Biowulf Communication Comparisons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intermedia: a System for Linking Multimedia Documents. IRIS
DOCUMENT RESUME ED 296 735 IR 052 399 AUTHOR Yankelovich, Nicole TITLE Intermedia: A System for Linking Multimrdia Documents. IRIS Technical Report 86-2. INSTITUTION Brown Univ., Providence, RI. Inst. for Research in Information and Scholarship. PUB DATE 86 NOTE 19p. PUB TYPE Reports - Descriptive (141) EDRS PRICE MF01/PC01 Plus Postage. D'1CRIPTORS Bibliographic Coupling; *Computer Assisted Instruction; Computer Graphics; *Computer System Design; Higher Education; *Information Retrieval; *Man Machine Systems; *Multimedia Instruction; Word Processing IDENTIFIERS *Hypermedia ABSTRACT "Intermedia" is a hypermedia system which was developed for use in university research and teaching. It provides a framework for object-oriented, direct manipulation editors and applications, and the capability to link together materials created with those applications. Instructors are able to construct exploratory environments for their students as well as use applications for their day-to-day work, research, and writing. This paper provides a discussion of hypermedia systems in general, as well as a description of the Intermedia system which focuses on several important user features, and illustrates the operation of the system thrw,h a sample session. The text is supplemented by 15 figures. (19 references) (Author/EW) *********************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. *********************************************************************** INTERMEDIA: A System for customizing, visualizing, integratingand 0 Linking Multimedia Documents retrieving information. oi This paper describes Intermedia,one such tool designed for use in theuniversity O Nicole Yankelovich environment. The system, developedat Lid "PERMISSION TO REPRODUCE THIS Brown University's Institute for Researchin MATERIAL HAS BEEN GRANTED BY Information and Scholarship (IRIS),contains U.S. -
Ocaml Standard Library Ocaml V
OCaml Standard Library OCaml v. 3.12.0 | June 7, 2011 | Copyright c 2011 OCamlPro SAS | http://www.ocamlpro.com/ Standard Modules module List module Array Basic Data Types let len = List.length l let t = Array.create len v let t = Array.init len (fun pos -> v_at_pos) Pervasives All basic functions List.iter (fun ele -> ... ) l; let v = t.(pos) String Functions on Strings let l' = List.map(fun ele -> ... ) l t.(pos) <- v; Array Functions on Polymorphic Arrays let l' = List.rev l1 let len = Array.length t List Functions on Polymorphic Lists let acc' = List.fold left (fun acc ele -> ...) acc l let t' = Array.sub t pos len Char Functions on Characters let acc' = List.fold right (fun ele acc -> ...) l acc let t = Array.of_list list Int32 Functions on 32 bits Integers if List.mem ele l then ... let list = Array.to_list t Int64 Functions on 64 bits Integers if List.for all (fun ele -> ele >= 0) l then ... Array.iter (fun v -> ... ) t; Nativeint Functions on Native Integers if List.exists (fun ele -> ele < 0) l then ... let neg = List.find (fun x -> x < 0) ints Array.iteri (fun pos v -> ... ) t; Advanced Data Types let negs = List.find all (fun x -> x < 0) ints let t' = Array.map (fun v -> ... ) t let t' = Array.mapi (fun pos v -> ... ) t Buffer Automatically resizable strings let (negs,pos) = List.partition (fun x -> x < 0) ints let ele = List.nth 2 list let concat = Array.append prefix suffix Complex Complex Numbers Array.sort compare t; Digest MD5 Checksums let head = List.hd list Hashtbl Polymorphic Hash Tables let tail = List.tl list let value = List.assoc key assocs Queue Polymorphic FIFO module Char Stack Polymorphic LIFO if List.mem assoc key assocs then .. -
Io — I/O Functions
Title stata.com io — I/O functions Contents Description Remarks and examples Reference Also see Contents [M-5] Manual entry Function Purpose Console output printf( ) printf() display sprintf() display into string errprintf( ) errprintf() display error message display( ) display() display text interpreting SMCL displayas( ) displayas() set whether output is displayed displayflush( ) displayflush() flush terminal output buffer liststruct( ) liststruct() list structure’s contents more( ) more() create --more-- condition setmore() query or set more on or off setmoreonexit() set more on or off on exit File directories direxists( ) direxists() whether directory exists dir( ) dir() file list chdir( ) pwd() obtain current working directory chdir() change current working directory mkdir() make new directory rmdir() remove directory File management findfile( ) findfile() find file fileexists( ) fileexists() whether file exists cat( ) cat() read file into string matrix unlink( ) unlink() erase file adosubdir( ) adosubdir() obtain ado-subdirectory for file 1 2 io — I/O functions File I/O fopen( ) fopen() open file fclose() close file fget() read line of ASCII file fgetnl() same, but include newline character fread() read k bytes of binary file fput() write line into ASCII file fwrite() write k bytes into binary file fgetmatrix() read matrix fputmatrix() write matrix fstatus() status of last I/O command ftell() report location in file fseek() seek to location in file ftruncate() truncate file at current position ferrortext( ) ferrortext() error text of file error code freturncode() -
