Deubiquitinating ALDH1A3 Key to Maintaining the Culprit of Aggressive Brain Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Deubiquitinating ALDH1A3 Key to Maintaining the Culprit of Aggressive Brain Cancer Deubiquitinating ALDH1A3 key to maintaining the culprit of aggressive brain cancer Hiroaki Wakimoto J Clin Invest. 2019;129(5):1833-1835. https://doi.org/10.1172/JCI128742. Commentary Cancer stem cells sustain propagation of the deadly primary brain cancer glioblastoma. Glioblastoma stem cells (GSCs) characterized by a mesenchymal phenotype are aggressive and resistant to therapies and represent a crucial therapeutic target. In this issue of the JCI, Chen et al. show that the intracellular levels of aldehyde dehydrogenase 1A3 (ALDH1A3), known as a functional marker of mesenchymal GSCs, are regulated posttranslationally by ubiquitin-specific protease 9X– mediated (USP9X-mediated) deubiquitination. Increased expression of USP9X stabilizes ALDH1A3, enabling GSCs to exhibit mesenchymal traits and the malignant phenotype. Thus, the USP9X-ALDH1A3 axis may offer a novel therapeutic target in glioblastoma. Find the latest version: https://jci.me/128742/pdf The Journal of Clinical Investigation COMMENTARY Deubiquitinating ALDH1A3 key to maintaining the culprit of aggressive brain cancer Hiroaki Wakimoto Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. ical processes (6). What is unique about ALDH1A3 is that it serves as a functional Cancer stem cells sustain propagation of the deadly primary brain marker of mesenchymal GSCs, as well as cancer glioblastoma. Glioblastoma stem cells (GSCs) characterized by other cancer stem cells, because its actions a mesenchymal phenotype are aggressive and resistant to therapies directly contribute to the properties of and represent a crucial therapeutic target. In this issue of the JCI, Chen cancer stem cells and allow flow cytom- et al. show that the intracellular levels of aldehyde dehydrogenase 1A3 etry–based identification of cells with (ALDH1A3), known as a functional marker of mesenchymal GSCs, are high ALDH activity, i.e., ALDHbright cells, regulated posttranslationally by ubiquitin-specific protease 9X–mediated using the ALDEFLUOR assay. Therefore, (USP9X-mediated) deubiquitination. Increased expression of USP9X ALDH1A3 represents a prime therapeutic stabilizes ALDH1A3, enabling GSCs to exhibit mesenchymal traits and the target in mesenchymal GSCs. Cheng et al. malignant phenotype. Thus, the USP9X-ALDH1A3 axis may offer a novel modified a natural ALDH inhibitor, daid- therapeutic target in glioblastoma. zin, and developed a compound, GA11, that upon systemic administration dem- onstrated in vivo efficacy in mice bearing GSC-derived xenografts (7). Regulators Mesenchymal glioblastoma patients, glioblastoma has been widely that control ALDH1A3 expression include stem cells classified according to transcriptome- FOXD1, STAT3, K-ras, HGF/c-Met, and Despite much-improved understanding based gene expression signatures into miR-187/miR-125a/b (6), but whether of underlying molecular pathogenesis, proneural, neural, classical, and mesen- tar geting any of these would affect the glioblastoma remains one of the deadliest chymal glioblastoma (3). Reflecting this mesenchymal GSCs through inhibition solid cancers in the body. In spite of heterogeneity, GSCs exhibit contrasting of ALDH1A3 remains unknown. Given the latest multimodality treatment, the expression profiles, either proneural or the dearth of approaches to inhibiting median survival still remains at only 15 mesenchymal (4). In 2013, Mao et al. ALDH1A3, a deeper understanding of how to 18 months (1). Since the discovery of showed that mesenchymal GSCs were the protein levels of ALDH1A3 are reg- small subsets of neoplastic cells in glio- more aggressive in vivo and refractory ulated in mesenchymal GSCs is necessary blastoma with stem-like properties and to radiation therapy (4), identifying char- for therapeutically targeting this critical high tumorigenicity, glioblastoma stem acteristic GSC populations that may metabolic enzyme and pathway. cells (GSCs), often marked by CD133 or be enriched in recurrent glioblastoma Sox2, have constantly been a subject of through a phenomenon analogous to the Role of USP9X in human extensive laboratory and clinical