Corynebacterium Glutamicum Towards Utilization of Methanol As Carbon and Energy Source

Total Page:16

File Type:pdf, Size:1020Kb

Corynebacterium Glutamicum Towards Utilization of Methanol As Carbon and Energy Source Health Gesundheit Engineering of Corynebacterium glutamicum towards utilization of methanol as carbon and energy source Sabrina Witthoff 78 Corynebacterium glutamicum Methanol utilization by utilization by Methanol Member of the Helmholtz Association Member of the Sabrina Witthoff Gesundheit / Health Gesundheit / Health Band/ Volume 78 Band/ Volume 78 ISBN 978-3-95806-029-6 ISBN 978-3-95806-029-6 Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health Band / Volume 78 Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences Biotechnology (IBG-1) Engineering of Corynebacterium glutamicum towards utilization of methanol as carbon and energy source Sabrina Witthoff Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health Band / Volume 78 ISSN 1866-1785 ISBN 978-3-95806-029-6 Bibliographic information published by the Deutsche Nationalbibliothek. The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Publisher and Forschungszentrum Jülich GmbH Distributor: Zentralbibliothek 52425 Jülich Tel: +49 2461 61-5368 Fax: +49 2461 61-6103 Email: [email protected] www.fz-juelich.de/zb Cover Design: Grafische Medien, Forschungszentrum Jülich GmbH Printer: Grafische Medien, Forschungszentrum Jülich GmbH Copyright: Forschungszentrum Jülich 2015 Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health, Band / Volume 78 D 61 (Diss. Düsseldorf, Univ., 2014) ISSN 1866-1785 ISBN 978-3-95806-029-6 The complete volume is freely available on the Internet on the Jülicher Open Access Server (JuSER) at www.fz-juelich.de/zb/openaccess. Neither this book nor any part of it may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. CONTENT I Content 1 Summary.............................................................................................................................................. 1 1.1 Summary English.......................................................................................................................... 1 1.2 Summary German......................................................................................................................... 3 2 Introduction........................................................................................................................................ 5 2.1 Methylotrophic metabolism........................................................................................................ 6 2.1.1 Oxidation of methylated substrates....................................................................................... 8 2.1.2 Oxidation of formaldehyde to CO2........................................................................................ 9 2.1.3 Assimilation of formaldehyde, CO2 and/or methylene-H4F................................................. 13 2.2 Corynebacterium glutamicum as potential platform organism for methanol-based fermentation processes.............................................................................................................. 17 2.3 Aims of this thesis....................................................................................................................... 19 3 Results................................................................................................................................................ 21 3.1 Corynebacterium glutamicum harbours a molybdenum cofactor- dependent formate dehydrogenase which alleviates growth inhibition in the presence of formate.............. 23 3.2 C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide................................................................................ 35 3.3 Metabolic engineering of Corynebacterium glutamicum for the metabolization of methanol ................................................................................................................................. 45 4 Discussion......................................................................................................................................... 63 4.1 Identification and characterization of the endogenous pathway for oxidation of methanol to CO2.......................................................................................................................... 65 4.1.1 Oxidation of methanol by C. glutamicum wild type............................................................... 65 4.1.2 Oxidation of formaldehyde by C. glutamicum wild type........................................................ 67 4.1.3 Oxidation of formate by C. glutamicum wild type.................................................................. 69 4.2 Engineering of C. glutamicum towards methanol utilization............................................... 