomal RNA gene sequences robustly 10 supported the inclusion of P. vesiculosus in the MAST-6 clade. Our microscopic 11 observations indicated that P. vesiculosus shared characteristics with stramenopiles, 12 including an anterior flagellum that exhibits sinusoidal waves and bears tubular 13 mastigonemes. The flagellar apparatus of P. vesiculosus was also similar to other 14 stramenopiles in having a transitional helix and five microtubular roots (R1–R4 and S 15 tubules) including R2 that split into two bands. On the other hand, P. vesiculosus was 16 distinguished from other deep-branching stramenopiles by the combination of flagellar 17 apparatus characteristics. Based on the phylogenetic analyses and microscopic observations, 18 we established Pseudophyllomitidae fam. nov in stramenopiles. 19 Key words: flagellar apparatus; MAST; phylogenetic analysis; stramenopiles; 20 ultrastructure 2 1 Introduction 2 Environmental DNA surveys focusing on small subunit ribosomal RNA (SSU rRNA) gene 3 sequences have uncovered the great diversity of protists (Bass and Cavalier-Smith 2004; 4 Lara et al. 2009; Lopez-Garcia et al. 2001). These environmental DNA surveys have 5 revealed not only the cryptic diversity of previously described taxa (Cavalier-Smith and 6 Von der Heyden, 2007; Holzmann et al. 2003; Lara et al. 2009), but also novel 7 environmental lineages that could not be assigned to any described groups (Choi et al. 8 2017; Kim et al. 2016). Culture-independent studies, such as fluorescence in situ 9 hybridization (FISH) and single cell based genome sequencing are effective approaches to 10 characterize these environmental lineages, and the methods have provided important 11 information, including cell shape and size, presence or absence of plastids, and mode of 12 nutrition (Jones et al. 2011; Yoon et al. 2011). However, traditional culture-based 13 taxonomic studies are also important for improved characterization of these environmental 14 lineages (del Campo et al. 2016; Moreira and López-García 2014). This approach provides 15 detailed morphological and ultrastructural information that complements 16 culture-independent studies and aids our understanding of the ecological role and 17 evolutionary history of targeted organisms. 18 Stramenopiles are a large eukaryotic assemblage characterized by the presence of 19 tripartite or bipartite tubular hairs (mastigonemes) on the anterior flagellum, and the group 20 includes various organisms ranging from multicellular seaweeds (Phaeophyceae) and 21 parasitic or saprotrophic fungus-like organisms (e.g., Hyphochytrea and Oomycetes) to 22 diverse photosynthetic and heterotrophic protists (e.g., Bikosea, Chrysophyceae, and 3 1 Bacillariophyceae). The stramenopiles also include several environmental lineages that are 2 not classified in any described groups, which have been described as MArine 3 STramenopiles (MAST) or Mystery Heterokont (MH) (Massana et al. 2004; Orsi et al. 4 2011; Richards and Bass 2005). Massana et al. (2014) rearranged newly and previously 5 described environmental lineages into 18 MAST groups (MAST-1, -2, -3, -4, -6, -7, -8, -9, 6 -10, -11, -12, -16, -20, -21, -22, -23, -24, and -25) by excluding synonyms and lineages that 7 are represented by chimeric sequences. 8 Molecular phylogenetic analyses using SSU rRNA gene sequences indicated that 9 most MAST lineages formed deep branches within the stramenopiles (Cavalier-Smith and 10 Scoble 2013; Massana et al. 2014). Therefore, the characterization of MAST species is key 11 to understanding the diversity and evolution of stramenopiles. Investigations of MAST 12 species to date have been mainly performed using culture independent approaches. 13 Environmental DNA surveys showed that the abundance of MAST sequences reached 14 around 20% of total picoeukaryotes in the surface water of open oceans (Massana et al. 15 2004), while some MAST lineages were specific to anaerobic water column or sediment 16 (Massana et al. 2014). FISH experiments using lineage-specific oligonucleotide probes and 17 incubation experiments revealed approximate cell size, habitat, and the prey of some 18 MAST members (Kolodziej and Stoeck 2007; Massana et al. 2009; Piwosz and Pernthaler 19 2010). On the other hand, culture-dependent approaches for the identification of MAST 20 members have not been frequently performed and only a few MAST species have been 21 identified so far (MAST-3: Incisomonas marina and Solenicola setigera) (Cavalier-smith 22 and Scoble 2013; Gómez et al. 2011). 