Walks, Transitions and Geometric Distances in Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Walks, Transitions and Geometric Distances in Graphs THESE` pr´esent´ee `a L’UNIVERSITE´ DE BORDEAUX ECOLE´ DOCTORALE DE MATHEMATIQUES´ ET D’INFORMATIQUE par Thomas Bellitto POUR OBTENIR LE GRADE DE DOCTEUR SPECIALIT´ E´ : INFORMATIQUE Walks, Transitions and Geometric Distances in Graphs. Soutenue publiquement le 27 aoˆut2018 apr`es avis des rapporteurs : Jørgen Bang-Jensen, Professeur, University of Southern Denmark Sylvain Gravier, Directeur de recherche, Universit´eJoseph Fourier devant la commission d’examen compos´ee de : Christine Bachoc, professeure, Universit´ede Bordeaux, directrice de th`ese Jørgen Bang-Jensen, professeur, University of Southern Denmark, rapporteur Sylvain Gravier, directeur de recherche, Universit´eJoseph Fourier, rapporteur Mickael Montassier, professeur, Universit´ede Montpellier, examinateur Arnaud Pecherˆ , professeur, Universit´ede Bordeaux, directeur de th`ese Eric´ Sopena, professeur, Universit´ede Bordeaux, pr´esident du jury 2018 Walks, Transitions and Geometric Distances in Graphs. Abstract This thesis studies combinatorial, algorithmic and complexity aspects of graph theory problems, and especially of problems related to the notions of walks, transitions and distances in graphs. We first study the problem of traffic monitoring, in which we have to place as few censors as possible on the arcs of a graph to be able to retrace walks of objects. The characterization of instances of practical interests brings us to the notion of forbidden transitions, which strengthens the model of graphs. Our work on forbidden-transition graphs also includes the study of connecting transition sets, which can be seen as a translation to forbidden-transition graphs of the notion of spanning trees. A large part of this thesis focuses on geometric graphs, which are graphs whose vertices are points of the real space and whose edges are determined by geometric distance between the vertices. This graphs are at the core of the famous Hadwiger- Nelson problem and are of great help in our study of the density of sets avoiding distance 1 in various normed spaces. We develop new tools to study these problems and use them to prove the Bachoc-Robins conjecture on several parallelohedra. We also investigate the case of the Euclidean plane and improve the bounds on the density of sets avoiding distance 1 and on its fractional chromatic number. Finally, we study the complexity of graph homomorphism problems and estab- lish dichotomy theorems for the complexity of locally-injective homomorphisms to reflexive tournaments. Keywords Graphs, walks, forbidden transitions, graph homomorphisms, indepen- dence number, geometric distances, sets avoiding distance 1, NP-completeness Affiliation University of Bordeaux, CNRS, LaBRI, UMR 5800, F-33400 Talence, France Walks, Transitions and Geometric Distances in Graphs. iii iv Thomas Bellitto Marches, Transitions et Distances G´eom´etriques dans les Graphes. R´esum´e Cette th`ese ´etudie les aspects combinatoires, algorithmiques et la complexit´ede probl`emes de th´eorie des graphes, et tout sp´ecialement de probl`emes li´es aux notions de marches, de transitions et de distance dans les graphes. Nous nous int´eressons d’abord au probl`eme de traffic monitoring, qui consiste `a placer aussi peu de capteurs que possible sur les arcs d’un graphe de fa¸con `apouvoir reconstituer des marches d’objets. La caract´erisation d’instances int´eressantes dans la pratique nous am`ene `ala notion de transitions interdites, qui renforce le mod`ele de graphe. Notre travail sur les graphes `atransitions interdites comprend aussi l’´etude de la notion d’ensemble de transitions connectant, que l’on peut voir comme l’analogue en terme de transitions de la notion d’arbre couvrant. Une partie importante de cette th`ese porte sur les graphes g´eom´etriques, qui sont des graphes dont les sommets sont des points de l’espace