Outline Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Outline Solutions Outline Solutions ["finitely generated" is sometimes abbreviated as f.g.] 1.1 1. By R.6, (a + 1)(b + 1) = a(b + 1) + b + 1 = ab + a + b + 1; expanding the second bracket first, we have (a + l)b + a + 1 = ab + b + a + 1, and a + b = b + a follows by cancellation. 2. The unit element is (0,1). 3. For a ring homomorphism we require ax + ay = a(x + y), ax.ay = axy, a.1 = 1; hence we require a = 1. 4. Products with 0,1 are clear. Z/(3) = {O, 1, 2}, where 22 = 1, Z/(4) = {O, 1,2, 3}, where 22 = 0,2.3 = 3.2 = 2,32 = 1. The first is a field , but not the second. 5. Routine verification (try 2 factors first) . 6. If the cyclic group has order m, this is just Z/(m). 7. Last part: AB S;; A, AB S;; B, hence AB S;; An B . Now 1 = a + b, where a E A, b E B, so if c E A n B, then c = aca + bca + acb + bcb E AB. 8. If X S;; Ai' then X S;; n~, hence (X) S;; nAi , where (X) is the ideal generated by X . Since X S;; (X), (X) is one of the Ai and we have equality. 9. (n). resp. (n)/(m), where nlm. 10. If x E X, Y E ~R(X), then xy = yx, so x E ~R(~R(X)); if X is commutative, then xy = yx for all x, y E X . 203 204 Introduction to Ring Theory 1.2 1. If x.y = x + y + xy, then (x.y).z = x + y + xy + z + xz + yz + xyz = x .(y.z), x .o = O.x = x and when x =1= -1, then x + y + xy = 0 has the solution -(1 + X)-lx. 2. Elements: 0, 1, a, a2, where a3 = 1. Addition: a + a = 0 (characteristic 2), 1 + a = a2 (it cannot be 0, 1 or a) . 3. If a E R is regular, then na = n1.a = 0 holds iff nl = 0, so a has the same order as 1, and this can be infinite or any positive integer. 4. aba = a in an integral domain implies ba = 1. For a counter-example in general take the monoid acting on infinite sequences (Ul, u2, . ) by the rules (Ul , U2,· .. )a = (0, Ul , U2,·· .) , (Ul, U2,· · .)b = (U2, U3' ·. ·) and take the ring generated by a and b. 5. If aba = 1, then ab is a left inverse and ba a right inverse of a, hence ab = ba is the inverse. 6. Put Me = {x E Mlx.l = ex}, where e = 0,1. Then Mo, Ml satisfy V.I-V.3 and x = (x - x .l) + x .l, so M = Mo + M l; clearly Mo n Ml = O. 7. Routine. 8. i, iii, iv, vi, vii. 9. Dimension n + 1 (basis:l, x, x2, ... , xn). 10. 1, x , x2 , . • . are linearly independent. 11. If v = Au, then v' = Qv = QAu = QAP-lU' . By reduction to Smith normal form A takes the form I ED 0 = diag(I, ... ,1,0, .. ,0). Since the rank remains unchanged, it is equal to the number of 1 's. 12. A has rank m iff its rows are linearly independent, i.e. XA = 0 =} X = O. When this is so, the m rows of A span pm, i.e. AA I = I for some A I ,and the converse is clear. Moreover, the rank is then m, so n ;::: m. 1.3 1. If Di(e) is the matrix with (i, i)-entry e and the rest zero, then for any diagonal matrix A = diag(al, ... , an), ADi(e) = Di(aie), Di(e)A = Di(ea;). 2. Routine. 3. If Au = Bu for all u , then Aei = Bei' i.e. the i-th columns of A and B agree. If Ul, ... , Un is a basis, then every vector U has the form U = L liUi, hence AUi = BUi for all i implies Au = Bu. 4. Routine. 5. The determinant of a triangular matrix is the product of the diagonal elements. 6. C = (C;j), where eij = 0 unless i < j , but there are only n - 1 steps from 1 to n, so any product of n or more e's is zero. Outline Solutions 205 7. Take an invertible matrix P with first column u such that Cu = 0 (e.g. u could be a non-zero column of ck, with the largest k such that C k =I- 0). Then p-1CP has the first column zero; now use induction on n. 8. If A = (aij), X = (Xij), then tr AX = Ers asrXrs = tr XA. Taking Xij = 1 and all other entries of X zero, we find tr AX = aji. 9. Put e12 = u, e21 = v, ell = UV, e22 = vu and check (1.14). 10. Routine. 11. bi-labl-jbk-Iabl-I = 8kjbi-Iabl-l. Rest clear. 