71 4.2.1 Engineering of C. glutamicum towards an increased methanol oxidation rate....................... 72 4.2.2 Engineering of C. glutamicum wild type towards assimilation of formaldehyde................... 73 II CONTENT 4.2.3 Impact of the absence of the dissimilatory pathway for formaldehyde oxidation on the assimilation of methanol-derived carbon.................................................................... 76 4.3 Conclusion and Perspective...................................................................................................... 77 5 References......................................................................................................................................... 79 6 Appendix........................................................................................................................................... 89 6.1 Supplementary material to “Formate dehydrogenase from Corynebacterium glutamicum.................................................................................................................................... 89 6.2 Supplementary material to “Endogenous methanol oxidation in Corynebacterium glutamicum.................................................................................................................................... 96 6.3 Supplementary material to “Engineering of Corynebacterium glutamicum towards methanol utilization................................................................................................................. 107 6.4 Supplementary references....................................................................................................... 113 ABBREVIATIONS III Abbreviations Abbreviations for Système International d'Unités (SI units) of measurement, chemical symbols for the elements and common abbreviations according to international standards, as for example listed in the author guidelines of the “Applied and Environmental Microbiology” journal are not listed in this section. ATCC American type culture collection FDH formate dehydrogenase AT aminotransferase FGH S-Formyl-glutathione hydrolase BHI(S) brain heart infusion (+ Sorbitol) FMH S-Formyl-MSH hydrolase BGSC Bacillus Genetic Stock Center FTIR Fourier transform infrared spectroscopy CBB Calvin-Benson-Bassham fw forward CD conserved domain F6P fructose-6-phosphate CDW cell dry weight GAP glyceraldehyde-3-phosphate CH cyclohydrolase GC gas chromatography DAK dihydroxyacetone kinase GFA GSH-formaldehyde-activating enzyme DAS dihydroxyacetone synthase GK glycerate kinase DH dehydrogenase GSH glutathione DHase dehydratase GST glutathione S-transferase DHa dehalogenase G6P glucose-6-phosphate DHA(P) dihydroxyacetone (phosphate) G6PDH glucose-6-phosphate dehydrogenase DSMZ Deutsche Sammlung für HPLC high-performance liquid Mikroorganismen & Zellkulturen chromatography DMS dimethylsufide HPR hydroxypyruvate reductase DTT dithiothreitol HPS 3-hexulose-6-phosphate synthase EMCP ethylmalonyl-CoA pathway H4F tetrahydrofolate et al. et alii H4MPT tetrahydromethanopterin E4P erythrose-4-phosphate H6P hexulose-6-phosphate FADH formaldehyde dehydrogenase IPTG isopropyl-thio-β-D-galactopyranoside FAE formaldehyde activating enzyme KanR kanamycin resistance FBA FBP aldolase KDPG(A) 2-keto-3-deoxy-6-phosphogluconate aldolase FBP fructose-1,6-bisphosphate LB Luria-Bertani broth FBPase fructose-1,6-bisphosphatase MADH methylamine dehydrogenase IV ABBREVIATIONS MAOX methylamine oxidase Ru5P ribulose-5-phosphate MDH methanol dehydrogenase SHMT serine hydroxymethyl transferase MeOX methane oxidase SBP sedoheptulose-1,7-bisphosphate MNO methanol:N,N′-dimethyl-4- SBPase sedoheptulose bisphosphatase nitrosoaniline oxidoreductases MOX methanol oxidase S7P sedoheptulose-7-phosphate MSA methanesulfonic acid TAL transaldolase MSH mycothiol TetR tetracycline resistance NMPG N-methylglutamate pathway TKT transketolase NMN nicotinamide mononucleotide TPI triosephosphate isomerase OD600 optical density at 600 nm XuMP xylulose monophosphate OAA oxaloacetate X5P xylulose-5-phosphate PEP phoshoenolpyruvate Xox/Xred unknown cofactor (oxidized/reduced) PEPC PEP carboxylase ZTG Zelltrockengewicht PGI phosphoglucoisomerase PHI 6-phospho-3-hexuloisomerase PFK phosphofructokinase PPP pentose phosphate pathway PRI phosphoriboisomerase PQQ pyrroloquinoline quinone 23PG 2-,3-phosphoglycerate 6PG 6-phosphogluconate 6PGDH 6-phosphogluconate dehydrogenase 6PGDHase 6-phosphogluconate dehydratase 6PGL 6-phosphoglucolactone 6PGLase 6-phosphoglucolactonase
Recommended publications
  • Arxula Adeninivorans