r´eel et dont les arˆetes sont d´etermin´ees par les distances g´eom´etriques entre les sommets. Ces graphes sont au cœur du c´el`ebre probl`eme de Hadwiger-Nelson et nous sont d’une grande aide dans notre ´etude de la densit´edes ensembles qui ´evitent la distance 1 dans plusieurs types d’espaces norm´es. Nous d´eveloppons des outils pour ´etudier ces probl`emes et les utilisons pour prouver la conjecture de Bachoc-Robins sur plusieurs parall´elo`edres. Nous nous penchons aussi sur le cas du plan euclidien et am´eliorons les bornes sur la densit´edes ensembles ´evitant la distance 1 et sur son nombre chromatique fractionnaire. Enfin, nous ´etudions la complexit´ede probl`emes d’homomorphismes de graphes et ´etablissons des th´eor`emes de dichotomie sur la complexit´edes homomorphismes localement injectifs vers les tournois r´eflexifs. Mots-cl´es Graphes, marches, transitions interdites, homomorphismes de graphes, nombre de stabilit´e, distances g´eometriques, ensemble ´evitant la distance 1, NP- compl´etude Affiliation Universit´ede Bordeaux, CNRS, LaBRI, UMR 5800, F-33400 Talence, France Walks, Transitions and Geometric Distances in Graphs. v vi Thomas Bellitto Acknowledgements Je commence bien sˆur cette section par un tr`es grand merci `a Arnaud, qui m’encadre depuis mon stage de master et qui m’a ´enorm´ement aid´e`atrouver ce que je voulais faire et `aarriver l`ao`uj’en suis. Merci pour ton soutien, ton aide et tes conseils dans tellement de domaines : la recherche, l’enseignement, la r´edaction, la recherche de stages puis de postdocs, les candidatures... Merci aussi pour ta confi- ance et la libert´eque tu m’as laiss´ee pendant ma th`ese pour trouver les probl`emes sur lesquels je voulais travailler et les directions que je voulais explorer. Merci surtout pour tout le temps que tu as toujours r´eussi `atrouver dans ton emploi du temps charg´epour ´ecouter, relire et essayer de comprendre mes id´ees tordues. Un grand merci aussi `aChristine, qui m’a beaucoup aid´e`aenrichir mon domaine de recherche, qui m’a fait d´ecouvrir des probl`emes passionnants et qui m’a ´enorm´ement aid´e`ales relier `ace que je savais faire et `apartir dans la bonne direction. I also thank Sylvain Gravier and Jørgen Bang-Jensen for accepting to read the manuscript and Eric´ Sopena and Mickael Montassier for being part of the jury. I would also like to thank Jørgen Bang-Jensen again and Anders Yeo for choosing me for an open postdoc position in their team. I am really excited for this next important step of my journey. Of course, I would like to thank my co-authors and all the people I have worked with and without whose ideas this thesis would probably never have existed. Arnaud et Christine, une fois encore. Philippe, mon fr`ere de th`ese, avec qui ¸ca a toujours ´et´eun grand plaisir de travailler ou de discuter. Gary, of course; I had an amazing time in Victoria thanks to you and you have done a lot to help me since. Thank you to my other co-authors from Victoria too: Chris, Stefan and Feiran. Merci `a Benjamin avec qui j’ai beaucoup aim´etravailler et ´echanger. Merci aussi `aAntoine avec qui ¸ca a ´et´eun plaisir de travailler ces derniers mois. Thank you to my previous advisors: Gunnar Klau, Tobias Marschall, Alexander Sch¨onhuth, David Coudert, Nicolas Nisse and Endre Boros. Merci ´evidemment `atoute l’´equipe de th´eorie des graphes du LaBRI pour de nombreux ´echanges passionnants et pour un cadre de travail et une ambiance tr`es agr´eables. Merci aussi `amon ´equipe INRIA, R´ealopt, et `a mes co-bureaux, Henri et Th´eo. Merci `aHerv´eet `atoute l’´equipe de Maths `aModeler pour cette exp´erience tr`es enrichissante. Un grand merci aussi `atous mes coll`egues d’´equipes p´edagogiques. Je pense vii notamment `aCarole, Olivier, Feri et Cyril avec qui ¸ca a ´et´eun grand plaisir de travailler. Merci aussi `atous ceux que j’ai oubli´es et qui m’ont aid´e`a arriver l`ao`uje suis aujourd’hui. Merci `atous mes amis, du labo et d’ailleurs. Un ´enorme merci tout partic- uli`erement `aTh´eo et Antonin pour leur soutien et pour tous les bons moments pass´es ensemble ces derni`eres ann´ees. Merci enfin `ama famille et surtout `ama m`ere et mon fr`ere pour leur soutien inconditionnel depuis toutes ces ann´ees. viii Thomas Bellitto Contents Introduction 9 1 Preliminaries 17 1.1 Fundamentals of graph theory ...................... 