Softing Automotive Product Catalog

Total Page:16

File Type:pdf, Size:1020Kb

Softing Automotive Product Catalog SOFTING AUTOMOTIVE Diagnostics | Measurement | Testing PRODUCTS & SOLUTIONS No. 6 LEGAL NOTICE 2 CONTACT Softing Automotive Electronics GmbH Richard­Reitzner­Allee 6, 85540 Haar – Germany Phone +49 89 45 656 ­420 Fax +49 89 45 656 ­499 E­mail [email protected] Internet www.automotive.softing.com Softing Engineering & Solutions GmbH Einhornstr. 10, 72138 Kirchentellinsfurt – Germany Phone +49 7121 9937 ­237 Fax +49 7121 9937 ­266 E­mail [email protected] Internet www.automotive.softing.com EXCLUSION OF LIABILITY The information provided in this catalog corresponds to the state of the art when going to press and is provided to the best of our knowledge. We will not accept any warranty claims arising from the information provided in this catalog, especially warranties for quality and durability pursuant to section 443 of the German Civil Code (Bürgerliches Gesetzbuch). We reserve the right to make improvements and additions to and to include new findings in this catalog with out giving advance notice. The actual products can deviate from the information provided in the cata­ log where technical modifications arising from product improvements make this necessary. The offer and/or the specifications in the order confirmation provided for a specific case by Softing Automotive Electronics GmbH and its affiliated com­ panies is binding in this respect. All the product names listed in the catalog are either registered or unregistered trademarks of the respective owners. Errors and omissions reserved. We provide this catalog to our customers and pro­ spective clients free of charge. Reprinting and reproducing this catalog and making it available electronically, even in the form of excerpts, is only permissible with our written consent. All rights reserved. LEGAL NOTICE Softing Automotive Electronics GmbH Managing Directors: Dr. Wolfgang Trier, Oliver Fieth, Armin Baumann Registered office: Haar near Munich Commercial register entry: Version 2019.04 Munich Local Court (Amtsgericht), HRB 184930 PREFACE 3 Dear Readers, Customers and Partners, in our product catalog we provide you with an up­to­date overview of the Softing Automotive range. Alongside innovative, high­performing hardware and software products, we also offer individual system solutions, customized application support, comprehensive training packages, and, if required, resident engineering at the relevant customer site. Our top priority in terms of our product and solution portfolio is to guarantee our customers the maximum benefit with premium quality at all times as well as the best protection of investments available. With our core areas of expertise, diagnostics, measurement and testing, we provide customized solutions for automotive electronics. Softing is a well established partner for the entire life cycle of electronic ECUs and systems. As such, we cover the entire functional chain of our customers – from development through manufacturing to after sales and service. Our active participation in finalizing standards that are well established on the market (such as ASAM and ISO) and the fact that we implement these standards represent important value added for our customers. Softing‘s standard­compliant components ensure that processes run smoothly. Our product portfolio offers the very best combination and add­on possibilities for your individual tasks. As a reliable technology and solution partner, we open up a world of new potential to you in diagnostics, measurement and testing. Our team would be happy to answer any questions you may have. We look forward to engaging in successful and pioneering projects with you! Yours Markus Steffelbauer Director Product Management Softing Automotive Haar near Munich 4 TABLE OF CONTENTS 5 Softing What We Stand For .................................6 Experience ...............................................7 Technologies ............................................8 Trends ....................................................10 Diagnostics | Measurement | Testing .....12 Diagnostics Overview ..............................................14 Softing DTS.automation ........................28 Softing Diagnostic Base System ............15 Softing DTS.venice .................................29 Softing SDE ...........................................16 Softing DTS.analytics .............................30 Softing DTS.cos .....................................19 Softing OTX.studio ................................31 Base System | Technical Data ...............20 Softing TDX ............................................34 Diagnostic Tool Set ................................22 TestCUBE2 ..............................................36 Softing DTS.monaco ..............................23 Diagnostic Apps .....................................37 Softing DTS.monaco (Generation 9) .....26 Measurement Overview ...............................................38 Softing SMT ...........................................39 Softing PEA ............................................43 Softing MDF.view ..................................47 Testing Overview ..............................................48 Power­Window Test Bench ...................56 Breakout Box BOB, Distribution­Box, CheckRack .............................................57 Power­Box .............................................49 Infotainment Test System .....................58 D­Tower .................................................50 HiL Systems ............................................59 ECU­TEST ...............................................51 Battery Pack ..........................................60 HV Adaptation (E­Mobility) ..................52 Transmission Measuring Device ...........61 Breadboard Assemblies ........................54 Communication Overview ................................................62 CAN Interfaces ......................................69 HS Interfaces ........................................63 VCI Product Overview ...........................70 VIN|ING Interfaces ...............................64 Softing VCF ............................................72 EDIC Interfaces .....................................68 Engineering & Consulting Overview ................................................74 Test and Integration ..............................79 Application Support ..............................75 Telematic and Remote Diagnostics Software Engineering ...........................76 by GlobalmatiX AG ................................80 Mobile Solutions ....................................77 Training and Seminars ...........................82 Diagnostics ............................................78 Appendix Glossary .................................................83 SOFTING 6 SOFTING AUTOMOTIVE What We Stand For With its core areas of expertise, diagnostics, measurement in defining industry standards. Our aim is to provide our and testing, Softing is all about key technologies in automotive customers with the appropriate products and solutions for their electronics as well as in closely related electronics markets particular tasks. (e.g. in the commercial and agricultural vehicle sectors). With over 90,000 installations, Softing is a trendsetter in the market. Tailored to suit the individual infrastructure in each case, our Leading manufacturers of cars, motorcycles, commercial solutions offer all important certified key technologies to obtain vehicles and their suppliers all implement tried and tested valid and high­quality diagnostics, test and measuring results – tools and solutions from Softing. even under extreme conditions. The internationally well established standards implemented by Whether a standard solution, hardware interface, project Softing for APIs, data descriptions, protocols and bus systems devel opment or on­site support – we support our customers guarantee our customers the long­term safeguarding of their in all phases of the value chain. projects thanks to the reusability of data with consistently high quality. Softing implements market­relevant, international automotive standards – from CAN through UDS to ODX and OTX. Softing is an active member of numerous committees and associations (incl. ASAM, ISO, SAE) and plays a leading role SOFTING 7 Decades of Experience in Automotive Electronics From the outset, Softing has always consistently implemented TEST SYSTEMS AND ENGINEERING TOOLS the knowledge gained both from customer projects and from Major OEMs and international tier1 suppliers rely on Softing‘s the company‘s active participation in standardization commit­ test systems and engineering tools – for a good reason. A well­ tees in its products. In the process, the company supports its established team ensures that reliable software is exactly tuned customers with to user expectations and that suppliers worldwide are provided with the right version in each case. ■ intensive advisory services and process consulting ■ the international roll­out of products and solutions ■ training sessions and on­site services VEHICLE COMMUNICATION INTERFACES (VCI) ■ support and further development Softing VCIs always set the standard and are used by various OEMs and suppliers in large numbers. Naturally, only the latest Softing‘s dependability as a partner and the reliability of its technologies are used, for example for wired and wireless products are demonstrated by the fact that we do not only communication. We are also experts in handling repairs and market our own solutions. Our products have always been exchanges so that
Recommended publications
  • Media Oriented Systems Transport” Protocol
    TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2012, Vol. 12, No. 1, 275–279 New elements in vehicle communication “media oriented systems transport” protocol Andrzej Sumorek, Marcin Buczaj Department of Computer and Electrical Engineering, Lublin University of Technology, Poland S u m m a r y. Until recently, no signifi cant breakthroughs two major development trends of communication buses have occurred in the area of functional effi ciency of automo- can be identifi ed. The fi rst of them was to replace the tive vehicle communication protocols. The transmission speed mechanical connection with connections between mul- for “high-speed” communications busses and protocols is still tiple devices using buses (Drive-by-Wire, X-by-Wire) much slower than those of a typical computer network. Neither [14]. The main concern with such a solution is limiting the High-Speed CAN (1 Mbps bandwidth) nor TTP protocol (10 Mbps bandwidth), can be compared to the 1 Gbps band- the failure rate. The second development direction was width that is typical for widely used computer networks. Other to increase the user comfort by integrating multi-media diffi culties are that these vehicle communication networks are subsystems. A simple user interface is frequently imple- nonstandard and frequently use proprietary protocols (e.g., mented to manage complex automotive multimedia sys- communication methods, communication medium and data tems. The integration of various dedicated devices (e.g., formats). In contrast, computer networks have much more ad- telephone, DVD player, MP3 player) into a single system vanced capabilities. They are capable of a range of functions, is diffi cult.