research. “epithelial-to-mesenchymal transition.” mesenchymal GSCs GSCs sit at the top of the hierarchy of In line with the prior report that ALDH1 Chen and colleagues discovered a new functionally diverse tumor cells, and drive facilitated GSCs (5), high activity of alde- mechanism that controls the stability of and sustain tumor propagation (2). While hyde dehydrogenase 1A3 (ALDH1A3) ALDH1A3 in human glioblastoma cells (8). whether GSCs are generally more resis- drove active glycolytic metabolism that Through an siRNA screen of 98 deubiqui- tant to conventional therapies than the was critical for the maintenance of mes- tylating/deubiquitinating enzymes (DUBs), bulk tumor cells is controversial, there is enchymal GSCs (4). A member of the they identified ubiquitin-specific prote- a consensus that GSCs that survive radi- ALDH superfamily, ALDH1A3, along with ase 9X (USP9X) as a specific regulator of ation therapy and chemotherapy ulti- ALDH1A1, ALDH1A2, and ALDH8A1, ALDH1A3 in human mesenchymal GSCs. mately cause a relapse of glioblastoma for participates in the NAD+ dependent Upon interaction with ALDH1A3, USP9X which standard or effective therapy does oxidization of retinaldehyde to biosyn- removes Lys48-linked polyubiquitin chains not exist. Being genetically and pheno- thesize retinoic acid (RA) and plays a role of ALDH1A3, and increases ALDH1A3 typically highly heterogeneous between in a number of metabolic and physiolog- stability by averting its targeting to protea- somal degradation. USP9Xhigh GSCs have higher ALDH activity and a higher capabil- Related Article: p. 2043 ity to generate orthotopic gliomas in mice, as compared with USP9Xlow GSCs. Genetic Conflict of interest: HW has an institutional sponsored research agreement with Forma Therapeutics. Copyright: © 2019, American Society for Clinical Investigation. knockdown of USP9X reduces expression Reference information: J Clin Invest. 2019;129(5):1833–1835. https://doi.org/10.1172/JCI128742. of ALDH1A3 as well as a number of other jci.org Volume 129 Number 5 May 2019 1833 COMMENTARY The Journal of Clinical Investigation on JAK2 and found to downregulate Bcr/ Abl (18) and c-Myc (19). Subsequent studies attributed the pharmacological activity of WP1130 to its inhibition of the deubiquiti- nase activity of USP9X, USP5, USP14, and UCH37 (20). The partially selective deu- biquitinase inhibition by WP1130 has been explored for cancer therapy, as WP1130 exhibits anticancer effects both as mono- therapy and in combination with other modalities, such as chemotherapy, in pre- clinical models of a variety of cancer types, including glioblastoma (10, 11, 21). Chen and colleagues now provide a mechanistic insight and rationale for the therapeutic inhibition of USP9X in cancers driven or sustained by ALDH1A3, represented by mesenchymal GSCs and glioblastoma. Figure 1. USP9X stabilizes ALDH1A3 to maintain mesenchymal glioma stem cells. (A) In mesenchymal glioma stem cells, Lys48-linked polyubiquitination of ALDH1A3 is rapidly targeted by the deubiquitinat- Future directions ing enzyme USP9X, resulting in increased stability and high-level expression of ALDH1A3 that facilitates Despite the exciting scientific progress cancer stem cell phenotypes. (B) Deubiquitinating enzyme inhibitor (e.g., WP1130) blocks USP9X and allows targeting of polyubiquitinated ALDH1A3 to proteasome-mediated protein degradation, resulting enabled by this publication, however, in the loss of ALDH1A3 and cancer stem cell phenotypes. future research is necessary to address questions and challenges that remain unan- swered. First, the clinical development of mesenchymal markers such as CD44, C/ Inhibition of USP9X in the USP9X inhibitor will require improve- EBPβ, and TAZ, and impairs self-renewal ALDH1A3-driven cancers ments in selectivity and drug properties. and in vivo tumorigenicity of mesenchy- The work by Chen et al. thus showed that Peterson et al. developed a small mole- mal GSCs, validating the pivotal role of ALDH1A3 is indeed the principal facilitator cule inhibitor of USP9X, EOAI3402143, USP9X-ALDH1A3 axis in the maintenance of the stem-like and malignant characteris- that had better drug-like properties than of mesenchymal GSCs. Immunohistochem- tics of mesenchymal GSCs, confirming prior WP1130 and showed antimyeloma