Harbingers of Doom? Transcript

Total Page:16

File Type:pdf, Size:1020Kb

Harbingers of Doom? Transcript Harbingers of Doom? Transcript Date: Thursday, 19 February 2009 - 12:00AM HARBINGERS OF DOOM? Professor Ian Morison Harbingers of Doom The comet Hale-Bopp seen close in the sky to the Andromeda Galaxy. Aristotle proposed the idea that comets were a gaseous phenomena in the upper atmosphere that occasionally burst into flames. He depicted comets as 'stars with hair' and used the Greek word 'kometes' to refer to them from the root 'kome' meaning 'head of hair'. They were regarded as bad omens foretelling catastrophe or the deaths of kings. (Comet Halley is seen in the Bayeaux Tapestry in the sky above King Harold, who was killed by an arrow in 1066!) Tycho Brahe made careful observations of the comet of 1577 and, by measuring its position from well separated locations, was able to show that it lay at least four times further away than the Moon. In 1687, Isaac Newton was able to show that the path of a bright comet observed through the winter of 1680/1681 could be fitted to a parabolic orbit with the Sun at one focus. He had thus shown that comets were Solar System bodies orbiting the Sun. 3.7.1 Halley's Comet Giotto de Bondone's "Adoration of the Magi". Giotto had seen Halley's Comet in 1301 and depicted it as the "Star of Bethleham" in his fresco painted in 1305. Edmund Halley calculated the orbits of twenty-four comets that had been observed between 1337 and 1698. He found that the comets that had been seen in 1531, 1607 and 1682 had very similar orbital elements and so believed that these were three 'apparitions' of the same comet. Halley could even account for the slight differences by taking into account the gravitational effects of Jupiter and Saturn. Its period was ~76 years so he predicted that it would return around the end of 1757. More accurate calculations by three French mathematicians indicated that it would, in fact, pass closest to the Sun in March 1759. It was first spotted by Johann Georg Palitzsch, a German farmer and amateur astronomer on Christmas day 1758. Halley, who had died in 1742, did not live to see the comet's return but it was named after him with the designation 1P/Halley - the "1P" indicating that it was the first known periodic comet. Halley's Comet in the Bayeux Tapestry as it had appeared in the sky in 1066 - certainly a bad omen for King Harold! Dependent on the Earth's orbital position as Halley nears the Sun, it can either appear bright and spectacular as it did in 1066 and 1910 or, as in its last apparition in 1985/86 when far from the Earth, barely visible to the unaided eye. The comet was first photographed in 1910 when it made a very close approach to the Earth - which even passed through its tail causing some alarm! It is thought that the artist Giotto di Bondone observed the comet in 1301, and used it to depict the Star of Bethlehem in his 1305 fresco, 'The Adoration of the Magi'. As a result, the spacecraft sent to fly-by Comet Halley in 1985 was called 'Giotto'. Halley's Comet will next appear in our skies in 2061. A comet is now classified as a Small Solar System Body that orbits the Sun and which, when close to the Sun, exhibits a visible coma (an extended atmosphere) and sometimes a tail. The 'nucleus' of a comet is typically of order 10 km in size and is composed of rock and dust bound together by ice. The term 'dirty snowball' that is sometimes used is thus quite apt. Those that are termed 'long-period' comets are debris left over from the condensation of the solar nebula and come from the outermost regions of the Solar System, up to a light year distant from the Sun, in what is usually termed the Oort Cloud. The cloud is thought to contain of order a trillion comets and is named after the Dutch Astronomer, Jan Hendrik Oort who popularised the idea in 1952. However the concept was first proposed by an Estonian Astronomer, Ernst Opik, in 1932 so it is alternatively, and more correctly, called the Opik-Oort cloud. Such comets will normally only ever been seen once, but occasionally their orbit will be sufficiently perturbed by Jupiter or Saturn to be 'captured' within the inner Solar System with a relatively short period. It will then become known as a 'short-period' comet which have, by definition, a period of less than 200 years. However, the majority of short-period comets are thought to originate in the Kuiper Belt, which lies beyond the orbit of Neptune. Of the ~3000 comets known by the end of 2007, several hundred have short periods. On average about one comet per year will reach unaided-eye