12. Routine (try the 2 x 2 case first). 1.4 1. First part is routine. A can be defined as Zj(m)-module, provided that A has exponent dividing m (Le. mA = 0). 2. The condition for linear dependence of (ai' a2), (bl , b2) is: bi = Aai for some A E QX . Example: (4,6),(10,15). 3. Given x EMs and a E R, define x.a = x(af). 4. Routine. 5. Routine. 6. The bottom row reads: M jker 1 ~ im I; now use Theorem 1.21. 7. If M is generated by X = X' U X", where X' is the finite subset of X involved in the defining relations, then M = F' EB F", where F' is generated by X' with the defining relations for M and F" is free on X". 8. To get a left inverse for /3, take a free generating set of M" and map them to their inverse images under /3; any such mapping can be extended to a homomorphism. 9. Routine. 10. The direct sum of two cyclic groups of coprime orders rand s is cyclic of order rs. 1.5 1. Routine. 2. If f has an inverse g, then Ig = 1, gl = 1; if g' is another inverse, then g' = g'lg = g. 3. For any ring R, the mapping n f-t n.l R is a homomorphism; it is determined by the image of 1 which must be l R , so it is unique. Similarly, a f-t 0 is the only homomorphism to O. 4. The least, resp., greatest element. 5. Any skeleton of Ens has members of arbitrary cardinal and so cannot be small. 6. For each set S of n elements choose a fixed bijection from S to n and use it to translate mappings between sets. 206 Introduction to Ring Theory 7. If S, T, U are functors from I to A, and f: S ~ T, g: T ~ U are natural transformations, then fg : S ~ U is a natural transformation from S to U and the identity has the properties of a neutral element. 8. f: A ~ B can be factorized as f = gh, where 9 : A ~ Z, h : Z ~ B, with zero object Z; then g, h are uniquely determined by A, B resp., by the defin­ ition of Z as zero object. Of the four categories only Gp has a zero object. 9. The composition of morphisms that include Z among its source or target is uniquely defined, by definition of Z. 10. The initial object is easily seen to be Ip : P ~ P. 2.1 1. An endomorphism is A-linear and k is (isomorphic to) a subfield of A. 2. Routine. 3. If a E ~(A) and a f:. 0, then aA = A, so ab = 1 for some b, which must be the inverse of a. For any x E A, x = abx = xab = axb, hence bx = xb. 4. Routine. Substitute from (2.2) in (2.12). 5. Routine. If A has a unit element e, then in AI, el = Ie = e. 6. By Theorem 2.1, Al is embedded in kn +b hence so is A. 7. Routine. 8. (xy)ab = xab.y + x.yab + xa.yb + xb.ya; when we form [a, b], the last two terms cancel. 9. (exp d)-I = exp-d. 10. Associativity is clear. The rest follows from (x 1\ y) 1\ Z = (x 1 z)(S2 + S) 1 y - (y 1 z)(S2 + S) 1 x. 11. Routine. 12. Routine. 2.2 1. GdCi+I ~ kn, as right kn-module. 2. A + (B n A) = (A + B) n A by Theorem 2.6; A contains the left- and is contained in the right-hand side. 3. If f is injective but not surjective on M, then im f is a proper submodule isomorphic to M, giving rise to a strictly descending sequence im fn. For a surjective but not injective g, ker gn is a strictly ascending chain. 4. n must be a prime power. 5. If fi: Mi ~ Mi +I , then i(Mi) - i(Mi+1) = i(ker fi) - i(ker fi+I); now form the alternating sum. 6. Given N c M, take composition series of N and M / N. 7. The index (Z: Gi ) grows without bound, so any n fails to lie in some q. 8. Use Theorem 2.6. Outline Solutions 207 9. If (A+B)nC=AnC+BnC, then (A+C)n(B+C) = An(B+ C) + Cn(B+ C) = AnB+AnC+CnB+C ~ A nB + C. The opposite inclusion is clear. 10. If f: P -> M, then N n Pf = Nf-1 f for any submodule N of M, hence (A+ B)f-lf = (A + B) n Pf = AnPf + BnPf = Af-lf + Bf-1 f, hence (A + B)f-1 = (A + B) f-1 ff-1 ~ Af-1 + Bf-1 • For the converse apply the inclusion mapping of C in M.