activity ical analysis of 138 clinical glioblastoma reports. Their work is, however, unique as (22). Second, as is the case with many oth- specimens revealed a positive correlation it for the first time identified a posttransla- er molecular targeted approaches, resis- between USP9X and ALDH1A3 staining, tional molecular mechanism that regulates tance to USP9X blockade may emerge. and an association of high tumor USP9X ALDH1A3; the deubiquitinase enzyme Indeed, USP9X knockdown leads to with poor survival outcomes in patients with USP9X promotes the stability of ALDH1A3 compensatory upregulation of USP24, a mesenchymal glioblastoma. Collectively, by removing “degrons” (linkage-specific deubiquitinase closely related to USP9X, the series of well-designed and executed degradation signals), preventing its degra- which is inhibited by EOAI3402143 (22). experiments presented in this elegant work dation by the proteasome (9). USP9X, also In the context of mesenchymal GSCs, loss allowed the authors to conclude that USP9X called FAM, is encoded by USP9X, located of mesenchymal identity may trigger
Recommended publications
  • (ALDH1A3) for the Maintenance of Non-Small Cell Lung Cancer Stem Cells Is Associated with the STAT3 Pathway
    Author Manuscript Published OnlineFirst on June 6, 2014; DOI: 10.1158/1078-0432.CCR-13-3292 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Essential role of aldehyde dehydrogenase 1A3 (ALDH1A3) for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway Chunli Shao1,2, James P. Sullivan3, Luc Girard1,2, Alexander Augustyn1,2, Paul Yenerall1,2, Jaime Rodriguez4, Hui Liu4, Carmen Behrens4, Jerry W. Shay5, Ignacio I. Wistuba4, John D. Minna 1,2,6,7 1Hamon Center for Therapeutic Oncology Research, 2Simmons Comprehensive Cancer Center, 3Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, 4Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77054, 5Department of Cell Biology, 6Department of Pharmacology, 7Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA. Running Title: ALDH1A3 in non-small cell lung cancer stem cells Keywords: Lung cancer, cancer stem cells, ALDH1A3, STAT3, Stattic Financial Support This project was supported by CPRIT, NCI SPORE P50CA70907, UTSW Cancer Center Support Grant 5P30-CA142543, and the Gillson-Longenbaugh Foundation. Address Correspondence: John D. Minna, M.D. 6000 Harry Hines Blvd Dallas, TX 75390-8593 Hamon Center for Therapeutic Oncology Research UT Southwestern Medical Center Phone: 214-648-4900; Fax: 214-648-4940 [email protected] Disclosure of Potential Conflict of Interest The authors indicate no potential conflicts of interest. Word count: 4583 Total number of figures and tables: 6 figures Downloaded from clincancerres.aacrjournals.org on September 28, 2021. © 2014 American Association for Cancer Research.
    [Show full text]
  • The Utility of Genetic Risk Scores in Predicting the Onset of Stroke March 2021 6
    DOT/FAA/AM-21/24 Office of Aerospace Medicine Washington, DC 20591 The Utility of Genetic Risk Scores in Predicting the Onset of Stroke Diana Judith Monroy Rios, M.D1 and Scott J. Nicholson, Ph.D.2 1. KR 30 # 45-03 University Campus, Building 471, 5th Floor, Office 510 Bogotá D.C. Colombia 2. FAA Civil Aerospace Medical Institute, 6500 S. MacArthur Blvd Rm. 354, Oklahoma City, OK 73125 March 2021 NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents thereof. _________________ This publication and all Office of Aerospace Medicine technical reports are available in full-text from the Civil Aerospace Medical Institute’s publications Web site: (www.faa.gov/go/oamtechreports) Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AM-21/24 4. Title and Subtitle 5. Report Date March 2021 The Utility of Genetic Risk Scores in Predicting the Onset of Stroke 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Diana Judith Monroy Rios M.D1, and Scott J. Nicholson, Ph.D.2 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 1 KR 30 # 45-03 University Campus, Building 471, 5th Floor, Office 510, Bogotá D.C. Colombia 11. Contract or Grant No. 2 FAA Civil Aerospace Medical Institute, 6500 S. MacArthur Blvd Rm. 354, Oklahoma City, OK 73125 12. Sponsoring Agency name and Address 13. Type of Report and Period Covered Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave., S.W.