18 1.1.1 Core definitions .......................... 18 1.1.2 Homomorphisms and colouring ................. 23 1.1.3 Special vertex sets ........................ 26 1.1.4 Hypergraphs ........................... 28 1.2 Elements of complexity ......................... 30 1.2.1 P, NP and polynomial reductions ................ 30 1.2.2 3-SAT and NP-completeness .................. 31 1.2.3 Approximations .......................... 33 1.3 Walks, connectivity and transitions ................... 33 1.3.1 Walks and connectivity in usual graphs ............ 33 1.3.2 Forbidden-transition graphs ................... 36 1.4 Polytopes and lattices .......................... 38 1.4.1 Norms and distances ....................... 38 1.4.2 Lattices .............................. 40 1.4.3 Polytopes ............................. 41 1.4.4 Classification of the parallelohedra in dimension 2 and 3 . 43 1.5 Rational languages and automata .................... 45 1.5.1 Rational languages ........................ 46 1.5.2 Automata and recognition .................... 47 1.6 Linear programming ........................... 50 1.6.1 Definitions ............................ 50 1.6.2 Integer linear programming ................... 52 2 Separating codes and traffic monitoring 55 2.1 Introduction ................................ 55 2.2 The traffic monitoring problem ..................... 56 2.2.1 Definition ............................. 56 2.2.2 Limitations of the existing separation models ......... 57 2.3 A new model of separation: separation on a language ......... 59 2.3.1 Presentation of the problem ................... 59 2.3.2 Expressiveness of the model ................... 59 ix CONTENTS 2.4 Separation of a finite set of walks .................... 60 2.5 Separation of walks with given endpoints ..............
Recommended publications
  • Critical Group Structure from the Parameters of a Strongly Regular
    CRITICAL GROUP STRUCTURE FROM THE PARAMETERS OF A STRONGLY REGULAR GRAPH. JOSHUA E. DUCEY, DAVID L. DUNCAN, WESLEY J. ENGELBRECHT, JAWAHAR V. MADAN, ERIC PIATO, CHRISTINA S. SHATFORD, ANGELA VICHITBANDHA Abstract. We give simple arithmetic conditions that force the Sylow p-subgroup of the critical group of a strongly regular graph to take a specific form. These conditions depend only on the pa- rameters (v,k,λ,µ) of the strongly regular graph under consider- ation. We give many examples, including how the theory can be used to compute the critical group of Conway’s 99-graph and to give an elementary argument that no srg(28, 9, 0, 4) exists. 1. Introduction Given a finite, connected graph Γ, one can construct an interesting graph invariant K(Γ) called the critical group. This is a finite abelian group that captures non-trivial graph-theoretic information of Γ, such as the number of spanning trees of Γ; precise definitions are given in Section 2. This group K(Γ) goes by several other names in the lit- erature (e.g., the Jacobian group and the sandpile group), reflecting its appearance in several different areas of mathematics and physics; see [15] for a good introduction and [12] for a recent survey. Corre- spondingly, the critical group can be presented and studied by various arXiv:1910.07686v1 [math.CO] 17 Oct 2019 methods. These methods include analysis of chip-firing games on the vertices of Γ [13], framing the critical group in terms of the free group on the directed edges of Γ subject to some natural relations [7], com- puting (e.g., via unimodular row/column operators) the Smith normal form of a Laplacian matrix of the graph, and considering the underlying matroid of Γ [19].