    [Show full text]
  • Automotive Grade DO-218 Load Dump TVS Series
    Issue Number │001 May 2019 New Product Announcement DM5WxxAQ DM6WxxAQ DM8WxxAQ Automotive-Grade DO-218 Load Dump TVS Series Diodes Incorporated introduces a series of new high-temperature automotive-compliant load-dump transient voltage suppressors (TVS) packaged in DO-218. The devices are designed to protect sensitive semiconductors in electronic modules from load- dump surge transients, as defined in ISO16750-2, that generate if the battery is disconnected from the vehicle while the alternator charges. Featuring a choice of reverse stand-off voltage from 10V to 36V (or 43V for the DM8WxxAQ series), these new automotive- The Diodes Advantage compliant TVS devices are offered as unidirectional devices . AEC-Q101 Qualified and PPAP Supported and are able to dissipate up to These devices are qualified to high reliability qualification standards in 3600W (DM5WxxAQ), 4600W accordance with AEC-Q101 and supported by a production part approval (DM6WxxAQ), and 6600W procedure (PPAP). (DM8WxxAQ) per 10/1000µs . ISO 16750-2 Compliance pulse transient. These parts are suitable to protect sensitive automotive circuits against load- All devices are rated to +175ºC, dump surge defined in ISO16750-2 (Pulse A and B). and comply with the automotive . ISO 7637-2 Compliance standard ISO7637-2 (pulses 1, These parts are suitable to protect sensitive automotive circuits against surges 2a, 2b, 3) and load dump ISO defined in ISO7637-2 (pulses 1,2a, 2b and 3). 16750-2 (pulse A and B). High Forward Surge Current Capability and Excellent Clamping Capability The case material is composed of halogen-free “green” molding The high forward surge overload rating ensures more rugged applications and compound for protection of the improves device reliability.
    [Show full text]
  • Particulate Matter Emissions from Hybrid Diesel-Electric and Conventional Diesel Transit Buses: Fuel and Aftertreatment Effects
    TTitle Page PARTICULATE MATTER EMISSIONS FROM HYBRID DIESEL-ELECTRIC AND CONVENTIONAL DIESEL TRANSIT BUSES: FUEL AND AFTERTREATMENT EFFECTS August 2005 JHR 05-304 Project 03-8 Final Report to Connecticut Transit (CTTRANSIT) and Joint Highway Research Advisory Council (JHRAC) of the Connecticut Cooperative Highway Research Program Britt A. Holmén, Principal Investigator Zhong Chen, Aura C. Davila, Oliver Gao, Derek M. Vikara, Research Assistants Department of Civil and Environmental Engineering The University of Connecticut This research was sponsored by the Joint Highway Research Advisory Council (JHRAC) of the University of Connecticut and the Connecticut Department of Transportation and was performed through the Connecticut Transportation Institute of the University of Connecticut. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Connecticut or the Connecticut Department of Transportation. This report does not constitute a standard, specification, or regulation. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. JHR 05-304 4. Title and Subtitle 5. Report Date PARTICULATE MATTER EMISSIONS FROM HYBRID DIESEL- August 2005 ELECTRIC AND CONVENTIONAL DIESEL TRANSIT BUSES: 6. Performing Organization Code FUEL AND AFTERTREATMENT EFFECTS JH 03-8 7. Author(s) 8. Performing Organization Report No. Britt A. Holmén, Zhong Chen, Aura C. Davila, Oliver Gao, Derek M. JHR 05-304 Vikara 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) University of Connecticut N/A Connecticut Transportation Institute 177 Middle Turnpike, U-5202 11.