UNIX Shell Programming (15CS35) Solution Internal Assessment
UNIX Shell Programming (15CS35) Solution Internal Assessment- II November - 2016 1. Explain significance of following commands (2x5=10 M) i. cp ?????? progs Wild card ? matches any single character, hence the above command (cp) copies files whose names are six in length to progs directory ii. ls *.[xyz]* Wild card * matches any number of characters, hence the above command (ls) lists all the files having extension as either x, or y or z. iii. ls jones[0-9][0- 9][0-9] In the above command the character class[0-9] matches any digit between 0 to 9. Hence the above command lists all the files beginning with jones and having last three characters as any digit between 0 to 9. iv. echo * The above command lists all the file in the current directory. v. cp foo foo* The above command copies the file foo to file called foo*. Here the wild card * loses its meaning. 1. Write UNIX commands for the following (2 X 5= 10 M) i. Find and replace all the occurrences of unix with UNIX in the file after confirming the user. : 1,$s/unix/UNIX/gc ii. List all the files in the current directory which names are having exactly 5 characters and any number of characters in their extension. ls ?????.* iii. Copy all files stored in /home/vtu with .c, .cpp and .java extensions to progs sub- directory in current directory cp /home/vtu/*.{c,cpp,java} ./progs iv. Delete all files containing agra or agar in their file names. rm *ag[ra][ar]* v. -
Beginning Portable Shell Scripting from Novice to Professional
Beginning Portable Shell Scripting From Novice to Professional Peter Seebach 10436fmfinal 1 10/23/08 10:40:24 PM Beginning Portable Shell Scripting: From Novice to Professional Copyright © 2008 by Peter Seebach All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher. ISBN-13 (pbk): 978-1-4302-1043-6 ISBN-10 (pbk): 1-4302-1043-5 ISBN-13 (electronic): 978-1-4302-1044-3 ISBN-10 (electronic): 1-4302-1044-3 Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1 Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. Lead Editor: Frank Pohlmann Technical Reviewer: Gary V. Vaughan Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh Project Manager: Richard Dal Porto Copy Editor: Kim Benbow Associate Production Director: Kari Brooks-Copony Production Editor: Katie Stence Compositor: Linda Weidemann, Wolf Creek Press Proofreader: Dan Shaw Indexer: Broccoli Information Management Cover Designer: Kurt Krames Manufacturing Director: Tom Debolski Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013. -
101 Useful Linux Commands - Haydenjames.Io
101 Useful Linux Commands - haydenjames.io Some of these commands require elevated permissions (sudo) to run. Enjoy! 1. Execute the previous command used: !! 2. Execute a previous command starting with a specific letter. Example: !s 3. Short way to copy or backup a file before you edit it. For example, copy nginx.conf cp nginx.conf{,.bak} 4. Toggle between current directory and last directory cd - 5. Move to parent (higher level) directory. Note the space! cd .. 6. Go to home directory cd ~ 7. Go to home directory cd $HOME 8. Go to home directory (when used alone) cd 9. Set permissions to 755. Corresponds to these permissions: (-rwx-r-x-r-x), arranged in this sequence: (owner-group-other) chmod 755 <filename> 10. Add execute permission to all users. chmod a+x <filename> 11. Changes ownership of a file or directory to . chown <username> 12. Make a backup copy of a file (named file.backup) cp <file> <file>.backup 13. Copy file1, use it to create file2 cp <file1> <file2> 14. Copy directory1 and all its contents (recursively) into directory2 cp -r <directory1> <directory2>/ 15. Display date date 16. Zero the sdb drive. You may want to use GParted to format the drive afterward. You need elevated permissions to run this (sudo). dd if=/dev/zero of=/dev/sdb 17. Display disk space usage df -h 18. Take detailed messages from OS and input to text file dmesg>dmesg.txt 19. Display a LOT of system information. I usually pipe output to less. You need elevated permissions to run this (sudo). -
Linux Fundamentals (GL120) U8583S This Is a Challenging Course That Focuses on the Fundamental Tools and Concepts of Linux and Unix