Recommended publications
  • Leavitt Path Algebras
    Gene Abrams, Pere Ara, Mercedes Siles Molina Leavitt path algebras June 14, 2016 Springer vi Preface The great challenge in writing a book about a topic of ongoing mathematical research interest lies in determining who and what. Who are the readers for whom the book is intended? What pieces of the research should be included? The topic of Leavitt path algebras presents both of these challenges, in the extreme. Indeed, much of the beauty inherent in this topic stems from the fact that it may be approached from many different directions, and on many different levels. The topic encompasses classical ring theory at its finest. While at first glance these Leavitt path algebras may seem somewhat exotic, in fact many standard, well-understood algebras arise in this context: matrix rings and Laurent polynomial rings, to name just two. Many of the fundamental, classical ring-theoretic concepts have been and continue to be explored here, including the ideal structure, Z-grading, and structure of finitely generated projective modules, to name just a few. The topic continues a long tradition of associating an algebra with an appropriate combinatorial structure (here, a directed graph), the subsequent goal being to establish relationships between the algebra and the associated structures. In this particular setting, the topic allows for (and is enhanced by) visual, pictorial representation via directed graphs. Many readers are no doubt familiar with the by-now classical way of associating an algebra over a field with a directed graph, the standard path algebra. The construction of the Leavitt path algebra provides another such connection.
    [Show full text]
  • Lifting Defects for Nonstable K 0-Theory of Exchange Rings And
    LIFTING DEFECTS FOR NONSTABLE K0-THEORY OF EXCHANGE RINGS AND C*-ALGEBRAS FRIEDRICH WEHRUNG Abstract. The assignment (nonstable K0-theory), that to a ring R associates the monoid V(R) of Murray-von Neumann equivalence classes of idempotent infinite matrices with only finitely nonzero entries over R, extends naturally to a functor. We prove the following lifting properties of that functor: (i) There is no functor Γ, from simplicial monoids with order-unit with nor- malized positive homomorphisms to exchange rings, such that V ◦ Γ =∼ id. (ii) There is no functor Γ, from simplicial monoids with order-unit with normalized positive embeddings to C*-algebras of real rank 0 (resp., von Neumann regular rings), such that V ◦ Γ =∼ id. 3 (iii) There is a {0, 1} -indexed commutative diagram D~ of simplicial monoids that can be lifted, with respect to the functor V, by exchange rings and by C*-algebras of real rank 1, but not by semiprimitive exchange rings, thus neither by regular rings nor by C*-algebras of real rank 0. By using categorical tools (larders, lifters, CLL) from a recent book from the author with P. Gillibert, we deduce that there exists a unital exchange ring of cardinality ℵ3 (resp., an ℵ3-separable unital C*-algebra of real rank 1) R, with stable rank 1 and index of nilpotence 2, such that V(R) is the positive cone of a dimension group but it is not isomorphic to V(B) for any ring B which is either a C*-algebra of real rank 0 or a regular ring.
    [Show full text]
  • Free Ideal Rings and Localization in General Rings
    This page intentionally left blank Free Ideal Rings and Localization in General Rings Proving that a polynomial ring in one variable over a field is a principal ideal domain can be done by means of the Euclidean algorithm, but this does not extend to more variables. However, if the variables are not allowed to commute, giving a free associative algebra, then there is a generalization, the weak algorithm, which can be used to prove that all one-sided ideals are free. This book presents the theory of free ideal rings (firs) in detail. Particular emphasis is placed on rings with a weak algorithm, exemplified by free associative algebras. There is also a full account of localization, which is treated for general rings, but the features arising in firs are given special attention. Each section has a number of exercises, including some open problems, and each chapter ends in a historical note. paul cohn is Emeritus Professor of Mathematics at the University of London and Honorary Research Fellow at University College London. NEW MATHEMATICAL MONOGRAPHS Editorial Board B´ela Bollob´as William Fulton Frances Kirwan Peter Sarnak Barry Simon For information about Cambridge University Press mathematics publications visit http://publishing.cambridge.org/stm/mathematics Already published in New Mathematical Monographs: Representation Theory of Finite Reductive Groups Marc Cabanes, Michel Enguehard Harmonic Measure John B. Garnett, Donald E. Marshall Heights in Diophantine Geometry Enrico Bombieri, Walter Gubler Free Ideal Rings and Localization in General Rings P. M. COHN Department of Mathematics University College London Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge ,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521853378 © Cambridge University Press 2006 This publication is in copyright.