4 1 In this study, we established a culture of Pseudophyllomitus vesiculosus (strain 2 SRT537) from marine detritus on the tidal flat sediment of Amami Island, Okinawa, Japan. 3 Pseudophyllomitus is a genus of heterotrophic free-living flagellates established by Lee 4 (2002), and it includes four species that were reassigned from Phyllomitus based on 5 morphological differences. Pseudophyllomitus has a sac-shaped cell body and two 6 heterodynamic flagella that emerge from a subapical gullet or pocket (Lee 2002). Although 7 Pseudophyllomitus spp. were reported in field surveys of marine sediment samples (Aydin 8 and Lee 2012; Larsen and Patterson 1990; Lee 2015; Lee and Patterson 2000), molecular 9 and ultrastructural data of this genus are still unavailable, thus the taxonomic position is 10 uncertain. Our molecular phylogenetic analysis using SSU rRNA gene sequences showed 11 that P. vesiculosus is a member of the MAST-6. We also performed microscopic 12 observations of P. vesiculosus, and compared the morphology and ultrastructure with other 13 deep-branching stramenopiles for MAST-6 characterization. 14 5 1 Results 2 Light microscopic observation 3 The cells of P. vesiculosus strain SRT537 were flexible, sac-shaped, and slightly 4 dorsoventrally flattened (Fig. 1A, B). Cell length was 9.3–18.3 µm (13.58 ± 1.95 µm, n = 5 62), and the width was 6.3–12.4 µm (8.89 ± 1.31 µm, n = 62). Two flagella were inserted 6 subapically, and were arranged at a right angle (Fig. 1A–D). The anterior flagellum was 7 14.4–24.9 µm (19.31 ± 2.10 µm, n = 58), curved over the right side of the cell, and it 8 exhibited sinusoidal waves during swimming. The posterior flagellum was as long as or 9 slightly longer than the cell, and it trailed behind the cell body. Cells had many large 10 vesicles (approximately 1.1–2.4 µm in diameter) in the peripheral region (Fig. 1A–E). Cells 11 occasionally included lipid globules that were probably derived from prey diatoms (Fig. 1A, 12 B, D). A nucleus with a nucleolus was positioned at the center or slightly anterior region of 13 the cell (Fig. 1A, B). A rod or bar laid against anterior side of the nucleus (Fig. 1A). Cells 14 swam immediately above the substrate with attaching the tip of the posterior flagellum to 15 the substrate or in the water column with rotating movements. 16 Transmission electron microscopic observation 17 Whole-mount observation using a transmission electron microscope showed that P. 18 vesiculosus strain SRT537 had bipartite tubular mastigonemes on the anterior flagellum 19 (Fig. 1F). The tubular mastigoneme consisted of a shaft and a terminal filament (Fig. 1G, 20 H). The posterior flagellum was acronematic (Fig. 1F). 21 In ultrathin section observation, thin extensions were observed on the cell surface 22 (Fig, 2A). The extensions considered to be fixation artifacts because they were not 23 observed in light microscopy (Fig. 1A-E) and whole-mount observation (Fig. 1F) as well as 6 1 ultrathin section observation using chemical fixation specimen (not shown). Except for 2 the extensions, no appendages (e.g., cell wall, cell coat, and scales) were observed on cell 3 surface (Fig. 2A). A large nucleus with a conspicuous nucleolus was observed at the middle 4 to anterior region of the cell (Fig. 2A). A Golgi apparatus was located at the anterior region 5 of the cell, along the anterior side of the nucleus (Fig. 2A). Large vesicles that occasionally 6 contained amorphous inclusions were arranged along the peripheral region of the cell (Fig. 7 2A). Several round or oval mitochondrial profiles with tubular cristae were scattered 8 throughout the cell (Fig. 2A, B). Amorphous microbodies, including dense dots were 9 closely associated with the nucleus (Fig. 2C). The endoplasmic reticulum (ER) around the 10 nucleus included bunches of mastigonemes (Fig. 2D). Small vesicles containing electron 11 dense inclusions were observed just beneath the plasma membrane (Fig. 2E). 12 The flagellar transitional region had a dense transitional plate and a single 13 transitional helix with 10–12 gyros that were positioned at the distal side of the plate (Fig. 14 3A, B). Two basal bodies were arranged at approximately 70–90° (Fig. 3C, D). The basal 15 bodies were not in the same plane, and the right side of the posterior basal body was closely 16 associated with the left side of the anterior basal body (Fig.