visibility, but only about one in ten of these will become easily visible. Cometary Nuclei The nuclei of comets range from about one half to fifty kilometres in size and have a very rich composition; primarily made of rocks, dust and water ice along with frozen gases such as carbon dioxide, carbon monoxide, methane and ammonia. This 'Dirty Snowball' idea was proposed by Fred L. Whipple in 1950 who had discovered 6 comets himself. It is more formally known as the 'icy conglomerate' theory. They also contain many organic compounds such as methanol, formaldehyde, ethanol and ethane and possibly even more complex molecules such as amino acids. They are far too small to become spherical through the force of gravity and are thus irregularly shaped. Due to their small size and low albedo, comets cannot normally be seen in the outer Solar System. As a comet approaches the inner solar system, solar radiation causes water, frozen gases and other volatile materials within the comet to vaporize and stream out of the nucleus. This releases the dust that is bound up within the ice and together the dust and gas form a huge, extremely tenuous atmosphere around the comet called the coma. The forces exerted on the coma by the Sun's radiation pressure and outflowing solar wind causes tails to form which naturally point away from the Sun - as first shown by the German astronomer Peter Apian in 1531. The comet of 1532 observed by Peter Apian showing that the tail pointed away from the Sun. Both the coma and tail may become visible from Earth as the comet passes through the inner solar system. The streams of dust and gas each form their own distinct tail, pointing in slightly different directions. The dust tail is yellowish in colour and tends to lie along the orbit of comet and so often appears curved. Sometimes, due to that angle that we observe the comet from, part of the dust tail can actually appear to point from the nucleus of the comet towards the Sun - an antitail. This rare sight typically occurs when Earth crosses the plane of a comet's orbit and the cometary dust, which lies in a thin sheet, may be seen edge-on. One of the most prominent antitails that we have seen was that of comet Arend-Roland as it rounded the Sun in 1957. The Antitail seen in the comet Arend-Roland. The gasses, in the form of ions, are most strongly affected by the solar wind and always appear to point directly away from the Sun.The ion tail often appears bluish in colour (as you may be able to see in the picture of Hale-Bopp at the head of this transcript) due to emission from (CN)2, cyanogen. The majority of comets are too faint to be visible without the aid of binoculars or a telescope, but perhaps once each decade a comet become bright enough to be visible with the naked eye. These are called Great Comets. Occasionally a comet may experience a huge and sudden outburst of gas and dust and thus the size and brightness of the coma temporarily greatly increases in size. This happened in late 2007 to Comet Holmes which was visible to the unaided eye for some time. The coma may exceed the Sun in size, and ion tails have been known to extend over one AU in length, and so are the largest objects in the Solar System. The size of the coma and tail increases as the comet nears the Sun and the comet will tend to be most apparent immediately after it has passed the Sun. We thus tend to observe them in the period before dawn or after dusk. With each passage around the Sun, the comet loses material and will eventually disintegrate into a trail of dust or become an inert, asteroid-like, body of fractured rock. The fact that comets may contain significant amounts of organic compounds is indicated by their very low albdo. The Giotto space probe showed that Comet Halley's nucleus reflected only ~4% of the incident sunlight whilst Deep Space 1 showed that Comet Borrelly only reflected ~2.6%. The image of the nucleus of Halley's Comet observed by the Giotto spacecraft on the 13th March 1985. The Giotto image showed that the nucleus was not spherical and the outflows were only coming from a number of vents on the sunward side. The fact that the side away from the Sun shows no activity implies that there is little heat conduction through the interior of the comet. The density of the nucleus was just 0.5 gm/cc - a half that of water - so as ice has a density of 1 gm/cc and dirt ~ 2.5 gm/cc this implies that there must be quite a lot of empty space within the nucleus! Meteor Showers Each time a comet swings by the Sun in its orbit, some of its ice vapourises and fragments of cometary material, are shed.