    [Show full text]
  • ATAP00021-Recombinant Human ALDH1A1 Protein
    ATAGENIX LABORATORIES Catalog Number:ATAP00021 Recombinant Human ALDH1A1 protein Product Details Summary English name Recombinant Human ALDH1A1 protein Purity >90% as determined by SDS-PAGE Endotoxin level Please contact with the lab for this information. Construction A DNA sequence encoding the human ALDH1A1 (Met1-Ser501) was fused with His tag Accession # P00352 Host E.coli Species Homo sapiens (Human) Predicted Molecular Mass 52.58 kDa Formulation Supplied as solution form in PBS pH 7.5 or lyophilized from PBS pH 7.5. Shipping In general, proteins are provided as lyophilized powder/frozen liquid. They are shipped out with dry ice/blue ice unless customers require otherwise. Stability &Storage Use a manual defrost freezer and avoid repeated freeze thaw cycles. Store at 2 to 8 °C for one week . Store at -20 to -80 °C for twelve months from the date of receipt. Reconstitution Reconstitute in sterile water for a stock solution.A copy of datasheet will be provided with the products, please refer to it for details. Background Background Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), also known as Aldehyde dehydrogenase 1 (ALDH1), or Retinaldehyde Dehydrogenase 1 (RALDH1), is an enzyme that is expressed at high levels in stem cells and that has been suggested to regulate stem cell function. The retinaldehyde dehydrogenase (RALDH) subfamily of ALDHs, composed of ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1, regulate development by catalyzing retinoic acid biosynthesis. The ALDH1A1 protein belongs to the aldehyde dehydrogenases family of proteins. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. ALDH1A1 also belongs to the group of corneal crystallins that Web:www.atagenix.com E-mail: [email protected] Tel: 027-87433958 ATAGENIX LABORATORIES Catalog Number:ATAP00021 Recombinant Human ALDH1A1 protein help maintain the transparency of the cornea.
    [Show full text]
  • Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia
    Open Access Annals of Hematology & Oncology Research Article Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia Yi H, Deng R, Fan F, Sun H, He G, Lai S and Su Y* Department of Hematology, General Hospital of Chengdu Abstract Military Region, China Background: Acute myeloid leukemia is a heterogeneous disease. Identify *Corresponding author: Su Y, Department of the prognostic biomarker is important to guide stratification and therapeutic Hematology, General Hospital of Chengdu Military strategies. Region, Chengdu, 610083, China Method: We detected the expression level and the prognostic impact of Received: November 25, 2017; Accepted: January 18, each ALDH1 family members in AML by The Cancer Genome Atlas (TCGA) 2018; Published: February 06, 2018 database. Results: Upon 168 patients whose expression level of ALDH1 family members were available. We found that the level of ALDH1A1correlated to the prognosis of AML by the National Comprehensive Cancer Network (NCCN) stratification but not in other ALDH1 members. Moreover, we got survival data from 160 AML patients in TCGA database. We found that high ALDH1A1 expression correlated to poor Overall Survival (OS), mostly in Fms-like Tyrosine Kinase-3 (FLT3) mutated group. HighALDH1A2 expression significantly correlated to poor OS in FLT3 wild type population but not in FLT3 mutated group. High ALDH1A3 expression significantly correlated to poor OS in FLT3 mutated group but not in FLT3 wild type group. There was no relationship between the OS of AML with the level of ALDH1B1, ALDH1L1 and ALDH1L2. Conclusion: The prognostic impacts were different in each ALDH1 family members, which needs further investigation.