    Biernacki et al. Microb Cell Fact (2017) 16:144 DOI 10.1186/s12934-017-0751-4 Microbial Cell Factories RESEARCH Open Access Enhancement of poly(3‑hydroxybutyrate‑co‑ 3‑hydroxyvalerate) accumulation in Arxula adeninivorans by stabilization of production Mateusz Biernacki1, Marek Marzec1,6, Thomas Roick2, Reinhard Pätz3, Kim Baronian4, Rüdiger Bode5 and Gotthard Kunze1* Abstract Background: In recent years the production of biobased biodegradable plastics has been of interest of research- ers partly due to the accumulation of non-biodegradable plastics in the environment and to the opportunity for new applications. Commonly investigated are the polyhydroxyalkanoates (PHAs) poly(hydroxybutyrate) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHB-V). The latter has the advantage of being tougher and less brittle. The production of these polymers in bacteria is well established but production in yeast may have some advantages, e.g. the ability to use a broad spectrum of industrial by-products as a carbon sources. Results: In this study we increased the synthesis of PHB-V in the non-conventional yeast Arxula adeninivorans by stabilization of polymer accumulation via genetic modifcation and optimization of culture conditions. An A. adenini- vorans strain with overexpressed PHA pathway genes for β-ketothiolase, acetoacetyl-CoA reductase, PHAs synthase and the phasin gene was able to accumulate an unexpectedly high level of polymer. It was found that an opti- 1 mized strain cultivated in a shaking incubator is able to produce up to 52.1% of the DCW of PHB-V (10.8 g L− ) with 12.3%mol of PHV fraction. Although further optimization of cultivation conditions in a fed-batch bioreactor led to lower polymer content (15.3% of the DCW of PHB-V), the PHV fraction and total polymer level increased to 23.1%mol 1 and 11.6 g L− respectively.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Yeasts of the Blastobotrys Genus Are Promising Platform for Lipid-Based
    Yeasts of the Blastobotrys genus are promising platform for lipid-based fuels and oleochemicals production Daniel Sanya, Djamila Onésime, Volkmar Passoth, Mrinal Maiti, Atrayee Chattopadhyay, Mahesh Khot To cite this version: Daniel Sanya, Djamila Onésime, Volkmar Passoth, Mrinal Maiti, Atrayee Chattopadhyay, et al.. Yeasts of the Blastobotrys genus are promising platform for lipid-based fuels and oleochemicals production. Applied Microbiology and Biotechnology, Springer Verlag, 2021, 105, pp.4879 - 4897. 10.1007/s00253-021-11354-3. hal-03274326 HAL Id: hal-03274326 https://hal.inrae.fr/hal-03274326 Submitted on 30 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Applied Microbiology and Biotechnology https://doi.org/10.1007/s00253-021-11354-3 MINI-REVIEW Yeasts of the Blastobotrys genus are promising platform for lipid-based fuels and oleochemicals production Daniel Ruben Akiola Sanya1 & Djamila Onésime1 & Volkmar Passoth2 & Mrinal K. Maiti3 & Atrayee Chattopadhyay3 & Mahesh B. Khot4 Received: 18 February 2021 /Revised: 29 April 2021 /Accepted: 16 May 2021 # The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Strains of the yeast genus Blastobotrys (subphylum Saccharomycotina) represent a valuable biotechnological resource for basic biochemistry research, single-cell protein, and heterologous protein production processes.
    [Show full text]
  • Investigation of Agonistic and Antagonistic Endocrine Activity During Full-Scale Ozonation of Waste Water
    Investigation of agonistic and antagonistic endocrine activity during full-scale ozonation of waste water Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften – Dr. rer. nat. – vorgelegt von Fabian Itzel geboren in Moers Fakultät für Chemie der Universität Duisburg-Essen 2018 Die vorliegende Arbeit wurde im Zeitraum von September 2014 bis September 2018 im Arbeitskreis von Prof. Dr. Torsten C. Schmidt in der Fakultät für Chemie im Bereich Instrumentelle Analytische Chemie der Universität Duisburg-Essen durchgeführt. Tag der Disputation: 21.02.2019 Gutachter: Prof. Dr. Torsten C. Schmidt Prof. Dr. Elke Dopp Vorsitzender: Prof. Dr. Bettina Siebers I Summary The use of a wide variety of chemicals in our society, such as industrial chemicals, pharmaceuticals, personal care products, etc., leads to pollution of surface waters. Especially in densely populated urban areas such as the Ruhr catchment, sustainable water management poses a major challenge. Despite intensive use through various types of discharges (effluents of direct dischargers, municipal waste water treatment plants, industry, etc.), good water quality has always to be guaranteed in accordance to the European Water Framewor Directive. Endocrine disrupting chemicals can have an effect on aquatic organisms even at very low concentrations (pg/L range). In order to reduce the emission, ozonation was investigated as advanced waste water treatment for the elimination of organic trace compounds. An elimination performance of ≥ 80% for selected substances at specific ozone doses in the range of zspec. = 0.3 - 0.7 mgO3/mgDOC was achieved. Since 2015, estrogens are listed on the watch-list of the European Water Framework Directive with required detection limits in the pg/L range.
