Atmospheric Science 1

Total Page:16

File Type:pdf, Size:1020Kb

Atmospheric Science 1 Atmospheric Science 1 Atmospheric Science General Guidelines 1. All courses taken to fulfill the major requirements below must be taken for graded credit, other than courses listed which are offered on Bachelor of Arts (BA) a Pass/Fail basis only. Other exceptions to this requirement are noted The Atmospheric Science major explores the fundamental natural as applicable. processes controlling atmospheric composition, circulation dynamics, 2. No more than two upper division courses may be used to and climate. Understanding how these processes have changed in the simultaneously fulfill requirements for a student's double major past and may change in the future are among the greatest intellectual and no more one course may be used to fulfill minor program and technological challenges of our time. Topics covered will include requirements with the exception of minors offered outside of the the physics of climate variability and climate change, changes in College of Letters & Science. stratospheric ozone, coupling of atmospheric chemistry and climate, 3. A minimum grade point average (GPA) of 2.0 must be maintained changes in the oxidation capacity of the troposphere, smog, and the in both upper and lower division courses used to fulfill the major impacts of atmosphere-biosphere exchange on atmospheric composition. requirements. Declaring the Major For information regarding residence requirements and unit requirements, please see the College Requirements tab. The department strongly encourages students to see the student services advisor as early as possible. Students should take Math 53 and Math 54 Lower Division Requirements before declaring the major. Students are accepted into the major with a C average or better. There are a number of scholarships and research EPS 50 The Planet Earth 4 opportunities as well as other benefits available to declared majors. MATH 1A Calculus 4 MATH 1B Calculus 4 Honors Program MATH 53 Multivariable Calculus 4 Students in the honors program must fulfill the following additional MATH 54 Linear Algebra and Differential Equations 4 requirements: or PHYSICS 89Introduction to Mathematical Physics 1. Maintain a GPA of at least 3.3 in all courses in the major, and an CHEM 1A General Chemistry 5 overall GPA of at least 3.3 in the University. & 1AL and General Chemistry Laboratory 2. Carry out an individual research or study project, involving at least or CHEM 4A General Chemistry and Quantitative Analysis three units of EPS H195. The project is chosen in consultation with a Choose one of the following physics sequences: departmental advisor, and a written report is judged by the student's PHYSICS 5A Introductory Mechanics and Relativity research supervisor and a departmental adviser. & PHYSICS 5Band Introductory Electromagnetism, Waves, and & PHYSICS 5BLOptics Minor Program & PHYSICS 5Cand Introduction to Experimental Physics I For information regarding the requirements, please see the Minor & PHYSICS 5CLand Introductory Thermodynamics and Quantum Requirements tab. Program planning and confirmation should be done Mechanics with the undergraduate student services adviser and the Atmospheric and Introduction to Experimental Physics II Science faculty adviser. PHYSICS 7A Physics for Scientists and Engineers & PHYSICS 7Band Physics for Scientists and Engineers Other Majors and Minors Offered by the & PHYSICS 7Cand Physics for Scientists and Engineers Department of Earth and Planetary Science Upper Division Requirements Climate Science (http://guide.berkeley.edu/undergraduate/degree- programs/climate-science/) (Minor only) EPS 102 History and Evolution of Planet Earth 4 EPS 150 Case Studies in Earth Systems 2 Environmental Earth Science (http://guide.berkeley.edu/undergraduate/ EPS C180 Air Pollution 3 degree-programs/environmental-earth-science/) (Major and Minor) Geology (http://guide.berkeley.edu/undergraduate/degree-programs/ EPS C181 Atmospheric Physics and Dynamics 3 geology/) (Major and Minor) EPS C182 Atmospheric Chemistry and Physics Laboratory 3 Geophysics (http://guide.berkeley.edu/undergraduate/degree-programs/ Electives, select a minimum of 9 units from the following list of geophysics/) (Major and Minor) suggested courses: Marine Science (http://guide.berkeley.edu/undergraduate/degree- EPS 103 Introduction to Aquatic and Marine Geochemistry programs/marine-science/) (Major and Minor) [4] Planetary Science (http://guide.berkeley.edu/undergraduate/degree- EPS 104 Mathematical Methods in Geophysics [4] programs/planetary-science/) (Major and Minor) EPS 109 Computer Simulations with Jupyter Notebooks [4] In addition to the University, campus, and college requirements, listed EPS 115 Stratigraphy and Earth History [4] on the College Requirements tab, students must fulfill the below EPS 117 Geomorphology [4] requirements specific to their major program. EPS 125 Stable Isotope Geochemistry [4] EPS C129 Biometeorology [3] EPS 131 Geochemistry [4] 2 Atmospheric Science EPS C183 Carbon Cycle Dynamics [3] EPS 102 History and Evolution of Planet Earth [4] EPS 230 Radiation and Its Interactions with Climate [3] EPS 104 Mathematical Methods in Geophysics [4] CHEM 105 Instrumental Methods in Analytical Chemistry [4] EPS C180 Air Pollution [3] CHEM 120A Physical Chemistry EPS C181 Atmospheric Physics and Dynamics [3] & CHEM 120B and Physical Chemistry EPS C182 Atmospheric Chemistry and Physics Laboratory [3] CHEM 125 Physical Chemistry Laboratory [3] EPS C183 Carbon Cycle Dynamics [3] GEOG 143 Global Change Biogeochemistry [3] EPS 230 Radiation and Its Interactions with Climate [3] ENE,RES 102 Quantitative Aspects of Global Environmental GEOG 143 Global Change Biogeochemistry [3] Problems [4] ENE,RES 102 Quantitative Aspects of Global Environmental CIV ENG 100 Elementary Fluid Mechanics [4] Problems [4] CIV ENG 107 Climate Change Mitigation [3] CIV ENG 107 Climate Change Mitigation [3] CIV ENG 200A Environmental Fluid Mechanics I [3] 1 CIV ENG 200B Environmental Fluid Mechanics II [3] Or equivalent. CIV ENG 218B Atmospheric Aerosols [3] Undergraduate students must fulfill the following requirements in addition CIV ENG 218CAir Pollution Modeling [3] to those required by their major program. 1 All elective courses used to fulfill the major requirements must be For detailed lists of courses that fulfill college requirements, please approved by the faculty adviser. This list is intended as a guide; the review the College of Letters & Sciences (http://guide.berkeley.edu/ suggested courses are not limited to only courses included in this list. undergraduate/colleges-schools/letters-science/) page in this Guide. For College advising appointments, please visit the L&S Advising (https:// Students who have a strong interest in an area of study outside their lsadvising.berkeley.edu/home/) Pages. major often decide to complete a minor program. These programs have set requirements and are noted officially on the transcript in the University of California Requirements memoranda section, but are not noted on diplomas. Entry Level Writing (http://writing.berkeley.edu/node/78/) General Guidelines All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the 1. All minors must be declared no later than one semester before a Entry Level Writing requirement. Fulfillment of this requirement is also a student's Expected Graduation Term (EGT). If the semester before prerequisite to enrollment in all reading and composition courses at UC EGT is fall or spring, the deadline is the last day of RRR week. If Berkeley. the semester before EGT is summer, the deadline is the final Friday of Summer Sessions. To declare a minor, contact the department American History and American Institutions (http:// advisor for information on requirements, and the declaration process. guide.berkeley.edu/undergraduate/colleges-schools/letters- 2. All courses taken to fulfill the minor requirements below must be science/american-history-institutions-requirement/) taken for graded credit. The American History and Institutions requirements are based on the 3. A minimum of three of the upper division courses taken to fulfill the principle that a US resident graduated from an American university, minor requirements must be completed at UC Berkeley. should have an understanding of the history and governmental 4. A minimum grade point average (GPA) of 2.0 is required for courses institutions of the United States. used to fulfill the minor requirements. 5. Courses used to fulfill the minor requirements may be applied toward Berkeley Campus Requirement the Seven-Course Breadth requirement, for Letters & Science American Cultures (http://americancultures.berkeley.edu/ students. students/courses/) 6. No more than one upper division course may be used to All undergraduate students at Cal need to take and pass this course simultaneously fulfill requirements for a student's major and minor in order to graduate. The requirement offers an exciting intellectual programs. environment centered on the study of race, ethnicity and culture of the 7. All minor requirements must be completed prior to the last day of United States. AC courses offer students opportunities to be part of finals during the semester in which you plan to graduate. If you research-led, highly accomplished teaching environments, grappling with cannot finish all courses required for the minor by that time, please the complexity of American Culture. see a College of Letters & Science adviser. 8. All minor requirements must be