    [Show full text]
  • Mapping Aldehyde Dehydrogenase 1A1 Activity Using an [18F]Substrate-Based Approach Raul Pereira,[A] Thibault Gendron,[B] Chandan Sanghera,[A] Hannah E
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Birkbeck Institutional Research Online DOI: 10.1002/chem.201805473 Full Paper & Biochemistry Mapping Aldehyde Dehydrogenase 1A1 Activity using an [18F]Substrate-Based Approach Raul Pereira,[a] Thibault Gendron,[b] Chandan Sanghera,[a] Hannah E. Greenwood,[a] Joseph Newcombe,[b, c] Patrick N. McCormick,[a] Kerstin Sander,[b] Maya Topf,[c] Erik rstad,[b] and Timothy H. Witney*[a] Abstract: Aldehyde dehydrogenases (ALDHs) catalyze the focused library of compounds evaluated, N-ethyl-6-(fluoro)- oxidation of aldehydes to carboxylic acids. Elevated ALDH N-(4-formylbenzyl)nicotinamide 4b was found to have excel- expression in human cancers is linked to metastases and lent affinity and isozyme selectivity for ALDH1A1 in vitro. poor overall survival. Despite ALDH being a poor prognostic Following 18F-fluorination, [18F]4b was taken up by colorectal factor, the non-invasive assessment of ALDH activity in vivo tumor cells and trapped through the conversion to its 18F-la- has not been possible due to a lack of sensitive and transla- beled carboxylate product under the action of ALDH. In vivo tional imaging agents. Presented in this report are the syn- positron emission tomography revealed high uptake of thesis and biological evaluation of ALDH1A1-selective chemi- [18F]4b in the lungs and liver, with radioactivity cleared cal probes composed of an aromatic aldehyde derived from through the urinary tract. Oxidation of [18F]4b, however, was N,N-diethylamino benzaldehyde (DEAB) linked to a fluorinat- observed in vivo, which may limit the tissue penetration of ed pyridine ring either via an amide or amine linkage.
    [Show full text]
  • Overall Survival of Pancreatic Ductal Adenocarcinoma Is Doubled by Aldh7a1 Deletion in the KPC Mouse
    Overall survival of pancreatic ductal adenocarcinoma is doubled by Aldh7a1 deletion in the KPC mouse Jae-Seon Lee1,2*, Ho Lee3*, Sang Myung Woo4, Hyonchol Jang1, Yoon Jeon1, Hee Yeon Kim1, Jaewhan Song2, Woo Jin Lee4, Eun Kyung Hong5, Sang-Jae Park4, Sung- Sik Han4§§ and Soo-Youl Kim1§ 1Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Republic of Korea. 2Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea. 3Graduate School of Cancer Science and Policy, 4Department of Surgery, Center for Liver and Pancreatobiliary Cancer and 5Department of Pathology, National Cancer Center, Goyang, Republic of Korea. Correspondence §Corresponding author: [email protected] (S.-Y.K.) §§Co-corresponding author: [email protected] (S.-S.H.) *These authors contributed equally to this work 1 Abstract Rationale: The activity of aldehyde dehydrogenase 7A1 (ALDH7A1), an enzyme that catalyzes the lipid peroxidation of fatty aldehydes was found to be upregulated in pancreatic ductal adenocarcinoma (PDAC). ALDH7A1 knockdown significantly reduced tumor formation in PDAC. We raised a question how ALDH7A1 contributes to cancer progression. Methods: To answer the question, the role of ALDH7A1 in energy metabolism was investigated by knocking down and knockdown gene in mouse model, because the role of ALDH7A1 has been reported as a catabolic enzyme catalyzing fatty aldehyde from lipid peroxidation to fatty acid. Oxygen consumption rate (OCR), ATP production, mitochondrial membrane potential, proliferation assay and immunoblotting were performed. In in vivo study, two human PDAC cell lines were used for pre-clinical xenograft model as well as spontaneous PDAC model of KPC mice was also employed for anti-cancer therapeutic effect.
    [Show full text]
  • A Missense Mutation in ALDH1A3 Causes Isolated Microphthalmia/Anophthalmia in Nine Individuals from an Inbred Muslim Kindred
    European Journal of Human Genetics (2014) 22, 419–422 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg SHORT REPORT A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred Adi Mory1,2, Francesc X Ruiz3, Efrat Dagan2,4, Evgenia A Yakovtseva3, Alina Kurolap1, Xavier Pare´s3, Jaume Farre´s3 and Ruth Gershoni-Baruch*,1,2 Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein. European Journal of Human Genetics (2014) 22, 419–422; doi:10.1038/ejhg.2013.157; published online 24 July 2013 Keywords: ALDH1A3 gene; anophthalmia/microphthalmia; homozogosity mapping INTRODUCTION METHODS Anophthalmia and microphthalmia (A/M) are rare developmental Patients and families anomalies resulting in absent or small ocular globes, respectively.