    [Show full text]
  • The Unit Distance Graph Problem and Equivalence Relations
    Math/CCS 103 Professor: Padraic Bartlett Lecture 11: The Unit Distance Graph Week 8 UCSB 2014 (Source: \The Mathematical Coloring Book," by Alexander Soifer.) 1 The Unit Distance Graph Problem 2 Definition. Consider the following method for turning R into a graph: 2 • Vertices: all points in R . • Edges: connect any two points (a; b) and (c; d) iff the distance between them is exactly 1. This graph is called the unit distance graph. Visualizing this is kinda tricky | it's got an absolutely insane number of vertices and edges. However, we can ask a question about it: Question. How many colors do we need in order to create a proper coloring of the unit distance graph? So: the answer isn't immediately obvious (right?) Instead, what we're going to try to do is just bound the possible answers, to get an idea of what the answers might be. How can we even bound such a thing? Well: to get a lower bound, it suffices to consider finite graphs G that we can draw in the plane using only straight edges of length 1. Because 2 our graph on R must contain any such graph \inside" of itself, examining these graphs will give us some easy lower bounds! So, by examining a equilateral triangle T , which has χ(T ) = 3, we can see that 2 χ(R ) ≥ 3: This is because it takes three colors to color an equilateral triangle's vertices in such a way that no edge has two endpoints of the same color. Similarly, by examining the following pentagonal construction (called a Moser spindle,) 1 we can actually do one better and say that 2 χ(R ) ≥ 4: Verify for yourself that you can't color this graph with three colors! 2 Conversely: to exhibit an upper bound on χ(R ) of k, it suffices to create a way of \painting" the plane with k-colors in such a way that no two points distance 1 apart get the same color.
    [Show full text]
  • SAT Approach for Decomposition Methods
    SAT Approach for Decomposition Methods DISSERTATION submitted in partial fulfillment of the requirements for the degree of Doktorin der Technischen Wissenschaften by M.Sc. Neha Lodha Registration Number 01428755 to the Faculty of Informatics at the TU Wien Advisor: Prof. Stefan Szeider Second advisor: Prof. Armin Biere The dissertation has been reviewed by: Daniel Le Berre Marijn J. H. Heule Vienna, 31st October, 2018 Neha Lodha Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Erklärung zur Verfassung der Arbeit M.Sc. Neha Lodha Favoritenstrasse 9, 1040 Wien Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 31. Oktober 2018 Neha Lodha iii Acknowledgements First and foremost, I would like to thank my advisor Prof. Stefan Szeider for guiding me through my journey as a Ph.D. student with his patience, constant motivation, and immense knowledge. His guidance helped me during the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor. Next, I would like to thank my co-advisor Prof. Armin Biere, my reviewers, Prof. Daniel Le Berre and Dr. Marijn Heule, and my Ph.D. committee, Prof. Reinhard Pichler and Prof. Florian Zuleger, for their insightful comments, encouragement, and patience.
    [Show full text]
  • ON EXTREMAL SIZES of LOCALLY K-TREE GRAPHS 1
    Czechoslovak Mathematical Journal, 60 (135) (2010), 571–587 ON EXTREMAL SIZES OF LOCALLY k-TREE GRAPHS Mieczys law Borowiecki, Zielona Góra, Piotr Borowiecki, Gda´nsk, Elzbieta˙ Sidorowicz, Zielona Góra, Zdzis law Skupien´, Kraków (Received August 24, 2008) Abstract. A graph G is a locally k-tree graph if for any vertex v the subgraph induced by the neighbours of v is a k-tree, k > 0, where 0-tree is an edgeless graph, 1-tree is a tree. We characterize the minimum-size locally k-trees with n vertices. The minimum-size connected locally k-trees are simply (k + 1)-trees. For k > 1, we construct locally k-trees which are maximal with respect to the spanning subgraph relation. Consequently, the number of 2 edges in an n-vertex locally k-tree graph is between Ω(n) and O(n ), where both bounds are asymptotically tight. In contrast, the number of edges in an n-vertex k-tree is always linear in n. Keywords: extremal problems, local property, locally tree, k-tree MSC 2010 : 05C35 1. Introduction The graphs G = (V, E) considered in this paper are finite and simple, i.e., undi- rected, loopless and without multiple edges. Let P be a family of graphs. A graph G is said to satisfy local property P if for all v ∈ V (G) we have G[N(v)] ∈P, where N(v) denotes the neighbourhood of v and G[S] stands for the subgraph induced by S ⊆ V (G). The graphs with local property P for |P| =1 have been studied by many authors.