Recommended publications
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Comprehensive Ecological and Geographic Characterization of Eukaryotic and Prokaryotic Microbiomes in African Anopheles
    fmicb-12-635772 May 10, 2021 Time: 12:13 # 1 ORIGINAL RESEARCH published: 12 May 2021 doi: 10.3389/fmicb.2021.635772 Comprehensive Ecological and Geographic Characterization of Eukaryotic and Prokaryotic Microbiomes in African Anopheles Eugeni Belda Cuesta1,2†, Boubacar Coulibaly3, Tullu Bukhari4, Karin Eiglmeier1,2, Raymond Kone5, Mamadou B. Coulibaly3, Soumanaba Zongo6, Mamadou Barry5, Edited by: Awa Gneme7, Wamdaogo M. Guelbeogo6, Abdoul H. Beavogui5, Sekou F. Traore3, Guido Favia, N’Fale Sagnon6, Kenneth D. Vernick1,2* and Michelle M. Riehle8* University of Camerino, Italy Reviewed by: 1 Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France, Sarah M. Short, 2 CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France, 3 Malaria Research The Ohio State University, and Training Centre, Faculty of Medicine and Dentistry, University of Mali, Bamako, Mali, 4 International Centre of Insect United States Physiology and Ecology, Department of Human Health. Nairobi, Kenya, 5 Centre de Formation et de Recherche en Santé Paolo Gabrieli, Rurale de Mafèrinyah, Conakry, Guinea, 6 Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, University of Milan, Italy Burkina Faso, 7 Département de Biologie et Physiologie Animales, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso, 8 Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States *Correspondence: Michelle M. Riehle [email protected] Exposure of mosquitoes to numerous eukaryotic and prokaryotic microbes in their Kenneth D. Vernick [email protected] associated microbiomes has probably helped drive the evolution of the innate immune †Present address: system. To our knowledge, a metagenomic catalog of the eukaryotic microbiome has Eugeni Belda Cuesta, not been reported from any insect.
    [Show full text]
  • Complex Communities of Small Protists and Unexpected Occurrence Of
    Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, Paola Bertolino, Purificación López-García To cite this version: Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, et al.. Complex communities of small protists and unexpected occurrence of typical marine lineages in shal- low freshwater systems. Environmental Microbiology, Society for Applied Microbiology and Wiley- Blackwell, 2015, 17 (10), pp.3610-3627. 10.1111/1462-2920.12591. hal-03022575 HAL Id: hal-03022575 https://hal.archives-ouvertes.fr/hal-03022575 Submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Europe PMC Funders Group Author Manuscript Environ Microbiol. Author manuscript; available in PMC 2015 October 26. Published in final edited form as: Environ Microbiol. 2015 October ; 17(10): 3610–3627. doi:10.1111/1462-2920.12591. Europe PMC Funders Author Manuscripts Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, Paola Bertolino, and Purificación López-García* Unité d’Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405 Orsay, France Summary Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well-known.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Proposal for Practical Multi-Kingdom Classification of Eukaryotes Based on Monophyly 2 and Comparable Divergence Time Criteria
    bioRxiv preprint doi: https://doi.org/10.1101/240929; this version posted December 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Proposal for practical multi-kingdom classification of eukaryotes based on monophyly 2 and comparable divergence time criteria 3 Leho Tedersoo 4 Natural History Museum, University of Tartu, 14a Ravila, 50411 Tartu, Estonia 5 Contact: email: [email protected], tel: +372 56654986, twitter: @tedersoo 6 7 Key words: Taxonomy, Eukaryotes, subdomain, phylum, phylogenetic classification, 8 monophyletic groups, divergence time 9 Summary 10 Much of the ecological, taxonomic and biodiversity research relies on understanding of 11 phylogenetic relationships among organisms. There are multiple available classification 12 systems that all suffer from differences in naming, incompleteness, presence of multiple non- 13 monophyletic entities and poor correspondence of divergence times. These issues render 14 taxonomic comparisons across the main groups of eukaryotes and all life in general difficult 15 at best. By using the monophyly criterion, roughly comparable time of divergence and 16 information from multiple phylogenetic reconstructions, I propose an alternative 17 classification system for the domain Eukarya to improve hierarchical taxonomical 18 comparability for animals, plants, fungi and multiple protist groups. Following this rationale, 19 I propose 32 kingdoms of eukaryotes that are treated in 10 subdomains. These kingdoms are 20 further separated into 43, 115, 140 and 353 taxa at the level of subkingdom, phylum, 21 subphylum and class, respectively (http://dx.doi.org/10.15156/BIO/587483).