Course data sheet Linux Fundamentals (GL120) U8583S This is a challenging course that focuses on the fundamental tools and concepts of Linux and Unix. Students gain HPE course number U8583S proficiency using the command line. Beginners develop a Course length 5 days solid foundation in Unix, while advanced users discover Delivery mode ILT, vILT patterns and fill in gaps in their knowledge. The course View schedule, local material is designed to provide extensive hands-on View now pricing, and register experience. Topics include basic file manipulation; basic and View related courses View now advanced filesystem features; I/O redirection and pipes; text manipulation and regular expressions; managing jobs and processes; vi, the standard Unix editor; automating tasks with Why HPE Education Services? shell scripts; managing software; secure remote • IDC MarketScape leader 5 years running for IT education and training* administration; and more. • Recognized by IDC for leading with global coverage, unmatched technical Prerequisites Supported distributions expertise, and targeted education consulting services* Students should be comfortable with • Red Hat Enterprise Linux 7 • Key partnerships with industry leaders computers. No familiarity with Linux or other OpenStack®, VMware®, Linux®, Microsoft®, • SUSE Linux Enterprise 12 ITIL, PMI, CSA, and SUSE Unix operating systems is required. • Complete continuum of training delivery • Ubuntu 16.04 LTS options—self-paced eLearning, custom education consulting, traditional classroom, video on-demand -
File Transfer
File Transfer Joon Kim PICSciE Research Computing Workshop Department of Chemistry 10/30/2017 Introduction Hyojoon (Joon) Kim. Ph.D. Cyber Infrastructure Engineer Role: Design & build a campus network and infrastructure that will better support our researchers 2 Our goal today • Overview of widely used tools • Learn about data transfer basics • Pick the right tool for your job • Know what to expect • Learn about Globus • Q&A 3 Data transfer Data Data source destination This part is our topic! 4 Why do we care? Without good practice, you will waste time and effort 1. Start data transfer using SCP at 10pm. Usually takes 10 hours. 2. At 2am, there was a brief 1-minute network outage. Transfer job aborted. 3. Arrive 8am in the morning. See the damage. Start again, which will take 10 hours. 4. Lost a day of work. Time Effort 5 Why do we care? Without good practice, you will waste time and effort 1. Start data transfer using SCP at 10pm. Usually takes 10 hours. Really? Are you SURE that’s the best? Time Effort 6 We want you to Focus on your research, not on transferring data around Time Effort 7 Data Transfer Tools 8 Transfer tools What transfer tool do you use? 9 What we normally see 10 Secure Copy (SCP) • Secure Copy (SCP) • Uses SSH for authentication and data transfer (TCP port 22) • Unix-based systems (including Mac OS X): Should have it by default • Windows: WinSCP (https://winscp.net/eng/download.php) 11 Secure Copy (SCP) • Secure Copy (SCP) • Uses SSH for authentication and data transfer (TCP port 22) • Unix-based systems (including Mac OS X): Should have it by default • Windows: WinSCP (https://winscp.net/eng/download.php) 12 rsync • rsync (rsync over SSH) • Sync files and directories between two endpoints. -
High Performance Multi-Node File Copies and Checksums for Clustered File Systems∗
High Performance Multi-Node File Copies and Checksums for Clustered File Systems∗ Paul Z. Kolano, Robert B. Ciotti NASA Advanced Supercomputing Division NASA Ames Research Center, M/S 258-6 Moffett Field, CA 94035 U.S.A. {paul.kolano,bob.ciotti}@nasa.gov Abstract To achieve peak performance from such systems, it is Mcp and msum are drop-in replacements for the stan- typically necessary to utilize multiple concurrent read- dard cp and md5sum programs that utilize multiple types ers/writers from multiple systems to overcome various of parallelism and other optimizations to achieve maxi- single-system limitations such as number of processors mum copy and checksum performance on clustered file and network bandwidth. The standard cp and md5sum systems. Multi-threading is used to ensure that nodes are tools of GNU coreutils [11] found on every modern kept as busy as possible. Read/write parallelism allows Unix/Linux system, however, utilize a single execution individual operations of a single copy to be overlapped thread on a single CPU core of a single system, hence using asynchronous I/O. Multi-node cooperation allows cannot take full advantage of the increased performance different nodes to take part in the same copy/checksum. of clustered file system. Split file processing allows multiple threads to operate This paper describes mcp and msum, which are drop- concurrently on the same file. Finally, hash trees allow in replacements for cp and md5sum that utilize multi- inherently serial checksums to be performed in parallel. ple types of parallelism to achieve maximum copy and This paper presents the design of mcp and msum and de- checksum performance on clustered file systems. -