    [Show full text]
  • Eindhoven University of Technology BACHELOR on the K-Independent
    Eindhoven University of Technology BACHELOR On the k-Independent Set Problem Koerts, Hidde O. Award date: 2021 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain On the k-Independent Set Problem Hidde Koerts Supervised by Aida Abiad February 1, 2021 Hidde Koerts Supervised by Aida Abiad Abstract In this thesis, we study several open problems related to the k-independence num- ber, which is defined as the maximum size of a set of vertices at pairwise dis- tance greater than k (or alternatively, as the independence number of the k-th graph power). Firstly, we extend the definitions of vertex covers and cliques to allow for natural extensions of the equivalencies between independent sets, ver- tex covers, and cliques.
    [Show full text]
  • A Proof of Tomescu's Graph Coloring Conjecture
    A proof of Tomescu’s graph coloring conjecture Jacob Fox,∗ Xiaoyu He,† Freddie Manners‡ October 23, 2018 Abstract In 1971, Tomescu conjectured that every connected graph G on n vertices with chromatic number n−k k ≥ 4 has at most k!(k − 1) proper k-colorings. Recently, Knox and Mohar proved Tomescu’s conjecture for k = 4 and k = 5. In this paper, we complete the proof of Tomescu’s conjecture for all k ≥ 4, and show that equality occurs if and only if G is a k-clique with trees attached to each vertex. 1 Introduction Let k be a positive integer and G = (V, E) be a graph1.A proper k-coloring, or simply a k-coloring, of G is a function c : V → [k] (here [k] = {1, . , k}) such that c(u) 6= c(v) whenever uv ∈ E. The chromatic number χ(G) is the minimum k for which there exists a k-coloring of G. Let PG(k) denote the number of k-colorings of G. This function is a polynomial in k and is thus called the chromatic polynomial of G. In 1912, Birkhoff [5] introduced the chromatic polynomial for planar graphs in an attempt to solve the Four Color Problem using tools from analysis. The chromatic polynomial was later defined and studied for general graphs by Whitney [41]. Despite a great deal of attention over the past century, our understanding of the chromatic polynomial is still quite poor. In particular, proving general bounds on the chromatic polynomial remains a major challenge. The first result of this type, due to Birkhoff [6], states that n−3 PG(k) ≥ k(k − 1)(k − 2)(k − 3) for any planar graph G on n vertices and any real number k ≥ 5.
    [Show full text]
  • Toward a Unit Distance Embedding for the Heawood Graph
    Toward a Unit Distance Embedding for the Heawood graph Mitchell A. Harris1 Harvard Medical School Department of Radiology Boston, MA 02114, USA [email protected] Abstract. The unit distance embeddability of a graph, like planarity, involves a mix of constraints that are combinatorial and geometric. We construct a unit distance embedding for H − e in the hope that it will lead to an embedding for H. We then investigate analytical methods for a general decision procedure for testing unit distance embeddability. 1 Introduction Unit distance embedding of a graph is an assignment of coordinates in the plane to the vertices of a graph such that if there is an edge between two vertices, then their respective coordinates are exactly distance 1 apart. To bar trivial embed- dings, such as for bipartite graphs having all nodes in one part located at (0, 0), for the other part at (0, 1), it is also required that the embedded points be dis- tinct. There is no restriction on edge crossing. A graph is said to be unit distance embeddable if there exists such an embedding (with the obvious abbreviations arXiv:0711.1157v1 [math.CO] 7 Nov 2007 employed, such as UD embeddable, a UDG, etc). For some well-known examples, K4 is not UDG but K4 e is. The Moser spindle is UDG, and is also 4 colorable [5], giving the largest− currently known lower bound to the Erd¨os colorability of the plane [3]. The graph K2,3 is not be- cause from two given points in the plane there are exactly two points of distance 1, but the graph wants three; removing any edge allows a UD embedding.