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Protein secretion and encystation in Acanthamoeba Alvaro de Obeso Fernández del Valle Doctor of Philosophy The University of Edinburgh 2018 Abstract Free-living amoebae (FLA) are protists of ubiquitous distribution characterised by their changing morphology and their crawling movements. They have no common phylogenetic origin but can be found in most protist evolutionary branches. Acanthamoeba is a common FLA that can be found worldwide and is capable of infecting humans. The main disease is a life altering infection of the cornea named Acanthamoeba keratitis. Additionally, Acanthamoeba has a close relationship to bacteria. Acanthamoeba feeds on bacteria. At the same time, some bacteria have adapted to survive inside Acanthamoeba and use it as transport or protection to increase survival. When conditions are adverse, Acanthamoeba is capable of differentiating into a protective cyst.
    [Show full text]
  • Phylogenetic Position of Karotomorpha and Paraphyly of Proteromonadidae
    Molecular Phylogenetics and Evolution 43 (2007) 1167–1170 www.elsevier.com/locate/ympev Short communication Phylogenetic position of Karotomorpha and paraphyly of Proteromonadidae Martin Kostka a,¤, Ivan Cepicka b, Vladimir Hampl a, Jaroslav Flegr a a Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic b Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic Received 9 May 2006; revised 17 October 2006; accepted 2 November 2006 Available online 17 November 2006 1. Introduction tional region is alike that of proteromonadids as well, double transitional helix is present. These similarities led Patterson The taxon Slopalinida (Patterson, 1985) comprises two (1985) to unite the two families in the order Slopalinida and families of anaerobic protists living as commensals in the to postulate the paraphyly of the family Proteromonadidae intestine of vertebrates. The proteromonadids are small (Karotomorpha being closer to the opalinids). The ultrastruc- Xagellates (ca. 15 m) with one nucleus, a single large mito- ture of Xagellar transition region and proposed homology chondrion with tubular cristae, Golgi apparatus and a Wbril- between the somatonemes of Proteromonas and mastigo- lar rhizoplast connecting the basal bodies and nucleus nemes of heterokont Xagellates led him further to conclude (Brugerolle and Mignot, 1989). The number of Xagella diVers that the slopalinids are relatives of the heterokont algae, in between the two genera belonging to the family: Protero- other words that they belong among stramenopiles. Phyloge- monas, the commensal of urodelans, lizards, and rodents, has netic analysis of Silberman et al. (1996) not only conWrmed two Xagella, whereas Karotomorpha, the commensal of frogs that Proteromonas is a stramenopile, but also showed that its and other amphibians, has four Xagella.
    [Show full text]
  • Seven Gene Phylogeny of Heterokonts
    ARTICLE IN PRESS Protist, Vol. 160, 191—204, May 2009 http://www.elsevier.de/protis Published online date 9 February 2009 ORIGINAL PAPER Seven Gene Phylogeny of Heterokonts Ingvild Riisberga,d,1, Russell J.S. Orrb,d,1, Ragnhild Klugeb,c,2, Kamran Shalchian-Tabrizid, Holly A. Bowerse, Vishwanath Patilb,c, Bente Edvardsena,d, and Kjetill S. Jakobsenb,d,3 aMarine Biology, Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway bCentre for Ecological and Evolutionary Synthesis (CEES),Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway cDepartment of Plant and Environmental Sciences, P.O. Box 5003, The Norwegian University of Life Sciences, N-1432, A˚ s, Norway dMicrobial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway eCenter of Marine Biotechnology, 701 East Pratt Street, Baltimore, MD 21202, USA Submitted May 23, 2008; Accepted November 15, 2008 Monitoring Editor: Mitchell L. Sogin Nucleotide ssu and lsu rDNA sequences of all major lineages of autotrophic (Ochrophyta) and heterotrophic (Bigyra and Pseudofungi) heterokonts were combined with amino acid sequences from four protein-coding genes (actin, b-tubulin, cox1 and hsp90) in a multigene approach for resolving the relationship between heterokont lineages. Applying these multigene data in Bayesian and maximum likelihood analyses improved the heterokont tree compared to previous rDNA analyses by placing all plastid-lacking heterotrophic heterokonts sister to Ochrophyta with robust support, and divided the heterotrophic heterokonts into the previously recognized phyla, Bigyra and Pseudofungi. Our trees identified the heterotrophic heterokonts Bicosoecida, Blastocystis and Labyrinthulida (Bigyra) as the earliest diverging lineages.