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title One-sided prime ideals in noncommutative algebra Permalink https://escholarship.org/uc/item/7ts6k0b7 Author Reyes, Manuel Lionel Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California One-sided prime ideals in noncommutative algebra by Manuel Lionel Reyes A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Tsit Yuen Lam, Chair Professor George Bergman Professor Koushik Sen Spring 2010 One-sided prime ideals in noncommutative algebra Copyright 2010 by Manuel Lionel Reyes 1 Abstract One-sided prime ideals in noncommutative algebra by Manuel Lionel Reyes Doctor of Philosophy in Mathematics University of California, Berkeley Professor Tsit Yuen Lam, Chair The goal of this dissertation is to provide noncommutative generalizations of the following theorems from commutative algebra: (Cohen's Theorem) every ideal of a commutative ring R is finitely generated if and only if every prime ideal of R is finitely generated, and (Kaplan- sky's Theorems) every ideal of R is principal if and only if every prime ideal of R is principal, if and only if R is noetherian and every maximal ideal of R is principal. We approach this problem by introducing certain families of right ideals in noncommutative rings, called right Oka families, generalizing previous work on commutative rings by T. Y. Lam and the author. As in the commutative case, we prove that the right Oka families in a ring R correspond bi- jectively to the classes of cyclic right R-modules that are closed under extensions.
    [Show full text]
  • TWO RESULTS on PROJECTIVE MODULES We Wish to Present Two Results. the First Is from the Paper Pavel Prıhoda, Projective Modules
    TWO RESULTS ON PROJECTIVE MODULES ANDREW HUBERY We wish to present two results. The first is from the paper Pavel Pˇr´ıhoda, Projective modules are determined by their radical factors, J. Pure Applied Algebra 210 (2007) 827{835. Theorem A. Let Λ be a ring, with Jacobson radical J, and let P and Q be two projective (right) Λ-modules. Then we can lift any isomorphism f¯: P=P J −!∼ Q=QJ to an isomorphism f : P −!∼ Q. In particular, projective modules are determined by their tops. Special cases have been known for a long time. For example, we say that Λ is right perfect if every right Λ-module admits a projective cover. Then P P=P J is a projective cover, so the result follows (Bass 1960). In general, though, P ! P=P J will not be a projective cover. Beck (1972) showed that if P=P J is a free Λ=J-module, then P is free. Note that if J = 0 then the theorem tells us nothing! The second result is from the appendix to the paper Michael Butler and Alastair King, Minimal resolutions of algebras, J. Algebra 212 (1999) 323{362. Theorem B. Let Λ = TA(M) be an hereditary tensor algebra, where A is semisim- ple and M is an A-bimodule. Then every projective module is isomorphic to an induced module, so one of the form X ⊗A Λ; equivalently, every projective module is gradable. This is trivial if there are no oriented cycles; that is, if the graded radical Λ+ is nilpotent, so Λ is semiprimary and J(Λ) = Λ+.
    [Show full text]
  • The Jacobson Radical of Commutative Semigroup Rings
    JOURNAL OF ALGEBRA 150, 378-387 (1992) The Jacobson Radical of Commutative Semigroup Rings A. V. KELAREV Department of Mathematics, Ural State Unirersity, Lenina 51, Ekatherhtburg, 620083 Russia Communicated by T. E. llall Received January 26, 1990 In this paper we consider semiprimitive commutative semigroup rings and related matters. A ring is said to be semiprhnitive if the Jacobson radical of it is equal to zero. This property is one of the most important in the theory of semigroup rings, and there is a prolific literature pertaining to the field (see 1,,14]). All semiprimitive rings are contained in another interesting class of rings. Let 8 denote the class of rings R such that ~/(R) = B(R), where J and B are the Jacobson and Baer radicals. Clearly, every semiprimitive ring is in 6". This class, appears, for example, in the theory of Pl-rings and in com- mutative algebra. (In particular, every finitely generated PI-ring and every Hilbert ring are in 6".) Therefore, it is of an independent interest. Meanwhile it is all the more interesting because any characterization of the semigroup rings in 6" will immediately give us a description of semi- primitive semigroup rings. Indeed, a ring R is semiprimitive if and only if R~6" and R is semiprime, i.e., B(R)=O. Semiprime commutative semi- group rings have been described by Parker and Giimer 1,12] and, in other terms, by Munn [9]. So it suffices to characterize semigroup rings in 6". Semigroup rings of 6" were considered by Karpilovsky r5], Munn 1,6-9], Okninski 1-10-h and others.