    [Show full text]
  • Field Networking Solutions
    Field Networking Solutions Courtesy of Steven Engineering, Inc. ! 230 Ryan Way, South San Francisco, CA 94080-6370 ! Main Office: (650) 588-9200 ! Outside Local Area: (800) 258-9200 ! www.stevenengineering.com TYPES OF FIELDBUS NETWORKS* Field Networking 101 Features and Benefits of Fieldbus Networks The combination of intelligent field devices, digital bus networks, and various open communications protocols Fieldbus networks provide an array of features and benefits that make them an excellent choice is producing extraordinary results at process plants in nearly all process control environments. around the world. Compared to conventional technology, fieldbus networks deliver the following benefits: Just as our ability to retrieve, share, and analyze data Reduced field wiring costs has increased tremendously by use of the Internet and - Two wires from the control room to many devices PC network technology in our homes and at our desk- Reduced commissioning costs tops, so has our ability to control and manage our - Less time and personnel needed to perform process plants improved. Digital connectivity in process I/O wiring checkouts - No time spent calibrating intermediate signals manufacturing plants provides an infrastructure for the (such as 4-20mA signals) - Digital values are delivered directly from field flow of real-time data from the process level, making it devices, increasing accuracy available throughout our enterprise networks. This data Reduced engineering/operating costs is being used at all levels of the enterprise to provide - Much smaller space required for panels, I/O racks, and connectivity boxes increased process monitoring and control, inventory and - Fewer I/O cards and termination panels for materials planning, advanced diagnostics, maintenance control system equipment - Lower power consumption by control system planning, and asset management.
    [Show full text]
  • Maintenance and Decoding of Field Buses
    MAINTENANCE AND DECODING OF FIELD BUSES Today, most of the electrical appliances that we use include internal electronics. These circuits often need to communicate via data buses, either with ancillary systems, such Maintenance as remote sensors, or with control systems. This is particularly true in industry, where a single PLC remotely manages multiple sensors and actuators. Formerly, communication with these buses took place via an analogue signal using the “4-20 mA” network. This communication mode had many disadvantages, including Measurements the need for extensive equipment and complex wiring, thus increasing the time required for installation. For this reason, digital communication standards have been developed and are now widely used to avoid these problems. “Fieldbus” is a general term which corresponds to a method of communication between different systems. There are many standards: those specific to manufacturers Analysis and those standardized according to the equipment involved. Here are a few examples of fieldbuses used in different sectors of activity: Diagnostics The example of the automotive sector The new means of intra-system communication have allowed This provides numerous advantages: developments in the systems. The most obvious example is in the • less wiring automotive industry. In this sector, with the development of safety and • lower production costs due to savings on equipment analysis systems such as airbags, anti-lock braking systems (ABS) and • easier maintenance as there is only one communication channel electronic stability programs (ESP), the number of sensors and actuators on vehicles is constantly increasing. Each of these systems could be In addition, performance is improved because the linked directly to the vehicle’s computer via data buses, but this would data are available at all points on the require too much cable.
    [Show full text]
  • Digital Buses for Digital Plants
    SOFTWARESOFTWARE & NETWORKS & NETWORKS DigitalDigital BusesBuses ForFor Digital Plants Digital plant architectures have transformed the face of modern process plants. Jonas Berge, Senior Manager, PlantWeb Consulting, Emerson Process Management Asia Pacifi c Pte Ltd, explains the underlying bus technologies. Emerson igital communications technology over the bus, enabling plants to adopt the input and output values to the reduces wiring and improves a predictive maintenance program. digital automation system, the bus D end-to-end signal accuracy and Further, digital values may be trans- must enable confi guration of the integrity in modern digital plants. ferred in engineering units, allowing many settings that determine how Digital technology enables new transmitters to be used over their full transmitters and positioners operate innovative and more powerful devices, range and eliminating range mismatch. and must give access to the wealth wider measurement range, elimination Access to more information is also key of diagnostics information in these of range mismatch, and access to more to intelligent device management. devices as and when required. Lastly, information. Overall, use of digital many process industries require re- technology can reduce automation Application Areas dundant interface cards for increased project costs by as much as 30 percent Buses are used in factory automation, reliability. All of these requirements as well as providing a two percent process automation and building are met by FOUNDATION fi eldbus H1. operational improvement. This article automation. Tasks may vary from explores considerations to be made in motion control, to machine control, Factory Automation Digital Buses selection of bus technology for optimal to distillation column control.
