Operator Theory in Function Spaces, Second Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extreme and Exposed Representing Measures of the Disk Algebra
ANNALES POLONICI MATHEMATICI LXXIII.2 (2000) Extreme and exposed representing measures of the disk algebra by Alex Heinis (Leiden) and Jan Wiegerinck (Amsterdam) Abstract. We study the extreme and exposed points of the convex set consisting of representing measures of the disk algebra, supported in the closed unit disk. A boundary point of this set is shown to be extreme (and even exposed) if its support inside the open unit disk consists of two points that do not lie on the same radius of the disk. If its support inside the unit disk consists of 3 or more points, it is very seldom an extreme point. We also give a necessary condition for extreme points to be exposed and show that so-called BSZ-measures are never exposed. 1. Introduction and notational matters. In a previous paper [2] Brummelhuis and the second author studied representing measures for the disk algebra A = A(D)= {f ∈ C(D) | f is holomorphic on D}, where D is the unit disk in C. As usual A is endowed with the structure of a uniform algebra. Its spectrum equals D. That is, every homomorphism φ : A → C is of the form f 7→ f(x) for some x ∈ D. The Hahn–Banach theorem allows for a multitude of extensions of φ as a continuous linear functional on C(D). The dual space C(D)∗ can be identified with M, the space of complex Borel measures on D endowed with the weak∗ topology by the Riesz representation theorem. A representing measure µ for x ∈ D is a positive Borel measure on D such that \ f dµ = f(x) ∀f ∈ A. -
The Jacobson Radical of Semicrossed Products of the Disk Algebra
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 The aJ cobson radical of semicrossed products of the disk algebra Anchalee Khemphet Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Khemphet, Anchalee, "The aJ cobson radical of semicrossed products of the disk algebra" (2012). Graduate Theses and Dissertations. 12364. https://lib.dr.iastate.edu/etd/12364 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The Jacobson radical of semicrossed products of the disk algebra by Anchalee Khemphet A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Justin Peters, Major Professor Scott Hansen Dan Nordman Paul Sacks Sung-Yell Song Iowa State University Ames, Iowa 2012 Copyright c Anchalee Khemphet, 2012. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my father Pleng and to my mother Supavita without whose support I would not have been able to complete this work. I would also like to thank my friends and family for their loving guidance and to my government for financial assistance during the writing of this work. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS . v ABSTRACT . vi CHAPTER 1. -
Operator Theory in the C -Algebra Framework
Operator theory in the C∗-algebra framework S.L.Woronowicz and K.Napi´orkowski Department of Mathematical Methods in Physics Faculty of Physics Warsaw University Ho˙za74, 00-682 Warszawa Abstract Properties of operators affiliated with a C∗-algebra are studied. A functional calculus of normal elements is constructed. Representations of locally compact groups in a C∗-algebra are considered. Generaliza- tions of Stone and Nelson theorems are investigated. It is shown that the tensor product of affiliated elements is affiliated with the tensor product of corresponding algebras. 1 0 Introduction Let H be a Hilbert space and CB(H) be the algebra of all compact operators acting on H. It was pointed out in [17] that the classical theory of unbounded closed operators acting in H [8, 9, 3] is in a sense related to CB(H). It seems to be interesting to replace in this context CB(H) by any non-unital C∗- algebra. A step in this direction is done in the present paper. We shall deal with the following topics: the functional calculus of normal elements (Section 1), the representation theory of Lie groups including the Stone theorem (Sections 2,3 and 4) and the extensions of symmetric elements (Section 5). Section 6 contains elementary results related to tensor products. The perturbation theory (in the spirit of T.Kato) is not covered in this pa- per. The elementary results in this direction are contained the first author’s previous paper (cf. [17, Examples 1, 2 and 3 pp. 412–413]). To fix the notation we remind the basic definitions and results [17]. -
Of Operator Algebras Vern I