Recommended publications
  • 1 Characterization of Cometary Activity of 67P/Churyumov-Gerasimenko
    Characterization of cometary activity of 67P/Churyumov-Gerasimenko comet Abstract After 2.5 years from the end of the mission, the data provided by the ESA/Rosetta mission still leads to important results about 67P/Churyumov-Gerasimenko (hereafter 67P), belonging to the Jupiter Family Comets. Since comets are among the most primitive bodies of the Solar System, the understanding of their formation and evolution gives important clues about the early stages of our planetary system, including the scenarios of water delivery to Earth. At the present state of knowledge, 67P’s activity has been characterized by measuring the physical properties of the gas and dust coma, by detecting water ice patches on the nucleus surface and by analyzing some peculiar events, such as outbursts. We propose an ISSI International Team to build a more complete scenario of the 67P activity during different stages of its orbit. The retrieved results in terms of dust emission, morphology and composition will be linked together in order to offer new insights about 67P formation and evolution. In particular the main goals of the project are: 1. Retrieval of the activity degree of different 67P geomorphological nucleus regions in different time periods, by reconstructing the motion of the dust particles revealed in the coma; 2. Identification of the main drivers of cometary activity, by studying the link between cometary activity and illumination/local time, dust morphology, surface geomorphology, dust composition. The project will shed light on how (and if) cometary activity is related to surface geology and/or composition or is just driven by local illumination.
    [Show full text]
  • Stardust Comet Flyby
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Stardust Comet Flyby Press Kit January 2004 Contacts Don Savage Policy/Program Management 202/358-1727 NASA Headquarters, Washington DC Agle Stardust Mission 818/393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation 206/543-2580 University of Washington, Seattle, WA Contents General Release ……………………………………......………….......................…...…… 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Why Stardust?..................…………………………..................………….....………......... 7 Other Comet Missions ....................................................................................... 10 NASA's Discovery Program ............................................................................... 12 Mission Overview …………………………………….................……….....……........…… 15 Spacecraft ………………………………………………..................…..……........……… 25 Science Objectives …………………………………..................……………...…........….. 34 Program/Project Management …………………………...................…..…..………...... 37 1 2 GENERAL RELEASE: NASA COMET HUNTER CLOSING ON QUARRY Having trekked 3.2 billion kilometers (2 billion miles) across cold, radiation-charged and interstellar-dust-swept space in just under five years, NASA's Stardust spacecraft is closing in on the main target of its mission -- a comet flyby. "As the saying goes, 'We are good to go,'" said project manager Tom Duxbury at NASA's Jet
    [Show full text]
  • PYTS/ASTR 206 – Comets 1
    PYTS/ASTR 206 – Comets 1 Announcements HW6 available today, due in a week Use Kevin as the TA for this one 2 In-class assignments left in 3 lectures PYTS/ASTR 206 – Comets 2 Comets PTYS/ASTR 206 – The Golden Age of Planetary Exploration Shane Byrne – [email protected] PYTS/ASTR 206 – Comets 3 In this lecture… Observations of comets What are comets? Composition and structure Cometary tails Ion and dust tails Where do comets come from? Orbits of comets Oort cloud Scattered Kuiper Belt PYTS/ASTR 206 – Comets 4 Observations of comets Comets have been known from ancient times Thought to foreshadow disasters and major battles Pre-telescopes the known solar system was a pretty empty place Moon and the Sun Mercury, Venus, Mars, Jupiter, Saturn And COMETS No Uranus No Neptune No planetary Moons (except ours) No Asteroids No Kuiper Belt Objects PYTS/ASTR 206 – Comets 5 People have recorded comet sightings for millennia 167 BC 687 AD 1986 AD PYTS/ASTR 206 – Comets 6 Ancient Greeks thought comets were atmospheric phenomena In the west this went unchallenged until telescopes came along Tycho Brahe’s parallax measurements proved this wrong Comets were much further away than the Moon Renaissance astronomers thought comets moved in straight lines through the solar system Even Kepler argued they shouldn’t follow elliptical orbits like the planets In the 1680s astronomers tracked a comet and showed it had an elliptical orbit Comets were solar system objects – just like planets PYTS/ASTR 206 – Comets 7 Newton finally
    [Show full text]
  • THE GREAT CHRIST COMET CHRIST GREAT the an Absolutely Astonishing Triumph.” COLIN R
    “I am simply in awe of this book. THE GREAT CHRIST COMET An absolutely astonishing triumph.” COLIN R. NICHOLL ERIC METAXAS, New York Times best-selling author, Bonhoeffer The Star of Bethlehem is one of the greatest mysteries in astronomy and in the Bible. What was it? How did it prompt the Magi to set out on a long journey to Judea? How did it lead them to Jesus? THE In this groundbreaking book, Colin R. Nicholl makes the compelling case that the Star of Bethlehem could only have been a great comet. Taking a fresh look at the biblical text and drawing on the latest astronomical research, this beautifully illustrated volume will introduce readers to the Bethlehem Star in all of its glory. GREAT “A stunning book. It is now the definitive “In every respect this volume is a remarkable treatment of the subject.” achievement. I regard it as the most important J. P. MORELAND, Distinguished Professor book ever published on the Star of Bethlehem.” of Philosophy, Biola University GARY W. KRONK, author, Cometography; consultant, American Meteor Society “Erudite, engrossing, and compelling.” DUNCAN STEEL, comet expert, Armagh “Nicholl brilliantly tackles a subject that has CHRIST Observatory; author, Marking Time been debated for centuries. You will not be able to put this book down!” “An amazing study. The depth and breadth LOUIE GIGLIO, Pastor, Passion City Church, of learning that Nicholl displays is prodigious Atlanta, Georgia and persuasive.” GORDON WENHAM, Adjunct Professor “The most comprehensive interdisciplinary of Old Testament, Trinity College, Bristol synthesis of biblical and astronomical data COMET yet produced.