    [Show full text]
  • Xanthophyta (Allorge Ex Fritsch 1935) and Bacillariophyta (Haeckel 1878)
    Euglena: 2013 Xanthophyta (Allorge ex Fritsch 1935) and Bacillariophyta (Haeckel 1878) are basal groups within Ochrophyta (Cavalier-Smith 1986) Hannah Airgood, Jason Long, Kody Hummel, Alyssa Cantalini, DeLeila Schriner Department of Biology, Susquehanna University, Selinsgrove, PA 17870. Abstract Xanthophyta and Bacillariophyta are phyla within Heterokontae. Our focus was to examine the topology of Ochrophyta, the photosynthetic heterokonts, especially the position of Xanthophyta and Bacillariophyta. Two similar 28S rRNA genes and a third 18S rRNA gene were used for molecular analysis, by maximum likelihood. Fucoxanthin in chloroplasts, symmetry, and number of flagella were the characters used for morphological analysis. We concluded that Xanthophyta is a basal group in Ochrophyta. Bacillariophyta were also shown to be basal within Ochrophyta after Xanthophyta. In our study we found a misidentified species. A third gene was used to confirm this misidentification. Please cite this article as: Airgood, H., J. Long, K. Hummel, A. Cantalini, and D. Schriner. 2013. Xanthophyta (Allorge ex Fritsch 1935) and Bacillariophyta (Haeckel 1878) are basal broups within Ochrophyta (Cavalier-Smith 1986). Euglena. doi:/euglena. 1(2): 43-51. Introduction phaeophytes as they state that they are sister groups Heterokontae (Cavalier-Smith 1986) based on fossil analysis of xanthophytes and includes the phylum Ochrophyta, which is a phaeophytes. Riisberg et al. (2009) show evidence of monophyletic group of photosynthetic taxa. The the diatoms being basal to all the groups analyzed united group is further divided into Xanthophyta and that xanthophyte was more recently derived. It is (Allorge ex Fritsch 1935), Phaeophyta (Kjellman important that there are some diatoms that have radial 1891), Raphidiophyta (Chadefaud 1950), symmetry, but the evolution of bilateral symmetry in Chrysophyta (Pascher 1914), Eustigmatophyta this group is significant (Holt and Iudica 2012).
    [Show full text]
  • Our Biased Perspective of Eukaryotic Genomes
    Opinion The others: our biased perspective of eukaryotic genomes 1,2 3 4 2 Javier del Campo , Michael E. Sieracki , Robert Molestina , Patrick Keeling , 5 1,6,7 Ramon Massana , and In˜ aki Ruiz-Trillo 1 Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Catalonia, Spain 2 University of British Columbia, Vancouver, BC, Canada 3 Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA 4 American Type Culture Collection, Manassas, VA, USA 5 Institut de Cie` ncies del Mar, CSIC, Barcelona, Catalonia, Spain 6 Departament de Gene` tica, Universitat de Barcelona, Barcelona, Catalonia, Spain 7 Institucio´ Catalana de Recerca i Estudis Avanc¸ats (ICREA), Barcelona, Catalonia, Spain Understanding the origin and evolution of the eukaryotic what eukaryotes even are, as well as their role in the cell and the full diversity of eukaryotes is relevant to environment. This bias is simple and widely recognized: many biological disciplines. However, our current under- most genomics focuses on multicellular eukaryotes and standing of eukaryotic genomes is extremely biased, their parasites. The problem is not exclusive to eukaryotes. leading to a skewed view of eukaryotic biology. We The launching of the so-called ‘Genomic Encyclopedia of argue that a phylogeny-driven initiative to cover the full Bacteria and Archaea’ [2] has begun to reverse a similar eukaryotic diversity is needed to overcome this bias. We bias within prokaryotes, but there is currently no equiva- encourage the community: (i) to sequence a representa- lent for eukaryotes. Targeted efforts have recently been tive of the neglected groups available at public culture initiated to increase the breadth of our genomic knowledge collections, (ii) to increase our culturing efforts, and (iii) for several specific eukaryotic groups, but again these tend to embrace single cell genomics to access organisms to focus on animals [3], plants [4], fungi [5], their parasites refractory to propagation in culture.
    [Show full text]