The Emerging Role of New Protein Scaffold-Based Agents for Treatment of Cancer ULRICH H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Affibody Molecules for Epidermal Growth Factor Receptor Targeting
Journal of Nuclear Medicine, published on January 21, 2009 as doi:10.2967/jnumed.108.055525 Affibody Molecules for Epidermal Growth Factor Receptor Targeting In Vivo: Aspects of Dimerization and Labeling Chemistry Vladimir Tolmachev1-3, Mikaela Friedman4, Mattias Sandstrom¨ 5, Tove L.J. Eriksson2, Daniel Rosik2, Monika Hodik1, Stefan Sta˚hl4, Fredrik Y. Frejd1,2, and Anna Orlova1,2 1Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; 2Affibody AB, Bromma, Sweden; 3Department of Medical Sciences, Nuclear Medicine, Uppsala University, Uppsala, Sweden; 4Division of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden; and 5Section of Hospital Physics, Department of Oncology, Uppsala University Hospital, Uppsala, Sweden Noninvasive detection of epidermal growth factor receptor (EGFR) expression in malignant tumors by radionuclide molecu- he epidermal growth factor receptor (EGFR; other lar imaging may provide diagnostic information influencing pa- T designations are HER1 and ErbB-1) is a transmembrane tient management. The aim of this study was to evaluate a tyrosine kinase receptor that regulates cell proliferation, novel EGFR-targeting protein, the ZEGFR:1907 Affibody molecule, for radionuclide imaging of EGFR expression, to determine a motility, and suppression of apoptosis (1). Overexpression suitable tracer format (dimer or monomer) and optimal label. of EGFR is documented in several malignant tumors, such Methods: An EGFR-specific Affibody molecule, ZEGFR:1907, as carcinomas of the breast, urinary bladder, and lung, and 111 and its dimeric form, (ZEGFR:1907)2, were labeled with In using is associated with poor prognosis (2). A high level of EGFR 125 benzyl-diethylenetriaminepentaacetic acid and with I using expression could provide malignant cells with an advantage p-iodobenzoate. -
The Role of Immunogenic Cell Death
University of Southern Denmark Current approaches for combination therapy of cancer The role of immunogenic cell death Asadzadeh, Zahra; Safarzadeh, Elham; Safaei, Sahar; Baradaran, Ali; Mohammadi, Ali; Hajiasgharzadeh, Khalil; Derakhshani, Afshin; Argentiero, Antonella; Silvestris, Nicola; Baradaran, Behzad Published in: Cancers DOI: 10.3390/cancers12041047 Publication date: 2020 Document version: Final published version Document license: CC BY Citation for pulished version (APA): Asadzadeh, Z., Safarzadeh, E., Safaei, S., Baradaran, A., Mohammadi, A., Hajiasgharzadeh, K., Derakhshani, A., Argentiero, A., Silvestris, N., & Baradaran, B. (2020). Current approaches for combination therapy of cancer: The role of immunogenic cell death. Cancers , 12(4), [1047]. https://doi.org/10.3390/cancers12041047 Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply: • You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to [email protected] Download date: 04. Oct. 2021 cancers Review Current -
Wo2015188839a2
Downloaded from orbit.dtu.dk on: Oct 08, 2021 General detection and isolation of specific cells by binding of labeled molecules Pedersen, Henrik; Jakobsen, Søren; Hadrup, Sine Reker; Bentzen, Amalie Kai; Johansen, Kristoffer Haurum Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Pedersen, H., Jakobsen, S., Hadrup, S. R., Bentzen, A. K., & Johansen, K. H. (2015). General detection and isolation of specific cells by binding of labeled molecules. (Patent No. WO2015188839). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/188839 -
Supp. Table S2: Domains and Protein Families with a Putative Role in Host-Symbiont Interactions
Supp. Table S2: Domains and protein families with a putative role in host-symbiont interactions. The domains and protein families listed here were included in the comparisons in Figure 5 and Supp. Figure S5, which show the percentage of the respective protein groups in the Riftia symbiont metagenome and in metagenomes of other symbiotic and free-living organisms. % bacterial, total number bacterial: Percentage and total number of bacterial species in which this domain is found in the SMART database (January 2019). Domain name Pfam/SMART % bacterial (total Literature/comment annotation number bacterial) Alpha-2- alpha-2- A2M: 42.05% (2057) A2Ms: protease inhibitors which are important for eukaryotic macroglobulin macroglobulin innate immunity, if present in prokaryotes apparently fulfill a family (A2M), similar role, e.g. protection against host proteases (1) including N- terminal MG1 domain ANAPC Anaphase- APC2: 0 Ubiquitin ligase, important for cell cycle control in eukaryotes (2) promoting complex Bacterial proteins might interact with ubiquitination pathways in subunits the host (3) Ankyrin Ankyrin repeats 10.88% (8348) Mediate protein-protein interactions without sequence specificity (4) Sponge symbiont ankyrin-repeat proteins inhibit amoebal phagocytosis (5) Present in sponge microbiome metatranscriptomes, putative role in symbiont-host interactions (6) Present in obligate intracellular amoeba symbiont Candidatus Amoebophilus asiaticus genome, probable function in interactions with the host (7) Armadillo Armadillo repeats 0.83% (67) -