Recommended publications
  • The Observation of the Lightning Induced Variations in Atmospheric Ions
    XV International Conference on Atmospheric Electricity, 15-20 June 2014, Norman, Oklahoma, U.S.A. The Observation of the Lightning Induced Variations in Atmospheric Ions Xuemeng Chen1,*, Hanna E. Manninen1,2, Pasi Aalto1, Petri Keronen1, Antti Mäkelä3, Jussi Paatero3, Tuukka Petäjä1 and Markku Kulmala1 1. Department of Physics, University of Helsinki, Helsinki, Finland 2. Institute of Physics, University of Tartu, Estonia 3. Finnish Meteorological Institute, Helsinki, Finland ABSTRACT: Variations in atmospheric ion concentration were studied in a boreal forest in Finland, with emphasis on the effect of lightning. In general, changes in ion concentrations have diurnal and seasonal patterns. Distinct features were found in ions of different size ranges, namely small ions (0.8 – 1.7 nm) and intermediate ions (1.7 – 7 nm). Preliminary results on two case studies of lightning effect are present, one with rain effect and the other not. Bursts in the concentrations of small ions and intermediate ions were observed in both cases. However, different trends in trace gases were observed for the two cases. Further investigation is needed to reveal the nature of lightning ions and the mechanism in their formation. The work is under progress. INTRODUCTION Atmospheric ions, or air ions, refer to electric charge carriers present in the atmosphere. Distinct features exist in their chemical composition, mass, size as well as number of carried charges. According to Tammet [1998], atmospheric ions can be classified into small or cluster ions, intermediate ions, and large ions based on their mobility (Z) in air, being Z > 0.5 cm2V-1s-1, 0.5 cm2V-1s-1 ≤ Z ≥ 0.03 cm2V-1s-1 and Z< 0.03 cm2V-1s-1, respectively.
    [Show full text]
  • Geography and Atmospheric Science 1
    Geography and Atmospheric Science 1 Undergraduate Research Center is another great resource. The center Geography and aids undergraduates interested in doing research, offers funding opportunities, and provides step-by-step workshops which provide Atmospheric Science students the skills necessary to explore, investigate, and excel. Atmospheric Science labs include a Meteorology and Climate Hub Geography as an academic discipline studies the spatial dimensions of, (MACH) with state-of-the-art AWIPS II software used by the National and links between, culture, society, and environmental processes. The Weather Service and computer lab and collaborative space dedicated study of Atmospheric Science involves weather and climate and how to students doing research. Students also get hands-on experience, those affect human activity and life on earth. At the University of Kansas, from forecasting and providing reports to university radio (KJHK 90.7 our department's programs work to understand human activity and the FM) and television (KUJH-TV) to research project opportunities through physical world. our department and the University of Kansas Undergraduate Research Center. Why study geography? . Because people, places, and environments interact and evolve in a changing world. From conservation to soil science to the power of Undergraduate Programs geographic information science data and more, the study of geography at the University of Kansas prepares future leaders. The study of geography Geography encompasses landscape and physical features of the planet and human activity, the environment and resources, migration, and more. Our Geography integrates information from a variety of sources to study program (http://geog.ku.edu/degrees/) has a unique cross-disciplinary the nature of culture areas, the emergence of physical and human nature with pathway options (http://geog.ku.edu/geography-pathways/) landscapes, and problems of interaction between people and the and diverse faculty (http://geog.ku.edu/faculty/) who are passionate about environment.