Moxa Nport Real TTY Driver for Arm-Based Platform Porting Guide
Moxa NPort Real TTY Driver for Arm-based Platform Porting Guide Moxa Technical Support Team [email protected] Contents 1 Introduction ...................................................................................2 2 Porting to the Moxa UC-Series—Arm-based Computer ....................2 2.1 Build binaries on a general Arm platform ...................................................... 2 2.2 Cross-compiler and the Real TTY driver ........................................................ 3 2.3 Moxa cross-compiling interactive script......................................................... 4 2.4 Manually build the Real TTY driver with a cross-compiler ................................ 5 2.5 Deploy cross-compiled binary to target......................................................... 8 3 Porting to Raspberry Pi OS .............................................................9 4 Porting to the Yocto Project on Raspberry Pi ................................ 10 4.1 Prerequisite............................................................................................... 10 4.2 Create a Moxa layer for the Yocto Project..................................................... 11 4.3 Install a Moxa layer into the Yocto Project.................................................... 17 4.4 Deploy the Yocto image in Raspberry Pi ....................................................... 17 4.5 Start the Real TTY driver in Raspberry Pi ..................................................... 18 4.6 Set the default tty mapping to the Real TTY configuration ............................ -
Lossless Compression of Internal Files in Parallel Reservoir Simulation
Lossless Compression of Internal Files in Parallel Reservoir Simulation Suha Kayum Marcin Rogowski Florian Mannuss 9/26/2019 Outline • I/O Challenges in Reservoir Simulation • Evaluation of Compression Algorithms on Reservoir Simulation Data • Real-world application - Constraints - Algorithm - Results • Conclusions 2 Challenge Reservoir simulation 1 3 Reservoir Simulation • Largest field in the world are represented as 50 million – 1 billion grid block models • Each runs takes hours on 500-5000 cores • Calibrating the model requires 100s of runs and sophisticated methods • “History matched” model is only a beginning 4 Files in Reservoir Simulation • Internal Files • Input / Output Files - Interact with pre- & post-processing tools Date Restart/Checkpoint Files 5 Reservoir Simulation in Saudi Aramco • 100’000+ simulations annually • The largest simulation of 10 billion cells • Currently multiple machines in TOP500 • Petabytes of storage required 600x • Resources are Finite • File Compression is one solution 50x 6 Compression algorithm evaluation 2 7 Compression ratio Tested a number of algorithms on a GRID restart file for two models 4 - Model A – 77.3 million active grid blocks 3.5 - Model K – 8.7 million active grid blocks 3 - 15.6 GB and 7.2 GB respectively 2.5 2 Compression ratio is between 1.5 1 compression ratio compression - From 2.27 for snappy (Model A) 0.5 0 - Up to 3.5 for bzip2 -9 (Model K) Model A Model K lz4 snappy gzip -1 gzip -9 bzip2 -1 bzip2 -9 8 Compression speed • LZ4 and Snappy significantly outperformed other algorithms -
Research Computing and Cyberinfrastructure Team
Research Computing and CyberInfrastructure team ! Working with the Linux Shell on the CWRU HPC 31 January 2019 7 February 2019 ! Presenter Emily Dragowsky KSL Data Center RCCI Team: Roger Bielefeld, Mike Warfe, Hadrian Djohari! Brian Christian, Emily Dragowsky, Jeremy Fondran, Cal Frye,! Sanjaya Gajurel, Matt Garvey, Theresa Griegger, Cindy Martin, ! Sean Maxwell, Jeno Mozes, Nasir Yilmaz, Lee Zickel Preface: Prepare your environment • User account ! # .bashrc ## cli essentials ! if [ -t 1 ] then bind '"\e[A": history-search-backward' bind '"\e[B": history-search-forward' bind '"\eOA": history-search-backward' bind '"\eOB": history-search-forward' fi ! This is too useful to pass up! Working with Linux • Preamble • Intro Session Linux Review: Finding our way • Files & Directories: Sample work flow • Shell Commands • Pipes & Redirection • Scripting Foundations • Shell & environment variables • Control Structures • Regular expressions & text manipulation • Recap & Look Ahead Rider Cluster Components ! rider.case.edu ondemand.case.edu University Firewall ! Admin Head Nodes SLURM Science Nodes Master DMZ Resource ! Data Manager Transfer Disk Storage Nodes Batch nodes GPU nodes SMP nodes Running a job: where is it? slide from Hadrian Djohari Storing Data on the HPC table from Nasir Yilmaz How data moves across campus • Buildings on campus are each assigned to a zone. Data connections go from every building to the distribution switch at the center of the zone and from there to the data centers at Kelvin Smith Library and Crawford Hall. slide