Fig. 1C Combination Therapy of Tumor Targeted ICOS Agonists with T-Cell Bispecific Molecules
( (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07K 16/30 (2006.01) A61P 35/00 (2006.01) kind of national protection av ailable) . AE, AG, AL, AM, C07K 16/28 (2006.01) A 6IK 39/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, C07K 16/40 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) International Application Number: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, PCT/EP20 18/086046 KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 20 December 2018 (20. 12.2018) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available) . ARIPO (BW, GH, 17209444.3 2 1 December 2017 (21. 12.2017) EP GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant (for all designated States except US): F. HOFF- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, MANN-LA ROCHE AG [CH/CH]; Grenzacherstrasse EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 124, 4070 Basel (CH). -
Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage
Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage by Griffin James Clausen B.S. Biomedical Engineering University of Minnesota – Twin Cities, 2012 Submitted to the Department of Biological Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Engineering at the Massachusetts Institute of Technology February 2019 © 2019 Massachusetts Institute of Technology. All rights reserved. Signature of Author: ____________________________________________________________ Griffin Clausen Department of Biological Engineering January 14, 2019 Certified by: ___________________________________________________________________ Angela Belcher James Mason Crafts Professor of Biological Engineering and Materials Science Thesis Supervisor Accepted by: ___________________________________________________________________ Forest White Professor of Biological Engineering Graduate Program Committee Chair This doctoral thesis has been examined by the following committee: Amy Keating Thesis Committee Chair Professor of Biology and Biological Engineering Massachusetts Institute of Technology Angela Belcher Thesis Supervisor James Mason Crafts Professor of Biological Engineering and Materials Science Massachusetts Institute of Technology Paul Blainey Core Member, Broad Institute Associate Professor of Biological Engineering Massachusetts Institute of Technology 2 Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage by Griffin James Clausen Submitted -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Strategies and Challenges for the Next Generation of Therapeutic Antibodies
FOCUS ON THERAPEUTIC ANTIBODIES PERSPECTIVES ‘validated targets’, either because prior anti- TIMELINE bodies have clearly shown proof of activity in humans (first-generation approved anti- Strategies and challenges for the bodies on the market for clinically validated targets) or because a vast literature exists next generation of therapeutic on the importance of these targets for the disease mechanism in both in vitro and in vivo pharmacological models (experi- antibodies mental validation; although this does not necessarily equate to clinical validation). Alain Beck, Thierry Wurch, Christian Bailly and Nathalie Corvaia Basically, the strategy consists of develop- ing new generations of antibodies specific Abstract | Antibodies and related products are the fastest growing class of for the same antigens but targeting other therapeutic agents. By analysing the regulatory approvals of IgG-based epitopes and/or triggering different mecha- biotherapeutic agents in the past 10 years, we can gain insights into the successful nisms of action (second- or third-generation strategies used by pharmaceutical companies so far to bring innovative drugs to antibodies, as discussed below) or even the market. Many challenges will have to be faced in the next decade to bring specific for the same epitopes but with only one improved property (‘me better’ antibod- more efficient and affordable antibody-based drugs to the clinic. Here, we ies). This validated approach has a high discuss strategies to select the best therapeutic antigen targets, to optimize the probability of success, but there are many structure of IgG antibodies and to design related or new structures with groups working on this class of target pro- additional functions. -
International Patent Classification: KR, KW, KZ, LA, LC, LK, LR, LS, LU