    [Show full text]
  • Photophoretic Spectroscopy in Atmospheric Chemistry – High-Sensitivity Measurements of Light Absorption by a Single Particle
    Atmos. Meas. Tech., 13, 3191–3203, 2020 https://doi.org/10.5194/amt-13-3191-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Photophoretic spectroscopy in atmospheric chemistry – high-sensitivity measurements of light absorption by a single particle Nir Bluvshtein, Ulrich K. Krieger, and Thomas Peter Institute for Atmospheric and Climate Science, ETH Zurich, 8092, Switzerland Correspondence: Nir Bluvshtein ([email protected]) Received: 28 February 2020 – Discussion started: 4 March 2020 Revised: 30 April 2020 – Accepted: 16 May 2020 – Published: 18 June 2020 Abstract. Light-absorbing organic atmospheric particles, the UV–vis wavelength range, attributing them with a nega- termed brown carbon, undergo chemical and photochemi- tive (cooling) radiative effect. However, light-absorbing or- cal aging processes during their lifetime in the atmosphere. ganic aerosol, termed brown carbon (BrC), with wavelength- The role these particles play in the global radiative balance dependent light absorption (λ−2 − λ−6) in the UV–vis wave- and in the climate system is still uncertain. To better quan- length range (Chen and Bond, 2010; Hoffer et al., 2004; tify their radiative forcing due to aerosol–radiation interac- Kaskaoutis et al., 2007; Kirchstetter et al., 2004; Lack et al., tions, we need to improve process-level understanding of ag- 2012b; Moosmuller et al., 2011; Sun et al., 2007), may be the ing processes, which lead to either “browning” or “bleach- dominant light absorber downwind of urban and industrial- ing” of organic aerosols. Currently available laboratory tech- ized areas and in biomass burning plumes (Feng et al., 2013).
    [Show full text]
  • Air Quality in North America's Most Populous City
    Atmos. Chem. Phys., 7, 2447–2473, 2007 www.atmos-chem-phys.net/7/2447/2007/ Atmospheric © Author(s) 2007. This work is licensed Chemistry under a Creative Commons License. and Physics Air quality in North America’s most populous city – overview of the MCMA-2003 campaign L. T. Molina1,2, C. E. Kolb3, B. de Foy1,2,4, B. K. Lamb5, W. H. Brune6, J. L. Jimenez7,8, R. Ramos-Villegas9, J. Sarmiento9, V. H. Paramo-Figueroa9, B. Cardenas10, V. Gutierrez-Avedoy10, and M. J. Molina1,11 1Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA 2Molina Center for Energy and Environment, La Jolla, CA, USA 3Aerodyne Research, Inc., Billerica, MA, USA 4Saint Louis University, St. Louis, MO, USA 5Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA 6Department of Meteorology, Pennsylvania State University, University Park, PA, USA 7Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA 8Cooperative Institute for Research in the Environmental Sciences (CIRES), Univ. of Colorado at Boulder, Boulder, CO, USA 9Secretary of Environment, Government of the Federal District, Mexico, DF, Mexico 10National Center for Environmental Research and Training, National Institute of Ecology, Mexico, DF, Mexico 11Department of Chemistry and Biochemistry, University of California at San Diego, San Diego, CA, USA Received: 22 February 2007 – Published in Atmos. Chem. Phys. Discuss.: 27 February 2007 Revised: 10 May 2007 – Accepted: 10 May 2007 – Published: 14 May 2007 Abstract. Exploratory field measurements in the Mexico 1 Introduction City Metropolitan Area (MCMA) in February 2002 set the stage for a major air quality field measurement campaign in 1.1 Air pollution in megacities the spring of 2003 (MCMA-2003).
    [Show full text]
  • Assessing and Improving Cloud-Height Based Parameterisations of Global Lightning Flash Rate, and Their Impact on Lightning-Produced Nox and Tropospheric Composition
    https://doi.org/10.5194/acp-2020-885 Preprint. Discussion started: 2 October 2020 c Author(s) 2020. CC BY 4.0 License. Assessing and improving cloud-height based parameterisations of global lightning flash rate, and their impact on lightning-produced NOx and tropospheric composition 5 Ashok K. Luhar1, Ian E. Galbally1, Matthew T. Woodhouse1, and Nathan Luke Abraham2,3 1CSIRO Oceans and Atmosphere, Aspendale, 3195, Australia 2National Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge, UK 3Department of Chemistry, University of Cambridge, Cambridge, UK 10 Correspondence to: Ashok K. Luhar ([email protected]) Abstract. Although lightning-generated oxides of nitrogen (LNOx) account for only approximately 10% of the global NOx source, it has a disproportionately large impact on tropospheric photochemistry due to the conducive conditions in the tropical upper troposphere where lightning is mostly discharged. In most global composition models, lightning flash rates used to calculate LNOx are expressed in terms of convective cloud-top height via the Price and Rind (1992) (PR92) 15 parameterisations for land and ocean. We conduct a critical assessment of flash-rate parameterisations that are based on cloud-top height and validate them within the ACCESS-UKCA global chemistry-climate model using the LIS/OTD satellite data. While the PR92 parameterisation for land yields satisfactory predictions, the oceanic parameterisation underestimates the observed flash-rate density severely, yielding a global average of 0.33 flashes s-1 compared to the observed 9.16 -1 flashes s over the ocean and leading to LNOx being underestimated proportionally. We formulate new/alternative flash-rate 20 parameterisations following Boccippio’s (2002) scaling relationships between thunderstorm electrical generator power and storm geometry coupled with available data.