    [Show full text]
  • Acquire a High Level of Retinoic Acid− Producing Capacity in Response to Vitamin D 3 This Information Is Current As of September 28, 2021
    Human CD1c+ Myeloid Dendritic Cells Acquire a High Level of Retinoic Acid− Producing Capacity in Response to Vitamin D 3 This information is current as of September 28, 2021. Takayuki Sato, Toshio Kitawaki, Haruyuki Fujita, Makoto Iwata, Tomonori Iyoda, Kayo Inaba, Toshiaki Ohteki, Suguru Hasegawa, Kenji Kawada, Yoshiharu Sakai, Hiroki Ikeuchi, Hiroshi Nakase, Akira Niwa, Akifumi Takaori-Kondo and Norimitsu Kadowaki Downloaded from J Immunol 2013; 191:3152-3160; Prepublished online 21 August 2013; doi: 10.4049/jimmunol.1203517 http://www.jimmunol.org/content/191/6/3152 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2013/08/21/jimmunol.120351 Material 7.DC1 References This article cites 41 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/191/6/3152.full#ref-list-1 by guest on September 28, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • CHD7 Represses the Retinoic Acid Synthesis Enzyme ALDH1A3 During Inner Ear Development
    CHD7 represses the retinoic acid synthesis enzyme ALDH1A3 during inner ear development Hui Yao, … , Shigeki Iwase, Donna M. Martin JCI Insight. 2018;3(4):e97440. https://doi.org/10.1172/jci.insight.97440. Research Article Development Neuroscience CHD7, an ATP-dependent chromatin remodeler, is disrupted in CHARGE syndrome, an autosomal dominant disorder characterized by variably penetrant abnormalities in craniofacial, cardiac, and nervous system tissues. The inner ear is uniquely sensitive to CHD7 levels and is the most commonly affected organ in individuals with CHARGE. Interestingly, upregulation or downregulation of retinoic acid (RA) signaling during embryogenesis also leads to developmental defects similar to those in CHARGE syndrome, suggesting that CHD7 and RA may have common target genes or signaling pathways. Here, we tested three separate potential mechanisms for CHD7 and RA interaction: (a) direct binding of CHD7 with RA receptors, (b) regulation of CHD7 levels by RA, and (c) CHD7 binding and regulation of RA-related genes. We show that CHD7 directly regulates expression of Aldh1a3, the gene encoding the RA synthetic enzyme ALDH1A3 and that loss of Aldh1a3 partially rescues Chd7 mutant mouse inner ear defects. Together, these studies indicate that ALDH1A3 acts with CHD7 in a common genetic pathway to regulate inner ear development, providing insights into how CHD7 and RA regulate gene expression and morphogenesis in the developing embryo. Find the latest version: https://jci.me/97440/pdf RESEARCH ARTICLE CHD7 represses the retinoic acid synthesis enzyme ALDH1A3 during inner ear development Hui Yao,1 Sophie F. Hill,2 Jennifer M. Skidmore,1 Ethan D. Sperry,3,4 Donald L.
    [Show full text]
  • ALDH2 Antibody (Center)
    BioVision 05/14 For research use only ALDH2 Antibody (Center) ALTERNATE NAMES: ALDH2; ALDM; Aldehyde dehydrogenase, mitochondrial; ALDH class 2; ALDH-E2; ALDHI. CATALOG #: 6748-100 AMOUNT: 100 µl HOST/ISOTYPE: Rabbit IgG Western blot analysis in A549 cell lysates and mouse liver and lung and rat liver IMMUNOGEN: This ALDH2 antibody is generated from rabbits immunized with tissue lysates (35 µg/lane). a KLH conjugated synthetic peptide between 318-347 amino acids from the Central region of human ALDH2. PURIFICATION: This antibody is purified through a protein A column, followed by peptide affinity purification. MOLECULAR WEIGHT: ~56.38 kDa FORM: Liquid FORMULATION: Supplied in PBS with 0.09% (W/V) sodium azide. SPECIES REACTIVITY: Human. Predicted cross reactivity with mouse and rat samples. STORAGE CONDITIONS: Maintain refrigerated at 2-8°C for up to 6 months. For long term storage, store at -20°C in small aliquots to prevent freeze-thaw cycles. Formalin-fixed and paraffin-embedded human hepatocarcinoma reacted with ALDH2 antibody, DESCRIPTION: ALDH2 (Aldehyde dehydrogenase 2 family) belongs to the aldehyde which was peroxidase-conjugated to the dehydrogenase family which catalyze the chemical transformation from acetaldehyde to secondary antibody, followed by DAB staining. acetic acid and is the second enzyme of the major oxidative pathway of alcohol metabolism. Aldehyde dehydrogenases (ALDHs) mediate NADP+-dependent oxidation of aldehydes into acids during detoxification of alcohol-derived acetaldehyde; lipid peroxidation; and metabolism of corticosteroids, biogenic amines and neurotransmitters. ALDH1A1, also designated retinal dehydrogenase 1 (RalDH1 or RALDH1); aldehyde dehydrogenase family 1 member A1; aldehyde dehydrogenase cytosolic; ALDHII; ALDH-E1 or ALDH E1, is a retinal dehydrogenase that participates in the biosynthesis of retinoic acid (RA).