proceedings of the american mathematical society Volume 92, Number 2, October 1984 COMPLETELY BOUNDED HOMOMORPHISMS OF OPERATOR ALGEBRAS VERN I. PAULSEN1 ABSTRACT. Let A be a unital operator algebra. We prove that if p is a completely bounded, unital homomorphism of A into the algebra of bounded operators on a Hubert space, then there exists a similarity S, with ||S-1|| • ||S|| = ||p||cb, such that S_1p(-)S is a completely contractive homomorphism. We also show how Rota's theorem on operators similar to contractions and the result of Sz.-Nagy and Foias on the similarity of p-dilations to contractions can be deduced from this result. 1. Introduction. In [6] we proved that a homomorphism p of an operator algebra is similar to a completely contractive homomorphism if and only if p is completely bounded. It was known that if S is such a similarity, then ||5|| • ||5_11| > ||/9||cb- However, at the time we were unable to determine if one could choose the similarity such that ||5|| • US'-1!! = ||p||cb- When the operator algebra is a C*- algebra then Haagerup had shown [3] that such a similarity could be chosen. The purpose of the present note is to prove that for a general operator algebra, there exists a similarity S such that ||5|| • ||5_1|| = ||p||cb- Completely contractive homomorphisms are central to the study of the repre- sentation theory of operator algebras, since they are precisely the homomorphisms that can be dilated to a ^representation on some larger Hilbert space of any C*- algebra which contains the operator algebra. -
Semicrossed Products of the Disk Algebra: Contractive Representations and Maximal Ideals
pacific journal of mathematics Vol. 185, No. 1, 1998 SEMICROSSED PRODUCTS OF THE DISK ALGEBRA: CONTRACTIVE REPRESENTATIONS AND MAXIMAL IDEALS Dale R. Buske and Justin R. Peters Given the disk algebra A(D) and an automorphism α, there + is associated a non-self-adjoint operator algebra Z ×α A(D) called the semicrossed product of A(D) with α. We consider those algebras where the automorphism arises via composi- tion with parabolic, hyperbolic, and elliptic conformal maps ϕ of D onto itself. To characterize the contractive representa- + tions of Z ×α A(D), a noncommutative dilation result is ob- tained. The result states that given a pair of contractions S, T on some Hilbert space H which satisfy TS = Sϕ(T), there exist unitaries U, V on some Hilbert space K⊃Hwhich dilate S and T respectively and satisfy VU =Uϕ(V). It is then shown that there is a one-to-one correspondence between the contractive + (and completely contractive) representations of Z ×α A(D) on a Hilbert space H and pairs of contractions S and T on H satis- fying TS = Sϕ(T). The characters, maximal ideals, and strong + radical of Z ×α A(D) are then computed. In the last section, we compare the strong radical to the Jacobson radical. I. Introduction. A semicrossed product of the disk algebra is an operator algebra associated to the pair (A(D),α), where A(D) is the disk algebra and α an automor- phism of A(D). Any such α has the form α(f)=f◦ϕ(f∈A(D)) for a linear fractional transformation ϕ. -
Uniform Algebras As Banach Spaces
The Erwin Schrodinger International Boltzmanngasse ESI Institute for Mathematical Physics A Wien Austria Uniform Algebras as Banach Spaces TW Gamelin SV Kislyakov Vienna Preprint ESI June Supp orted by Federal Ministry of Science and Transp ort Austria Available via httpwwwesiacat UNIFORM ALGEBRAS AS BANACH SPACES TW Gamelin SV Kislyakov June Abstract Any Banach space can b e realized as a direct summand of a uniform algebra and one do es not exp ect an arbitrary uniform algebra to have an abundance of prop erties not common to all Banach spaces One general result concerning arbitrary uniform algebras is that no prop er uniform algebra is linearly homeomorphic to a C K space Nevertheless many sp ecic uniform algebras arising in complex analysis share or are susp ected to share certain Banach space prop erties of C K We discuss the family of tight algebras which includes algebras of analytic functions on strictly pseudo con vex domains and algebras asso ciated with rational approximation theory in the plane Tight algebras are in some sense close to C K spaces and along with C K spaces they have the Pelczynski and the DunfordPettis prop erties We also fo cus on certain prop erties of C K spaces that are inherited by the disk algebra This includes a dis p cussion of interp olation b etween H spaces and Bourgains extension of Grothendiecks theorem to the disk algebra We conclude with a brief description of linear deformations of uniform algebras and a brief survey of the known classication results Supp orted in part by the Russian -
Lower Bounds for the Ruelle Spectrum of Analytic Expanding Circle Maps