    [Show full text]
  • ON REDUCED MODULES and RINGS Mangesh B. Rege and A. M. Buhphang 1. INTRODUCTION a Ring Is Reduced If It Has No Nonzero Nilpotent
    International Electronic Journal of Algebra Volume 3 (2008) 58-74 ON REDUCED MODULES AND RINGS Mangesh B. Rege and A. M. Buhphang Received: 20 March 2007; Revised: 11 December 2007 Communicated by Abdullah Harmancı Abstract. In this paper we extend several results known for reduced rings to reduced modules. We prove that for a semiprime module or a module with zero Jacobson radical, the concepts of reduced, symmetric, ps-Armendariz and ZI modules coincide. New examples of reduced modules are furnished: flat mod- ules over reduced rings and modules with zero Jacobson radical over left quo rings are reduced. Rings over which all modules are reduced/symmetric are characterized. Mathematics Subject Classification (2000): 16S36, 16D80 Keywords: reduced modules, semiprime modules, ZI modules, ps-Armendariz modules 1. INTRODUCTION A ring is reduced if it has no nonzero nilpotent elements. Reduced rings have been studied for over forty years ( see [19] ), and the reduced ring Rred = R=Nil(R) associated with a commutative ring R has been of interest to commutative alge- braists. Recently the reduced ring concept was extended to modules by Lee and Zhou in [15] and the relationship of reduced modules with ( what we call as ) ZI modules was studied by Baser and Agayev in [5]. In this paper we extend several results involving reduced rings and related rings to modules. All our rings are associative with identity, subrings and ring homomorphisms are unitary and - unless otherwise mentioned - modules are unitary left modules. Domains need not be commutative. R denotes a ring and M denotes an R-module. Module homomorphisms are written on the side opposite that of scalars.
    [Show full text]
  • Exchange Rings and Their Extensions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 179 (2003) 117–126 www.elsevier.com/locate/jpaa Exchange rings and their extensions Chan Yong Honga;∗ , NamKyun Kim b , Yang Leec aDepartment of Mathematics and Research Institute for Basic Sciences Kyung Hee University, Seoul 130-701, South Korea bDivision of General Education, Hanbat National University, Daejeon 305-719, South Korea cDepartment of Mathematics, Pusan National University, Pusan 609-735, South Korea Received 29 September 2001; received in revised form 9 July 2002 Communicated by M.-F. Roy Abstract A ring R is called to be exchange if the right regular module RR has ÿnite exchange property. We continue in this paper the study of exchange rings by several authors. In particular, we investigate the von Neumann regularity of exchange rings. In addition, we also study whether the exchange property is inherited by some extensions of exchange rings. c 2003 Elsevier Science B.V. All rights reserved. MSC: 16E50; 16L30 0. Introduction Throughout this paper, all rings are associative with identity and all modules are unitary. Given a ring R, J(R) denotes the Jacobson radical of R. Let MR be a right R-module. Following Crawley and JÃonsson [6], MR is said to have the exchange prop- erty if for every module A and any two decompositions of A R R AR = MR ⊕ NR = Ai i∈I with M ∼= M , there exist submodules A ⊆ A such that R R i i AR = MR ⊕ Ai : i∈I ∗ Corresponding author.
    [Show full text]
  • The Euclidean Criterion for Irreducibles 11
    THE EUCLIDEAN CRITERION FOR IRREDUCIBLES PETE L. CLARK Abstract. We recast Euclid's proof of the infintitude of prime numbers as a Euclidean Criterion for a domain to have infinitely many irreducible el- ements. We make connections with Furstenberg's \topological" proof of the infinitude of prime numbers and show that our criterion applies even in certain domains in which not all nonzero nonunits factor into products of irreducibles. 1. Introduction This article has its genesis in the first meeting of a graduate VIGRE research group taught by Paul Pollack and me in Fall 2015: Introduction to the Process of Math- ematical Research. Rather than concentrating on a fixed, presumably auspicious, topic preselected by us, this group had the less orthodox goal of guiding students through the process of selecting and performing research on their own. One technique we wished to inculcate is the exploitation of the many-to-one re- lation between theorems and proofs. A good theorem has several different proofs, and you will know two proofs are different when one of them can be used to prove further theorems that the other cannot. We presented several { I believe seven { proofs of Euclid's Proposition IX.20: there are infinitely many prime numbers. The first proof I presented was Euclid's proof, dressed up in the language of algebra: if you have a domain (some say \integral domain") which is not a field, in which each nonzero nonunit factors into irreducibles and whenever 0 6= x is not a unit then x + 1 is not a unit, then there is at least one irreducible element f1, and given irreducibles f1; : : : ; fn then by factoring f1 ··· fn +1 you get a new irreducible element.