    [Show full text]
  • Publications of the IBG-1 Research Group “Metabolic Regulation and Engineering” Heads: Prof
    Publications of the IBG-1 research group “Metabolic Regulation and Engineering” Heads: Prof. Dr. Michael Bott and Dr. Meike Baumgart -------------------------------------------------------------- 2020 ---------------------------------------------------------------- Spielmann A., Brack Y., van Beek H., Flachbart L., Sundermeyer L., Baumgart M. & Bott M., (2020) NADPH biosensor-based identification of an alcohol dehydrogenase variant with improved catalytic properties caused by a single charge reversal at the protein surface. AMB Express 10: 14. (http://dx.doi.org/10.1186/s13568-020-0946-7) Wolf N., Bussmann M., Koch-Koerfges A., Katcharava N., Schulte J., Polen T., Hartl J., Vorholt J.A., Baumgart M. & Bott M., (2020) Molecular basis of growth inhibition by acetate of an adenylate cyclase-deficient mutant of Corynebacterium glutamicum. Front. Microbiol. 11. (http://dx.doi.org/10.3389/fmicb.2020.00087) -------------------------------------------------------------- 2019 ---------------------------------------------------------------- Davoudi C.F., Ramp P., Baumgart M. & Bott M., (2019) Identification of Surf1 as an assembly factor of the cytochrome bc1-aa3 supercomplex of Actinobacteria. Biochim Biophys Acta Bioenerg 1860: 148033. (http://dx.doi.org/10.1016/j.bbabio.2019.06.005) Kallscheuer N., Menezes R., Foito A., da Silva M.H., Braga A., Dekker W., Sevillano D.M., Rosado-Ramos R., Jardim C., Oliveira J., Ferreira P., Rocha I., Silva A.R., Sousa M., Allwood J.W., Bott M., Faria N., Stewart D., Ottens M., Naesby M., Nunes Dos Santos C. & Marienhagen J., (2019) Identification and microbial production of the raspberry phenol salidroside that Is active against Huntington's disease. Plant Physiol. 179: 969-985. (http://dx.doi.org/10.1104/pp.18.01074) Kortmann M., Baumgart M. & Bott M., (2019) Pyruvate carboxylase from Corynebacterium glutamicum: purification and characterization.
    [Show full text]
  • Enzymatic Properties of a Member (AKR1C19) of the Aldo-Keto Reductase Family
    June 2005 Notes Biol. Pharm. Bull. 28(6) 1075—1078 (2005) 1075 Enzymatic Properties of a Member (AKR1C19) of the Aldo-Keto Reductase Family Shuhei ISHIKURA, Kenji HORIE, Masaharu SANAI, Kengo MATSUMOTO, and Akira HARA* Laboratory of Biochemistry, Gifu Pharmaceutical University; Mitahora-higashi, Gifu 502–8585, Japan. Received January 31, 2005; accepted March 1, 2005 A member (AKR1C19) of the aldo-keto reductase (AKR) superfamily, found by mouse genomic analysis, was shown to be highly expressed in the liver and gastrointestinal tract, but its function remains unknown. In this study, the recombinant AKR1C19 was expressed and purified to homogeneity. The enzyme was a 36-kDa monomer, and reduced a-dicarbonyl compounds such as camphorquinone and isatin using both NADH and NADPH as the coenzymes. Although apparent kinetic constants for the two coenzymes were similar, the NADPH-linked activity was potently inhibited by submillimolar concentrations of NAD؉, but the inhibition of the NADH-linked activity was not significant, suggesting that the enzyme exhibits the NADH-linked reductase activity in vivo. AKR1C19 slowly oxidized 3-hydroxyhexobarbital, S-indan-1-ol and cis-benzene dihydrodiol, but was inactive towards steroids, prostaglandins, monosaccharides, and other xenobiotic alcohols. In addition, the enzyme was inhibited only by dicumarol, lithocholic acid and genistein of various compounds tested. Thus, AKR1C19 possesses properties distinct from other members of the AKR superfamily, and may function as a re- ductase for endogenous isatin and xenobiotic a-dicarbonyl compounds in the liver and gastrointestinal tract. Key words aldo-keto reductase superfamily; AKR1C19; dual coenzyme specificity; isatin; 3-hydroxyhexobarbital dehydroge- nase The aldo-keto reductase (AKR) superfamily is a rapidly Dr.