    [Show full text]
  • Automotive Electronics
    Automotive Electronics Amphenol Advanced Sensors Advanced Driver Assistance Systems (ADAS) Automotive Ethernet Body Control, Safety, Security, and Comfort Telematics, Multimedia, Infotainment, GPS, Navigation, and Camera Head & Interior LED Lighting Battery Management Systems and EV Charging Stations Enabling the Automotive Industry with our Connection Innovation and High Speed Technology 1 ABOUT AMPHENOL ICC AUTOMOTIVE Amphenol ICC brings a broad array of innovative technology and solutions to support the growth in the automotive industry, particularly in plating, signal integrity performance, and power management. As automobiles become more ADAS rich and head towards being a total autonomous operation, the key differentiator between suppliers will be their capabilities, and performance. Amphenol ICC's capable engineering team develops connector solutions according to customer needs, even during the design phase of application. INDUSTRY LEADER TECHNOLOGIES & SOLUTIONS CUSTOMER CAPABILITIES EXPERT SATISFACTION • Products accommodate standards like Open • Leverage in deploying • Automotive offerings in • Meet short lead time Alliance, USCAR, LV214, new solutions for WTB, BTB, I/O, and requirements ISO 8092, Kojiri,and Automotive applications: FFC/FPC • Advocate value-added SAE J 2223 - Signal integrity: • Strength of existing custom solutions • Solutions enable HS Signal Transmission portfolio in modular wherever possible signaling technologies and EMC BTB & WTB • Better value like LVDS and Ethernet - Power contact • Focus on new standard • Close proximity to • Leader in Automotive design and simulation IO connectors and customers’ location Ethernet and capabilities integration of new committed to Open - Contact and connector standard consumer Alliance TC2 / TC9 with miniaturization electronics IO 100 BASE-T1 (100 Mbps) - PCB contact • Interconnect solutions and 1000 BASE-T1 technologies for High Speed (1 Gbps).
    [Show full text]
  • Measuring Everything
    Measuring Everything White Paper Measuring Everything Table of Contents 1 Really Measuring Everything..................................................................................................................................................... 3 1.1 Measurement Concept in CANape ........................................................................................................................................... 5 1.2 Recorder PC Hardware .............................................................................................................................................................. 6 2 Accessing Internal ECU Data .................................................................................................................................................... 6 2.1 Example: ECU ............................................................................................................................................................................. 9 2.2 Example: Transmission ECU...................................................................................................................................................... 9 3 Acquiring Sensor Data for Autonomous Driving ...................................................................................................................10 3.1 Acquiring Raw Data From Radar Sensors .............................................................................................................................10 3.1.1 Practical Example With More Than Two GByte/s ................................................................................................................11
    [Show full text]
  • Current Catalog
    YorkELECTRONIC Electronics SERVICE CENTRE Mobile Automotive Electronic Accessory Specialists Aftermarket Product Guide [email protected] 1-888-650-YORK (9675) www.yorkelec.com Press 1, 1 for Client Call Center Version:MMXXI YorkELECTRONIC Electronics SERVICE CENTRE Factory Navigation Upgrade • Available for most 2013 and up GM vehicles • Vehicles must be equipped with MyLink/Intellilink/CUE • Use factory GM parts to upgrade to Navigation NAVGM20 Kenwood Navigation • 6.8” WVGA Monitor • Apple CarPlay™ & Android Auto™ Ready • Garmin GPS built in with 3D Terrain View • Built in Bluetooth (Dual phone connection) & HD Radio • Sirius/XM ready with optional module • Dual USB, Audio/Video, mini jack inputs • 3 camera inputs • Dash Camera ready • DVD/CD/MP3/DIVX/MPEG/VCD compatible • Add or retain a backup camera, call for details NAVG20 XM Add On • Add XM (Subscription required) to your factory radio via USB • Vehicle applications may vary USBXM20 Dual USB Charger • Add USB charging to any vehicle • Charges two devices at one time • Dual 2.5A charge ports USBCH10 [email protected] 1-888-650-YORK (9675) www.yorkelec.com 1 Press 1, 1 for Client Call Center Version:MMXXI YorkELECTRONIC Electronics SERVICE CENTRE Advent Overhead DVD • Full colour monitor with built in DVD player • Available in black, pewter or shale colours Add extra headphones • Play audio through vehicle stereo to any video system • LED dome lights 1ch HP100 • 2 wireless headphones 2ch HP200 • Wireless remote controls • AUX input • Side load DVD mechanism • Available in 9”, 10” or