    [Show full text]
  • Age-Dependent Protein Abundance of Cytosolic Alcohol and Aldehyde
    DMD Fast Forward. Published on June 12, 2017 as DOI: 10.1124/dmd.117.076463 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 76463 1 SHORT COMMUNICATION 2 Age-dependent protein abundance of cytosolic alcohol and aldehyde 3 dehydrogenases in human liver 4 5 Deepak Kumar Bhatt, Andrea Gaedigk, Robin E. Pearce, J. Steven Leeder and Bhagwat 6 Prasad 7 Downloaded from 8 Department of Pharmaceutics, University of Washington, Seattle, WA (D.K.B and B.P.) 9 Department of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s 10 Mercy-Kansas City, MO and School of Medicine, University of Missouri-Kansas City, Kansas dmd.aspetjournals.org 11 City, MO (R.E.P., A.G., J.S.L.) 12 at ASPET Journals on September 23, 2021 1 DMD Fast Forward. Published on June 12, 2017 as DOI: 10.1124/dmd.117.076463 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 76463 1 Running title: Hepatic age-dependent ADH and ALDH abundance 2 3 Corresponding author: Bhagwat Prasad, Ph.D.; Department of Pharmaceutics, University 4 of Washington, Seattle, WA 98195, Phone: (206) 221-2295, E-mail: [email protected] 5 Number of text pages: 9 6 Number of tables: 0 7 Number of figures: 2 8 Number of references: 32 Downloaded from 9 Number of words in Abstract: 205 (250) 10 Number of words in Introduction: 419 11 Number of words in Results and Discussion: 1113 dmd.aspetjournals.org 12 13 Abbreviations: Alcohol dehydrogenases (ADHs), aldehyde dehydrogenase (ALDH), 14 multiple reaction monitoring (MRM), liquid-chromatography coupled with tandem mass at ASPET Journals on September 23, 2021 15 spectrometry (LC-MS/MS), drug-metabolizing enzyme (DME) and human liver cytosol (HLC) 16 17 2 DMD Fast Forward.
    [Show full text]
  • Severe Osteoarthritis of the Hand Associates with Common Variants Within the ALDH1A2 Gene and with Rare Variants at 1P31
    Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Helgadottir, Hafdis T; Bomer, Nils; Metrustry, Sarah; Bierma-Zeinstra, S; Strijbosch, Annelieke M; Evangelou, Evangelos; Hart, Deborah; Beekman, Marian; Jonasdottir, Aslaug; Sigurdsson, Asgeir; Eiriksson, Finnur F; Thorsteinsdottir, Margret; Frigge, Michael L; Kong, Augustine; Gudjonsson, Sigurjon A; Magnusson, Olafur T; Masson, Gisli; Hofman, Albert; Arden, Nigel K; Ingvarsson, Thorvaldur; Lohmander, Stefan; Kloppenburg, Margreet; Rivadeneira, Fernando; Nelissen, Rob G H H; Spector, Tim; Uitterlinden, Andre; Slagboom, P Eline; Thorsteinsdottir, Unnur; Jonsdottir, Ingileif; Valdes, Ana M; Meulenbelt, Ingrid; van Meurs, Joyce; Jonsson, Helgi; Stefansson, Kari Published in: Nature Genetics DOI: 10.1038/ng.2957 2014 Link to publication Citation for published version (APA): Styrkarsdottir, U., Thorleifsson, G., Helgadottir, H. T., Bomer, N., Metrustry, S., Bierma-Zeinstra, S., Strijbosch, A. M., Evangelou, E., Hart, D., Beekman, M., Jonasdottir, A., Sigurdsson, A., Eiriksson, F. F., Thorsteinsdottir, M., Frigge, M. L., Kong, A., Gudjonsson, S. A., Magnusson, O. T., Masson, G., ... Stefansson, K. (2014). Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nature Genetics, 46(5), 498-502. https://doi.org/10.1038/ng.2957 Total number of authors: 36 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
    [Show full text]