    [Show full text]
  • WO 2013/184908 A2 12 December 2013 (12.12.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/184908 A2 12 December 2013 (12.12.2013) P O P C T (51) International Patent Classification: Jr.; One Procter & Gamble Plaza, Cincinnati, Ohio 45202 G06F 19/00 (201 1.01) (US). HOWARD, Brian, Wilson; One Procter & Gamble Plaza, Cincinnati, Ohio 45202 (US). (21) International Application Number: PCT/US20 13/044497 (74) Agents: GUFFEY, Timothy, B. et al; c/o The Procter & Gamble Company, Global Patent Services, 299 East 6th (22) Date: International Filing Street, Sycamore Building, 4th Floor, Cincinnati, Ohio 6 June 2013 (06.06.2013) 45202 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 61/656,218 6 June 2012 (06.06.2012) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicant: THE PROCTER & GAMBLE COMPANY HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, [US/US]; One Procter & Gamble Plaza, Cincinnati, Ohio KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 45202 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (72) Inventors: XU, Jun; One Procter & Gamble Plaza, Cincin SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, nati, Ohio 45202 (US).
    [Show full text]
  • Development of an Enzyme-Based Method for Production of Food with Low Purine Content
    Development of an enzyme-based method for production of food with low purine content I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Dagmara Jankowska geboren am 27. Juni 1984 in Wrocław, Polen - Greifswald, 2013 - Dekan: Prof. Dr. Klaus Fesser 1. Gutachter : Prof. Dr. habil. Rϋdiger Bode Universität Greifswald, Institut für Biochemie 2. Gutachter: Prof. Dr. Raffael Schaffrath Universität Kassel, Institut für Biologie Tag der Promotion: 14.04.2014 Table of contents TABLE OF CONTENTS Summary ............................................................................................................................ i Zusammenfassung ............................................................................................................ iii List of abbreviations .......................................................................................................... v 1 Introduction .................................................................................................................. 1 1.1 Purine degradation pathway ........................................................................................ 1 1.1.1 Purines .............................................................................................................. 1 1.1.2 Purine degradation ..........................................................................................
    [Show full text]
  • (-)-Oleocanthal As a Dual C-MET-COX2 Inhibitor for The
    nutrients Article (−)-Oleocanthal as a Dual c-MET-COX2 Inhibitor for the Control of Lung Cancer Abu Bakar Siddique 1 , Phillip C.S.R. Kilgore 2, Afsana Tajmim 1 , Sitanshu S. Singh 1 , Sharon A. Meyer 1, Seetharama D. Jois 1, Urska Cvek 2, Marjan Trutschl 2 and Khalid A. El Sayed 1,* 1 School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; [email protected] (A.B.S.); [email protected] (A.T.); [email protected] (S.S.S.); [email protected] (S.A.M.); [email protected] (S.D.J.) 2 Department of Computer Science, Louisiana State University Shreveport, Shreveport, LA 71115, USA; [email protected] (P.C.S.R.K.); [email protected] (U.C.); [email protected] (M.T.) * Correspondence: [email protected]; Tel.: +1-318-342-1725 Received: 14 May 2020; Accepted: 9 June 2020; Published: 11 June 2020 Abstract: Lung cancer (LC) represents the topmost mortality-causing cancer in the U.S. LC patients have overall poor survival rate with limited available treatment options. Dysregulation of the mesenchymal epithelial transition factor (c-MET) and cyclooxygenase 2 (COX2) initiates aggressive LC profile in a subset of patients. The Mediterranean extra-virgin olive oil (EVOO)-rich diet already documented to reduce multiple malignancies incidence. (-)-Oleocanthal (OC) is a naturally occurring phenolic secoiridoid exclusively occurring in EVOO and showed documented anti-breast and other cancer activities via targeting c-MET. This study shows the novel ability of OC to suppress LC progression and metastasis through dual targeting of c-MET and COX-2.