    [Show full text]
  • Vehicle Technology Trends in Electronics for the North American Market; Opportunities for the Taiwanese Automotive Industry
    Vehicle Technology Trends in Electronics for the North American Market; Opportunities for the Taiwanese Automotive Industry by December 2006 The statements, findings, and conclusions herein are those of the authors and do not necessarily reflect the views of the project sponsor. Table of Contents Table of Contents........................................................................................................................... i List of Tables................................................................................................................................. ii List of Figures ............................................................................................................................... ii List of Charts................................................................................................................................. ii Acknowledgements...................................................................................................................... iii Introduction ...................................................................................................................................1 Active Safety .................................................................................................................................2 Safety Systems..........................................................................................................................................2 Infotainment...............................................................................................................................................5
    [Show full text]
  • Development of a Calibration Tool Using CCP and XCP on CAN Bus
    Development of a Calibration Tool using CCP and XCP on CAN Bus Master Thesis Submitted in Fulfilment of the Requirements for the Academic Degree M.Sc. Dept. of Computer Science Chair of Computer Engineering Submitted by: Satyesh Shivam Student ID: 386595 Date: 14.11.2016 Supervising tutor: Prof. Dr. W. Hardt External Supervisor: Dipl-Ing Billand Dirk (Bosch Engineering Gmbh) Abstract Testing of the Electronic Control Unit is a very important step before delivering the software to customer. Due to increasing complexity in the requirements and the timing constraints, it is needed that the testing should be proper and on time. To meet the timing constraints it is needed to automate the entire process of testing. Although the current testing tool support the automation process, it is very slow. In this thesis a new tool has been developed which will support calibration using CCP and XCP on CAN bus. Secondly, the tool will also provide the feature of automation, where user can write their own script to test the ECU. This will make the entire process of testing very fast. Finally both the solutions will be compared with respect to time for deducing the final conclusion. Keywords: CCP, XCP, ECU Testing, Calibration, Design Patterns Acknowledgements I would like to show my greatest appreciation to Prof.Dr.Wolfram Hardt for giving me an opportunity to do my thesis under his guidance. I am grateful to Mr. Dirk Billand for being my supervisor and providing constant support in developing my thesis from all the directions. I appreciate the feedback offered by Mr.
    [Show full text]
  • MOVIDRIVE® MDX60B/61B Communication and Fieldbus Unit Profile
    Drive Technology \ Drive Automation \ System Integration \ Services MOVIDRIVE® MDX60B/61B Communication and Fieldbus Unit Profile Edition 04/2009 Manual 11264926 / EN SEW-EURODRIVE – Driving the world 1 General Information ............................................................................................... 6 1.1 How to use the documentation ...................................................................... 6 1.2 Structure of the safety notes .......................................................................... 6 1.3 Rights to claim under limited warranty ........................................................... 7 1.4 Exclusion of liability........................................................................................ 7 1.5 Copyright........................................................................................................ 7 2 Safety Notes ........................................................................................................... 8 2.1 Other applicable documentation .................................................................... 8 2.2 General notes on bus systems....................................................................... 8 2.3 Safety functions ............................................................................................. 8 2.4 Hoist applications........................................................................................... 8 2.5 Waste disposal..............................................................................................
    [Show full text]