( 2 (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 39/42 (2006.01) C07K 16/10 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, C07K 16/08 (2006.01) KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/US20 19/033 995 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (22) International Filing Date: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 24 May 2019 (24.05.2019) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available) . ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (26) Publication Language: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/676,045 24 May 2018 (24.05.2018) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (71) Applicant: LANKENAU INSTITUTE FOR MEDICAL TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, RESEARCH [US/US]; 100 Lancaster Avenue, Wyn- KM, ML, MR, NE, SN, TD, TG). -
2010.01) C07k 14/74 (2006.01
( (51) International Patent Classification: su 215 123 (CN). LIN, Yanni; F2, Building B20, Sangt- C07K 19/00 (2006.0 1) C12N 5/0783 (20 10.01) ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu C07K 14/74 (2006.01) A61K 35/1 7 (2015.01) 215123 (CN). ZHENG, Xiaocui; F2, Building B20, Sangt- C12N 15/62 (2006.01) A61P 35/00 (2006.01) ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215123 (CN). KONG, Hongmei; F2, Building B20, Sangt- (21) International Application Number: ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu PCT/ CN2020/ 1081 16 215123 (CN). WANG, Wenbo; F2, Building B20, Sangtian (22) International Filing Date: Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215 123 10 August 2020 (10.08.2020) (CN). FENG, Aihua; F2, Building B20, Sangtian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215 123 (CN). (25) Filing Language: English (74) Agent: J. Z. M. C. PATENT AND TRADEMARK LAW (26) Publication Language: English OFFICE (GENERAL PARTNERSHIP); YU, Mingwei, (30) Priority Data: Room 5022, No. 335, Guo Ding Road, Yang Pu District, 201910746355.8 13 August 2019 (13.08.2019) CN Shanghai 200433 (CN). PCT/ CN20 19/124321 (81) Designated States (unless otherwise indicated, for every 10 December 2019 (10. 12.2019) CN kind of national protection av ailable) . AE, AG, AL, AM, (71) Applicant: CURE GENETICS CO., LTD. [CN/CN]; AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, Biobay A4-5 10, Xinghu Street 218, Suzhou Industrial Park, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, Suzhou, Jiangsu 215 123 (CN). -
Article in Press
G Model MIMM-4561; No. of Pages 12 ARTICLE IN PRESS Molecular Immunology xxx (2015) xxx–xxx Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Review Alternative molecular formats and therapeutic applications for ଝ bispecific antibodies ∗ Christoph Spiess, Qianting Zhai, Paul J. Carter Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA a r t i c l e i n f o a b s t r a c t Article history: Bispecific antibodies are on the cusp of coming of age as therapeutics more than half a century after they Received 28 November 2014 ® were first described. Two bispecific antibodies, catumaxomab (Removab , anti-EpCAM × anti-CD3) and Received in revised form ® blinatumomab (Blincyto , anti-CD19 × anti-CD3) are approved for therapy, and >30 additional bispecific 30 December 2014 antibodies are currently in clinical development. Many of these investigational bispecific antibody drugs Accepted 2 January 2015 are designed to retarget T cells to kill tumor cells, whereas most others are intended to interact with two Available online xxx different disease mediators such as cell surface receptors, soluble ligands and other proteins. The modular architecture of antibodies has been exploited to create more than 60 different bispecific antibody formats. Keywords: These formats vary in many ways including their molecular weight, number of antigen-binding sites, Bispecific antibodies spatial relationship between different binding sites, valency for each antigen, ability to support secondary Antibody engineering Antibody therapeutics immune functions and pharmacokinetic half-life. These diverse formats provide great opportunity to tailor the design of bispecific antibodies to match the proposed mechanisms of action and the intended clinical application. -
WO 2014/152006 A2 25 September 2014 (25.09.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/152006 A2 25 September 2014 (25.09.2014) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 39/395 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US20 14/026804 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 13 March 2014 (13.03.2014) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/791,953 15 March 2013 (15.03.2013) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant: INTRINSIC LIFESCIENCES, LLC UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/US]; 505 Coast Boulevard South, Suite 408, La Jolla, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, California 92037 (US).