    [Show full text]
  • Regular Graphs
    Taylor & Francis I-itt¿'tt¡'tnul "llultilintur ..llsahru- Vol. f4 No.1 1006 i[r-it O T¡yld &kilrr c@p On outindependent subgraphs of strongly regular graphs M. A. FIOL* a¡rd E. GARRIGA l)epartarnent de Matenr¿itica Aplicirda IV. t.luiversit¿rr Politdcnica de Catalunv¡- Jordi Gi'on. I--l- \{t\dul C-1. canrpus Nord. 080-lJ Barcelc¡'a. Sp'i¡r Conrr¡¡¡¡¡.n,"d br W. W¿rtkins I Rr,t t,llr,r/ -aj .llrny'r -rllllj) \n trutl¡dcpe¡dollt suhsr¿tnh ot'a gt'aph f. \\ith respccr to:ul ind!'pcndc¡t vcrtr\ subsct ('C l . rs thc suhl¡.aph f¡-induced bv th!'\ert¡ccs in l'',(', lA'!'s¡ud\ the casc'shcn f is stronslv rcgular. shen: the rcst¡lts ol'de C¿rcn ll99ti. The spc,ctnt ol'conrplcrnenttrn .ubgraph, in qraph. a slron{¡\ rr'!ulitr t-un¡lrt\nt J.rrrnt(l .,1 Ctunl¡in¿!orir:- l9(5)- 559 565.1- allou u: to dc'rivc'thc *lrolc spcctrulrt ol- f¡.. IUorcrrver. rr'lrcn ('rtt¿rins thr. [lollllr¡n Lor,isz bound l'or the indePcndr'nce llu¡rthcr. f( ii a rcsul:rr rr:rph {in lüct. d¡st:rnce-rc.rtular il' I- is I \toore graph). This arliclc'i: nltinlr deltrled to stutll: the non-lcgulal case. As lr nlain result. se chitractcrizc thc structurc ol- i¿^ s ht'n (' is ¡he n..ighhorhood of cirher ¡nc \!.rtc\ ()r ¡ne cdse. Ai,r rrr¡riA. Stlonsh rcuular lra¡rh: Indepcndt-nt set: Sr)ett¡.unr .
    [Show full text]
  • SZAKDOLGOZAT Probabilistic Formulation of the Hadwiger
    SZAKDOLGOZAT Probabilistic formulation of the Hadwiger–Nelson problem Péter Ágoston MSc in Mathematics Supervisor: Dömötör Pálvölgyi assistant professor ELTE TTK Institute of Mathematics Department of Computer Science ELTE 2019 Contents Introduction 3 1 Unit distance graphs 5 1.1 Introduction . .5 1.2 Upper bound on the number of edges . .6 2 (1; d)-graphs 22 3 The chromatic number of the plane 27 3.1 Introduction . 27 3.2 Upper bound . 27 3.3 Lower bound . 28 4 The probabilistic formulation of the Hadwiger–Nelson problem 29 4.1 Introduction . 29 4.2 Upper bounds . 30 4.3 Lower bounds . 32 5 Related problems 39 5.1 Spheres . 39 5.2 Other dimensions . 41 Bibliography 43 2 Introduction In 1950, Edward Nelson posed the question of determining the chromatic number of the graph on the plane formed by its points as vertices and having edges between the pairs of points with distance 1, which is now simply known as the chromatic number of the plane. It soon became obvious that at least 4 colours are needed, which can be easily seen thanks to a graph with 7 vertices, the so called Moser spindle, found by William and Leo Moser. There is also a relatively simple colouring by John R. Isbell, which shows that the chromatic number is at most 7. And despite the simplicity of the bounds, these remained the strongest ones until 2018, when biologist Aubrey de Grey found a subgraph which was not colourable with 4 colours. This meant that the chromatic number of the plane is at least 5.