    [Show full text]
  • Atmospheric Science Brochure
    Welcome from the Atmospheric Science Program! FForor MMoreore IInformationnformation Our program is led by seven faculty members Professor Clark Evans with expertise in atmospheric dynamics, weather Atmospheric Science Program Coordinator analysis and forecasting, cloud physics, air pollution meteorology, tropical and mesoscale meteorology, P. O. Box 413, Milwaukee, WI 53201 and chaotic systems. (414) 229-5116 [email protected] Your professional development is our top priority! We offer lots of faculty contact, opportunities for hands-on research, excellent computational facilities, and an array of courses to prepare you for your career. Learn more about the Atmospheric Science Study Abroad Visit us Online Atmospheric Science UWM offers the world’s www.math.uwm.edu/atmo fi rst faculty-led Major J study-abroad www.facebook.com/UWMAtmoSci program in www.innovativeweather.com Atmospheric Science. In this course, you can explore the effects of acid rain on Mexico’s cultural heritage sites. Atmospheric Science Major at the University of Wisconsin – Milwaukee The study of weather, climate, and their impacts on both Earth and human activities AAtmospherictmospheric SSciencecience CCareersareers PPreparatoryreparatory CCreditsredits BBeyondeyond tthehe CClassroomlassroom A career in atmospheric science is very rewarding • Math 231: Calculus and Analytic Geometry I Atmospheric Science because of the impact weather and climate have on • Math 232: Calculus and Analytic Geometry I INNNOVANOVATTIVEIVE students can work everyday life. You will fi nd atmospheric scientists • Math 233: Calculus and Analytic Geometry III WEEATHERATHER with real clients in many different roles: nearly 36% work in the • Math 234: Linear Algebra/Differential Equations providing forecasts, private sector; 33% for governmental agencies; 24% • Math 320: Intro to Differential Equations risk assessments and other weather-related services at educational institutions or laboratories; and 7% in • Physics 209/214: Physics I with Lab to the community and business partners across the media.
    [Show full text]
  • Spatial Trends in United States Tornado Frequency
    www.nature.com/npjclimatsci ARTICLE OPEN Spatial trends in United States tornado frequency Vittorio A. Gensini 1 and Harold E. Brooks2 Severe thunderstorms accompanied by tornadoes, hail, and damaging winds cause an average of 5.4 billion dollars of damage each year across the United States, and 10 billion-dollar events are no longer uncommon. This overall economic and casualty risk—with over 600 severe thunderstorm related deaths in 2011—has prompted public and scientific inquiries about the impact of climate change on tornadoes. We show that national annual frequencies of tornado reports have remained relatively constant, but significant spatially-varying temporal trends in tornado frequency have occurred since 1979. Negative tendencies of tornado occurrence have been noted in portions of the central and southern Great Plains, while robust positive trends have been documented in portions of the Midwest and Southeast United States. In addition, the significant tornado parameter is used as an environmental covariate to increase confidence in the tornado report results. npj Climate and Atmospheric Science (2018) 1:38 ; doi:10.1038/s41612-018-0048-2 INTRODUCTION A derived covariate, such as STP, is complementary to tornado Recent trends in global and United States temperature have reports for climatological studies. For example, it has been shown provoked questions about the impact on frequency, intensity, that variables like storm relative helicity and convective precipita- timing, and location of tornadoes. When removing many non- tion adequately represent United States monthly tornado 16 meteorological factors, it is shown that the annual frequency of frequency. Reports are subject to a human reporting process, United States tornadoes through the most reliable portions of the whereas environmental covariates allow for an objective model- historical record has remained relatively constant.1–4 The most derived climatology.