    [Show full text]
  • Supplementary Material
    Supplementary material Figure S1. Cluster analysis of the proteome profile based on qualitative data in low and high sugar conditions. Figure S2. Expression pattern of proteins under high and low sugar cultivation of Granulicella sp. WH15 a) All proteins identified in at least two out of three replicates (excluding on/off proteins). b) Only proteins with significant change t-test p=0.01. 2fold change is indicated by a red line. Figure S3. TigrFam roles of the differentially expressed proteins, excluding proteins with unknown function. Figure S4. General overview of up (red) and downregulated (blue) metabolic pathways based on KEGG analysis of proteome. Table S1. growth of strain Granulicella sp. WH15 in culture media supplemented with different carbon sources. Carbon Source Growth Pectin - Glycogen - Glucosamine - Cellulose - D-glucose + D-galactose + D-mannose + D-xylose + L-arabinose + L-rhamnose + D-galacturonic acid - Cellobiose + D-lactose + Sucrose + +=positive growth; -=No growth. Table S2. Total number of transcripts reads per sample in low and high sugar conditions. Sample ID Total Number of Reads Low sugar (1) 15,731,147 Low sugar (2) 12,624,878 Low sugar (3) 11,080,985 High sugar (1) 11,138,128 High sugar (2) 9,322,795 High sugar (3) 10,071,593 Table S3. Differentially up and down regulated transcripts in high sugar treatment. ORF Annotation Log2FC GWH15_14040 hypothetical protein 3.71 GWH15_06005 hypothetical protein 3.12 GWH15_00285 tRNA-Asn(gtt) 2.74 GWH15_06010 hypothetical protein 2.70 GWH15_14055 hypothetical protein 2.66
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Xylitol Enhances Synthesis of Propionate in the Colon Via Cross-Feeding of Gut Microbiota
    Xiang et al. Microbiome (2021) 9:62 https://doi.org/10.1186/s40168-021-01029-6 RESEARCH Open Access Xylitol enhances synthesis of propionate in the colon via cross-feeding of gut microbiota Shasha Xiang1†, Kun Ye1†, Mian Li2, Jian Ying3, Huanhuan Wang4,5, Jianzhong Han1, Lihua Shi2, Jie Xiao3, Yubiao Shen6, Xiao Feng1, Xuan Bao1, Yiqing Zheng1, Yin Ge1, Yalin Zhang1, Chang Liu7, Jie Chen1, Yuewen Chen1, Shiyi Tian1 and Xuan Zhu1* Abstract Background: Xylitol, a white or transparent polyol or sugar alcohol, is digestible by colonic microorganisms and promotes the proliferation of beneficial bacteria and the production of short-chain fatty acids (SCFAs), but the mechanism underlying these effects remains unknown. We studied mice fed with 0%, 2% (2.17 g/kg/day), or 5% (5.42 g/kg/day) (weight/weight) xylitol in their chow for 3 months. In addition to the in vivo digestion experiments in mice, 3% (weight/volume) (0.27 g/kg/day for a human being) xylitol was added to a colon simulation system (CDMN) for 7 days. We performed 16S rRNA sequencing, beneficial metabolism biomarker quantification, metabolome, and metatranscriptome analyses to investigate the prebiotic mechanism of xylitol. The representative bacteria related to xylitol digestion were selected for single cultivation and co-culture of two and three bacteria to explore the microbial digestion and utilization of xylitol in media with glucose, xylitol, mixed carbon sources, or no- carbon sources. Besides, the mechanisms underlying the shift in the microbial composition and SCFAs were explored in molecular contexts. Results: In both in vivo and in vitro experiments, we found that xylitol did not significantly influence the structure of the gut microbiome.
    [Show full text]