LOWER BOUNDS FOR THE RUELLE SPECTRUM OF ANALYTIC EXPANDING CIRCLE MAPS OSCAR F. BANDTLOW AND FRED´ ERIC´ NAUD Abstract. We prove that there exists a dense set of analytic expanding maps of the circle for which the Ruelle eigenvalues enjoy exponential lower bounds. The proof combines potential theoretic techniques and explicit calculations for the spectrum of expanding Blaschke products. 1. Introduction and statement One of the basic problems of smooth ergodic theory is to investigate the asymptotic behaviour of mixing systems. In particular, there is interest in precise quantitative results on the rate of decay of correlations for smooth observables. In his seminal paper [17], Ruelle showed that the long time asymptotic behaviour of analytic hyperbolic systems can be understood in terms of the Ruelle spectrum, that is, the spectrum of certain operators, known as transfer operators in this context, acting on suitable Banach spaces of holomorphic functions. Surprisingly, even for the simplest systems like analytic expanding maps of the circle, very few quantitative results on the Ruelle spectrum are known so far. Let us be more precise. With T denoting the unit circle in the complex plane C, a map τ : T ! T is said to be analytic expanding if τ has a holomorphic extension to a neighbourhood of T and we have inf jτ 0(z)j > 1 : z2T The Ruelle spectrum is commonly defined as the spectrum of the Perron-Frobenius or transfer operator (on a suitable space of holomorphic functions) given locally by d X 0 (Lτ f)(z) := !(τ) φk(z)f(φk(z)) ; (1) k=1 where φk denotes the k-th local inverse branch of the covering map τ : T ! T, and ( +1 if τ is orientation preserving; arXiv:1605.06247v1 [math.DS] 20 May 2016 !(τ) = (2) −1 if τ is orientation reversing. -
Computing the Singular Value Decomposition to High Relative Accuracy
Computing the Singular Value Decomposition to High Relative Accuracy James Demmel Department of Mathematics Department of Electrical Engineering and Computer Science University of California - Berkeley [email protected] Plamen Koev Department of Mathematics University of California - Berkeley [email protected] Structured Matrices In Operator Theory, Numerical Analysis, Control, Signal and Image Processing Boulder, Colorado June 27-July 1, 1999 Supported by NSF and DOE INTRODUCTION • High Relative Accuracy means computing the correct SIGN and LEADING DIGITS • Singular Value Decomposition (SVD): A = UΣV T where U, V are orthogonal, σ1 σ2 Σ = and σ1 ≥ σ2 ≥ . σn ≥ 0 .. . σn • GOAL: Compute all σi with high relative accuracy, even when σi σ1 • It all comes down to being able to compute determi- nants to high relative accuracy. Example: 100 by 100 Hilbert Matrix H(i, j) = 1/(i + j − 1) • Singular values range from 1 down to 10−150 • Old algorithm, New Algorithm, both in 16 digits Singular values of Hilb(100), blue = accurate, red = usual 0 10 −20 10 −40 10 −60 10 −80 10 −100 10 −120 10 −140 10 0 10 20 30 40 50 60 70 80 90 100 • D = log(cond(A)) = log(σ1/σn) (here D = 150) • Cost of Old algorithm = O(n3D2) • Cost of New algorithm = O(n3), independent of D – Run in double, not bignums as in Mathematica – New hundreds of times faster than Old • When does it work? Not for all matrices ... • Why bother? Why do we want tiny singular values accurately? 1. When they are determined accurately by the data • Hilbert: H(i, j) = 1/(i + j − 1) • Cauchy: C(i, j) = 1/(xi + yj) 2. -
Hypercomplex Analysis Selected Topics
Hypercomplex Analysis Selected Topics (Habilitation Thesis) Roman Lávička Field: Mathematics — Mathematical Analysis Faculty of Mathematics and Physics Charles University in Prague August 2011 Contents 1 Introduction 5 2 Preliminaries of hypercomplex analysis 11 2.1 Clifford analysis . 11 2.1.1 Euclidean Clifford analysis . 14 2.1.2 Generalized Moisil-Théodoresco systems . 14 2.1.3 Hermitian Clifford analysis . 16 2.2 Quaternionic analysis . 17 3 Complete orthogonal Appell systems 19 3.1 Spherical harmonics . 19 3.1.1 Gelfand-Tsetlin bases for spin modules . 21 3.2 Clifford algebra valued spherical monogenics . 22 3.3 Spinor valued spherical monogenics . 24 3.3.1 The generalized Appell property in dimension 3 . 27 3.4 Hodge-de Rham systems . 29 3.4.1 The Riesz system in dimension 3 . 33 3.5 Hermitian monogenics . 35 4 Finely monogenic functions 39 4.1 Finely holomorphic functions . 39 4.2 Finely monogenic functions . 41 4.3 Finely differentiable monogenic functions . 42 4.4 Open problems . 45 List of reprinted papers 47 Bibliography 49 [L1] Reversible maps in the group of quaternionic Möbius trans- formations 55 [L2] A generalization of monogenic functions to fine domains 71 [L3] A remark on fine differentiability 83 [L4] Finely continuously differentiable functions 91 [L5] The Gelfand-Tsetlin bases for spherical monogenics in di- mension 3 105 3 [L6] Canonical bases for sl(2,C)-modules of spherical monogen- ics in dimension 3 135 [L7] Orthogonal basis for spherical monogenics by step two branch- ing 149 [L8] The Fischer Decomposition for the H-action and Its Appli- cations 177 [L9] The Gelfand-Tsetlin bases for Hodge-de Rham systems in Euclidean spaces 189 [L10] Gelfand-Tsetlin Bases of Orthogonal Polynomials in Her- mitean Clifford Analysis 211 4 Chapter 1 Introduction Without any doubt, complex analysis belongs to the most important areas of mathematics. -