    [Show full text]
  • Constructing 5-Chromatic Unit Distance Graphs Embedded in the Euclidean Plane and Two-Dimensional Spheres
    Constructing 5-chromatic unit distance graphs embedded in the Euclidean plane and two-dimensional spheres V.A. Voronov,∗ A.M. Neopryatnaya,† E.A. Dergachev‡ [email protected] June 24, 2021 Abstract This paper is devoted to the development of algorithms for finding unit distance graphs with chromatic number greater than 4, embedded in a two-dimensional sphere or plane. Such graphs provide a lower bound for the Nelson–Hadwiger problem on the chromatic number of the plane and its generalizations to the case of the sphere. A series of 5-chromatic unit distance graphs on 64513 vertices embedded into the plane is constructed. Unlike previously known examples, these graphs do not contain the Moser spindle as a subgraph. The construction of 5-chromatic graphs embedded in a sphere at two values of the radius is given. Namely, the 5-chromatic unit distance graph on 372 vertices embedded into the circumsphere of an icosahedron with a unit edge length, and the 5-chromatic graph on 972 vertices embedded into the circumsphere of a great icosahedron are constructed. 1 Introduction This paper is devoted to one of the questions related to the Nelson–Hadwiger problem on the chromatic number of the plane [15, 36], namely the development of algorithms that allow constructing new examples of 5-chromatic unit distance graphs embedded in a plane or a sphere, based on a given 4-chromatic unit distance subgraph. The chromatic number of a subset of the Euclidean space X ⊆ Rn is the minimum number of colors needed to color X, so that the points u, v at a unit distance apart are arXiv:2106.11824v2 [math.CO] 23 Jun 2021 colored differently, i.e.
    [Show full text]
  • On Some Classical and New Hypergraph Invariants Andrea Munaro
    On some classical and new hypergraph invariants Andrea Munaro To cite this version: Andrea Munaro. On some classical and new hypergraph invariants. General Topology [math.GN]. Université Grenoble Alpes, 2016. English. NNT : 2016GREAM072. tel-01680456 HAL Id: tel-01680456 https://tel.archives-ouvertes.fr/tel-01680456 Submitted on 10 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE pour obtenir le grade de DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES Spécialité : Informatique et Mathématiques Appliquées Arrêté ministériel : 25 mai 2016 Présentée par Andrea Munaro Thèse dirigée par András Sebo˝ et Matejˇ Stehlík préparée au sein du Laboratoire G-SCOP dans l’école doctorale Mathématiques, Sciences et Technologies de l’Information, Informatique (MSTII) Sur quelques invariants classiques et nouveaux des hypergraphes Thèse soutenue publiquement le 1er décembre 2016, devant le jury composé de: Dieter Rautenbach Professeur des Universités, Universität Ulm, Rapporteur Nicolas Trotignon Directeur de Recherche CNRS, ENS de Lyon, Rapporteur András Gyárfás Senior Researcher, Alfréd Rényi Institute of Mathematics, Examinateur Frédéric Maffray Directeur de Recherche CNRS, Univ. Grenoble Alpes, Laboratoire G-SCOP, Examinateur et Président du jury András Sebo˝ Directeur de Recherche CNRS, Univ.
    [Show full text]
  • Chromatic Number of Euclidean Plane
    Chromatic number of Euclidean plane Kai-Rui Wang ∗ Abstract: If the chromaticnumber of Euclidean planeis largerthan four, but it is known that the chromatic number of planar graphs is equal to four, then how does one explain it? In my opinion, they are contradictory to each other. This idea leads to confirm the chromatic number of the plane about its exact value. Mathematics Subject Classification (2010): 05C10, 05C55, 05D10. Keywords: Euclidean plane; Finite unit distance graphs; The chromatic number of the plane. 1 Introduction One of the most interesting unsolved problems in geometric graph theory or Euclidean Ramsey theory is as below: How many colors are needed to color the plane so that no two points at unit dis- tance are the same color? which is also called the Hadwiger-Nelson problem, named after Hugo Hadwiger and Edward Nelson.[1,2,3] As for the age of the emergence of it, according to Jensen and Toft’s investigation (1995),[4] the problem was first formulated by E. Nelson in 1950, and first published by Gardner in 1960.[3] Hadwiger in 1945 published a related result,[1] showing that any cover of the plane by five congruent closed sets contains a unit distance in one of the sets, and he also mentioned the problem in a later paper (Hadwiger 1961).[2] A. Soifer (2003,2008,2011) discusses the problem and its origin extensively.[5−8] Although the answer of this problem is unknown,it has been narrowed down to one of the numbers 4, 5, 6 or 7. The lower bound of four follows from a seven-vertex unit arXiv:1507.00025v1 [math.GM] 1 Jul 2015 distance graph with chromatic number four discovered by brothers William and Leo Moser in 1961,[9] named the Moser spindle.
    [Show full text]