    [Show full text]
  • Atmospheric Chemistry
    Atmospheric Chemistry John Lee Grenfell Technische Universität Berlin Atmospheres and Habitability (Earthlike) Atmospheres: -support complex life (respiration) -stabilise temperature -maintain liquid water -we can measure their spectra hence life-signs Modern Atmospheric Composition CO2 Modern Atmospheric Composition O2 CO2 N2 CO2 N2 CO2 Modern Atmospheric Composition O2 CO2 N2 CO2 N2 P 93bar 1bar 6mb 1.5bar surface CO2 Tsurface 735K 288K 220K 94K Early Earth Atmospheric Compositions Magma Hadean Archaean Proterozoic Snowball CO2 Early Earth Atmospheric Compositions Magma Hadean Archaean Proterozoic Snowball Silicate CO2 CO2 N2 N2 Steam H2ON2 O2 O2 CO2 Additional terrestrial-type atmospheres Jurassic Earth Early Mars Early Venus Jungleworld Desertworld Waterworld Superearth Modern Atmospheric Composition Today we will talk about these CO2 Reading List Yuk Yung (Caltech) and William DeMore “Photochemistry of Planetary Atmospheres” Richard P. Wayne (Oxford) “Chemistry of Atmospheres” T. Gredel and Paul Crutzen (Mainz) “Chemie der Atmosphäre” Processes influencing Photochemistry Photons Protection Delivery Escape Clouds Photochemistry Surface OCEAN Biology Volcanism Some fundamentals… ALKALI METALS The Periodic Table NOBLE GASES One outer electron Increasing atomic number 8 outer electrons: reactive Rows called PERIODS unreactive GROUPS: similar Halogens chemical C, Si etc. have 4 outer electrons properties SO CAN FORM STABLE CHAINS Chemical Structure and Reactivity s and p orbitals d orbitals The Aufbau Method works OK for the first 18 elements
    [Show full text]
  • Chapter 1 – Introduction
    1 Chapter 1 – Introduction 1.1 – Scientific Background Knowledge of gas phase compounds and their chemical reactions are pivotal to our understanding of chemistry. The conditions these molecules are in can vary dramatically, from temperatures as low as 10 K in the depths of the interstellar medium, to more than 1000 K in the combustion of hydrocarbons in engines. The chemistry in these systems is dominated by highly reactive, unstable compounds, leading to fast and complex chemistry occurring. In order to accurately understand these systems, we must be able to observe these unstable species and measure the kinetics of their formation and destruction. While molecular spectra and reaction rate constants of these reactive compounds can be computed with theoretical calculations, they must be benchmarked with experimental measurements to determine their accuracy. To that end, one major focus in experimental gas phase chemistry is to better understand these unstable molecules and their reactions in systems such as atmospheric chemistry and astrochemistry. 1.1a – Atmospheric Chemistry Understanding Earth’s atmosphere and the chemistry behind it has been a major topic in gas phase chemistry since the mid-20th century, when the impact of fossil fuel usage and air pollution resulting from the Industrial Revolution became apparent. The dominant molecule in Earth’s atmosphere is N2 (77% of the atmosphere) followed by O2 (21%) and argon (1%). The remaining components are largely stable molecules, such as CO2 and H2O. 2 Figure 1.1: The average temperature (left) and pressure (right) profiles of the Earth’s lower atmosphere, consisting of the troposphere and stratosphere.
    [Show full text]
  • 2009, Umaine News Press Releases
    The University of Maine DigitalCommons@UMaine General University of Maine Publications University of Maine Publications 2009 2009, UMaine News Press Releases University of Maine George Manlove University of Maine Joe Carr University of Maine Follow this and additional works at: https://digitalcommons.library.umaine.edu/univ_publications Part of the Higher Education Commons, and the History Commons Repository Citation University of Maine; Manlove, George; and Carr, Joe, "2009, UMaine News Press Releases" (2009). General University of Maine Publications. 1091. https://digitalcommons.library.umaine.edu/univ_publications/1091 This Monograph is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in General University of Maine Publications by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. UMaine News Press Releases from Word Press XML export 2009 UMaine Climate Change Institute Community Lecture in Bangor Jan. 14 02 Jan 2009 Contact: Gregory Zaro, 581-1857 or [email protected] ORONO -- Gregory Zaro, assistant professor in the University of Maine's Anthropology Department and Climate Change Institute, will present "Ancient Civilizations, Archaeology and Environmental Change in South America" from 6:30 to 7:45 p.m. Wednesday, Jan.14, at the Bangor Public Library. Zaro's talk is the third installment in the Climate Change Institute's monthly lecture series, which is free and open to the public. According to Zaro, humans are active components of the environment and have been manipulating the physical world for thousands of years. While modern industrial nations are often viewed to have the greatest impact on ecological change, ancient civilizations have also left long-lasting imprints on the landscape that continue to shape our contemporary world.