Variational Calculus of Supervariables and Related Algebraic Structures1
Variational Calculus of Supervariables and Related Algebraic Structures1 Xiaoping Xu Department of Mathematics, The Hong Kong University of Science & Technology Clear Water Bay, Kowloon, Hong Kong2 Abstract We establish a formal variational calculus of supervariables, which is a combination of the bosonic theory of Gel’fand-Dikii and the fermionic theory in our earlier work. Certain interesting new algebraic structures are found in connection with Hamiltonian superoperators in terms of our theory. In particular, we find connections between Hamiltonian superoperators and Novikov- Poisson algebras that we introduced in our earlier work in order to establish a tensor theory of Novikov algebras. Furthermore, we prove that an odd linear Hamiltonian superoperator in our variational calculus induces a Lie superalgebra, which is a natural generalization of the Super-Virasoro algebra under certain conditions. 1 Introduction Formal variational calculus was introduced by Gel’fand and Dikii [GDi1-2] in studying Hamiltonian systems related to certain nonlinear partial differential equation, such as the arXiv:math/9911191v1 [math.QA] 24 Nov 1999 KdV equations. Invoking the variational derivatives, they found certain interesting Pois- son structures. Moreover, Gel’fand and Dorfman [GDo] found more connections between Hamiltonian operators and algebraic structures. Balinskii and Novikov [BN] studied sim- ilar Poisson structures from another point of view. The nature of Gel’fand and Dikii’s formal variational calculus is bosonic. In [X3], we presented a general frame of Hamiltonian superoperators and a purely fermionic formal variational calculus. Our work [X3] was based on pure algebraic analogy. In this paper, we shall present a formal variational calculus of supervariables, which is a combination 11991 Mathematical Subject Classification. -
Spectral Theory of Composition Operators on Hardy Spaces of the Unit Disc and of the Upper Half-Plane
SPECTRAL THEORY OF COMPOSITION OPERATORS ON HARDY SPACES OF THE UNIT DISC AND OF THE UPPER HALF-PLANE UGURˇ GUL¨ FEBRUARY 2007 SPECTRAL THEORY OF COMPOSITION OPERATORS ON HARDY SPACES OF THE UNIT DISC AND OF THE UPPER HALF-PLANE A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY UGURˇ GUL¨ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS FEBRUARY 2007 Approval of the Graduate School of Natural and Applied Sciences Prof. Dr. Canan OZGEN¨ Director I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor of Philosophy. Prof. Dr. Zafer NURLU Head of Department This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy. Prof. Dr. Aydın AYTUNA Prof. Dr. S¸afak ALPAY Co-Supervisor Supervisor Examining Committee Members Prof. Dr. Aydın AYTUNA (Sabancı University) Prof. Dr. S¸afak ALPAY (METU MATH) Prof. Dr. Zafer NURLU (METU MATH) Prof. Dr. Eduard EMELYANOV (METU MATH) Prof. Dr. Murat YURDAKUL (METU MATH) I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : U˘gurG¨ul. Signature : abstract SPECTRAL THEORY OF COMPOSITION OPERATORS ON HARDY SPACES OF THE UNIT DISC AND OF THE UPPER HALF-PLANE G¨ul,Uˇgur Ph.D., Department of Mathematics Supervisor: Prof. -
Basic Sets of Special Monogenic Polynomials in Fréchet Modules
Hindawi Journal of Complex Analysis Volume 2017, Article ID 2075938, 11 pages https://doi.org/10.1155/2017/2075938 Research Article Basic Sets of Special Monogenic Polynomials in Fréchet Modules Gamal Farghaly Hassan,1,2 Lassaad Aloui,3 and Allal Bakali1 1 Department of Mathematics, Faculty of Sciences, Northern Border University, P.O. Box 1321, Arar, Saudi Arabia 2Faculty of Science, University of Assiut, Assiut 71516, Egypt 3Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis-El Manar, Tunis, Tunisia Correspondence should be addressed to Gamal Farghaly Hassan; [email protected] Received 20 June 2016; Revised 31 October 2016; Accepted 18 December 2016; Published 14 February 2017 Academic Editor: Konstantin M. Dyakonov Copyright © 2017 Gamal Farghaly Hassan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is concerned with the study of the theory of basic sets inFrechet´ modules in Clifford analysis. The main aim of this account, which is based on functional analysis consideration, is to formulate criteria of general type for the effectiveness (convergence properties) of basic sets either in the space itself or in a subspace of finer topology. By attributing particular forms for the Frechet´ module of different classes of functions, conditions are derived from the general criteria for the convergence properties in open and closed balls. Our results improve and generalize some known results in complex and Clifford setting concerning the effectiveness of basic sets. 1. Introduction aboutthestudyofbasicsetsofpolynomialsincomplexanal- ysis, we refer to [17–20].