    [Show full text]
  • On Pairs of Subrings with a Common Set of Proper Ideals
    ON PAIRS OF SUBRINGS WITH A COMMON SET OF PROPER IDEALS YASUYUKI HIRANO AND HISAYA TSUTSUI Received 5 July 2005 A study of pairs of commutative rings with the same set of prime ideals appears in the literature. In this paper, we investigate pairs of subrings, not necessarily commutative, with a common set of proper ideals. Throughout, all rings are associative with an identity element but not necessarily com- mutative. During the decade of 1980s, a series of papers appeared in the Canadian Journal of Mathematics [1, 2] that had investigated pairs of commutative rings with the same set of prime ideals. In this paper, we consider some generalizations of that study in the non- commutative setting. Consider the ring R = HomD(V,V), where V is a vector space over a division ring D V =ℵ ω K R with dimD( ) ω0 ( 0 is the first limit ordinal). Let be any subfield of the center of , M ={f ∈ V V | f V < ℵ } S = K M S R HomD( , ) dim ( ) ω0 ,and + .Then and have the same set of countably many prime ideals. Further, R and S have the same set of ideals since all of their proper ideals are prime ideals. (See Blair and Tsutsui [4]). We will first observe that examples of this nature are limited in the commutative setting. It is an immediate consequence of Theorem 1 that the only possible pairs of a commutative ring R and its proper unital subring S with the same set of proper ideals are fields. We will then briefly investigate pairs of subrings with a common ideal.
    [Show full text]
  • Idempotents and the Multiplicative Group of Some Totally Bounded Rings
    Czechoslovak Mathematical Journal Mohamed A. Salim; Adela Tripe Idempotents and the multiplicative group of some totally bounded rings Czechoslovak Mathematical Journal, Vol. 61 (2011), No. 2, 509–519 Persistent URL: http://dml.cz/dmlcz/141549 Terms of use: © Institute of Mathematics AS CR, 2011 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 61 (136) (2011), 509–519 IDEMPOTENTS AND THE MULTIPLICATIVE GROUP OF SOME TOTALLY BOUNDED RINGS Mohamed A. Salim, Al Ain, Adela Tripe, Oradea (Received March 10, 2010) Abstract. In this paper, we extend some results of D. Dolzan on finite rings to profi- nite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property ℵ of Mersenne numbers, we construct a family of power 2 0 commutative non-isomorphic profinite semiprimitive rings with monothetic group of units. Keywords: compact ring, group of units, Jacobson radical, left linearly compact ring, Mersenne number, monothetic group, primary ring, summable set, totally bounded ring MSC 2010 : 16W80, 16U60, 22C05, 22D05 1. Introduction The class of profinite rings can be viewed as a natural generalization of the class of finite rings.
    [Show full text]
  • Stably Free Modules Over Innite Group Algebras
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Department of Mathematics University College London Stably free modules over infinite group algebras Pouya Kamali A thesis submitted for the degree of Doctor of Philosophy Supervisor: Professor F.E.A. Johnson June 2010 1 I, Pouya Kamali, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. ..................................................... 2 Abstract We study finitely generated stably-free modules over infinite integral group algebras by using the language of cyclic algebras and relating it to well-known results in K-theory. For G a free or free abelian group and Q8n, the quaternionic group of order 8n, we show that there exist infinitely many isomorphically distinct stably-free modules of rank 1 over the integral group algebra of the group Γ = Q8n × G whenever n admits an odd divisor. This result implies that the stable class of the augmentation ideal Ω1(Z) displays infinite splitting at minimal level whenever G is the free abelian group on at least 2 generators. This is of relevance to low dimensional topol- ogy, in particular when computing homotopy modules of a cell complex with fundamental group Γ. 3 Acknowledgements First and foremost, I would like to thank my supervisor, Professor F.E.A. Johnson, who accepted me as his student and introduced me to the fascinat- ing subject of algebraic K-theory. My mathematical personality has greatly been shaped by his generous attitude towards research, but also by the man- ner in which he communicated it.
    [Show full text]