    [Show full text]
  • Meteorology (MTEOR) 1
    Meteorology (MTEOR) 1 MTEOR 140: Climate and Society METEOROLOGY (MTEOR) (Cross-listed with AGRON, ENV S, GEOL). Cr. 3. F.S. Any experimental courses offered by MTEOR can be found at: The climate system of our planet. How nature and our actions alter the registrar.iastate.edu/faculty-staff/courses/explistings/ (http:// existing energy balance leading to climate change. Past climates on www.registrar.iastate.edu/faculty-staff/courses/explistings/) our planet. The influence of climate on society and resource availability during the Holocene (~ 11,000 years ago to present) with focus on Courses primarily for undergraduates: changes post industrial revolution. Significant climate events that have altered our way of life in the past. Projected changes in future climate and MTEOR 107: Severe and Hazardous Weather potential impacts on society, environment and resources. Adaption to and (2-0) Cr. 1. F. mitigation of climate change. Understanding of atmospheric processes that play a role in creating severe and hazardous weather. Focus on thunderstorms, tornadoes, MTEOR 160: Water Resources of the World hurricanes, floods, blizzards, ice storms, and temperature extremes. (Cross-listed with AGRON, ENV S, GEOL). (3-0) Cr. 3. S. Impacts on lives and property. Study of the occurrence, history, development, and management of world water resources. Basic hydrologic principles including climate, surface MTEOR 111: Synoptic Applications water, groundwater, and water quality. Historical and current perspectives (1-0) Cr. 1. Repeatable. F. on water policy, use, and the role of water in society and the environment. Prereq: Credit or enrollment in MATH 165 Meets International Perspectives Requirement. Current weather discussions and introduction to synoptic-scale interpretation of meteorology.
    [Show full text]
  • Atmospheric Physics I
    Atmospheric Physics I PHYS 621, Fall 2016 Dates and Location: Tuesday & Thursday, 2:30PM- 3:45AM; Public Policy 367 INSTRUCTOR: Dr. Pengwang Zhai Email: [email protected] Ph.: 410-455-3682 (office) OFFICE HOURS: Anytime Through Email appointment TEXTS: Wallace, J.M. and P. V. Hobbs, Atmospheric Science: An Introductory Survey, 2nd ed., Elsevier, 2006 Salby, M. L., Fundamentals of Atmospheric Physics, Academic Press, 1996. REFERENCE TEXTS (Highly recommend): Holton, J. R. Introduction to Dynamic Meteorology, 4th ed., Academic Press, 2004. DESCRIPTION: Composition and structure of the earth's atmosphere, atmospheric radiation and thermodynamics, fundamentals of atmospheric dynamics, overview of climatology. GRADING: Homework (25%), Midterm (30%), Final (40%), Participation/Discussion(5%) Course Strategy: There will be no exam make-up except for University-policy accepted absence. To promote active learning, students are strongly encouraged to read the corresponding textbook chapters before each lecture. Pre-lecture homework and discussion assignments are given routinely before lectures. Reading the sections of the textbook corresponding to the assigned homework exercises is considered part of the homework assignment; you are responsible for material in the assigned reading whether or not it is discussed in the lecture. Homework will be due weekly in Thursday’s lecture. There will be a 30% penalty on late homework submissions. COURSE OUTLINE: Overview A. Earth's atmosphere System of units The Sun and the orbit and size of Earth Chemical constituents of Earth’s atmosphere Vertical structure of temperature and density Wind and precipitation Ozone layer, hydrological and carbon cycles Global Energy Budget B. Atmospheric Radiation Maxwell’s Equation & EM wave Blackbody radiation: Planck’s Law and Stefan-Boltzmann’s law Spectral characteristics of Solar and Thermal infrared radiation Atmospheric absorption & Greenhouse effect Atmospheric scattering, clouds and aerosols Radiative forcing and climate Spatial and Temporal distribution of solar radiation C.
    [Show full text]