    [Show full text]
  • Dust-To-Gas and Refractory-To-Ice Mass Ratios of Comet 67P
    Dust-to-Gas and Refractory-to-Ice Mass Ratios of Comet 67P/Churyumov-Gerasimenko from Rosetta Observations Mathieu Choukroun, Kathrin Altwegg, Ekkehard Kührt, Nicolas Biver, Dominique Bockelée-Morvan, Joanna Drążkowska, Alain Hérique, Martin Hilchenbach, Raphael Marschall, Martin Pätzold, et al. To cite this version: Mathieu Choukroun, Kathrin Altwegg, Ekkehard Kührt, Nicolas Biver, Dominique Bockelée-Morvan, et al.. Dust-to-Gas and Refractory-to-Ice Mass Ratios of Comet 67P/Churyumov-Gerasimenko from Rosetta Observations. Journal Space Science Reviews, 2020, 10.1007/s11214-020-00662-1. hal- 03021621 HAL Id: hal-03021621 https://hal.archives-ouvertes.fr/hal-03021621 Submitted on 29 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Space Sci Rev (2020) 216:44 https://doi.org/10.1007/s11214-020-00662-1 Dust-to-Gas and Refractory-to-Ice Mass Ratios of Comet 67P/Churyumov-Gerasimenko from Rosetta Observations Mathieu Choukroun1 · Kathrin Altwegg2 · Ekkehard Kührt3 · Nicolas Biver4 · Dominique Bockelée-Morvan4 · Joanna Dra˙ ˛zkowska5 · Alain Hérique6 · Martin Hilchenbach7 · Raphael Marschall8 · Martin Pätzold9 · Matthew G.G.T. Taylor10 · Nicolas Thomas2 Received: 17 May 2019 / Accepted: 19 March 2020 / Published online: 8 April 2020 © The Author(s) 2020 Abstract This chapter reviews the estimates of the dust-to-gas and refractory-to-ice mass ratios derived from Rosetta measurements in the lost materials and the nucleus of 67P/Churyumov-Gerasimenko, respectively.
    [Show full text]
  • Rosetta Observations of Plasma and Dust at Comet 67P
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1989 Rosetta Observations of Plasma and Dust at Comet 67P FREDRIK LEFFE JOHANSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1070-1 UPPSALA urn:nbn:se:uu:diva-425953 2020 Dissertation presented at Uppsala University to be publicly examined on Zoom, Friday, 15 January 2021 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Dr. Nicolas André (IRAP, Toulouse, France). Online defence: https://uu-se.zoom.us/j/67552597754 Contact person for questions about participation is Prof. Mats André 0707-792072 Abstract Johansson, F. L. 2020. Rosetta Observations of Plasma and Dust at Comet 67P. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1989. 35 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1070-1. In-situ observations of cometary plasma are not made because they are easy. The historic ESA Rosetta mission was launched in 2004 and traversed space for ten years before arriving at comet 67P/Churyumov-Gerasimenko, which it studied in unprecedented detail for two years. For the Rosetta Dual Langmuir Probe Experiment (LAP), the challenge was increased by the sensors being situated on short booms near a significantly negatively charged spacecraft, which deflects low-energy charged particles away from our instrument. To disentangle the cometary plasma signature in our signal, we create a charging model for the particular design of the Rosetta spacecraft through 3D Particle-in-Cell/hybrid spacecraft-plasma interaction simulations, which also can be applicable to similarly designed spacecraft in cold plasma environments.
    [Show full text]
  • Stardust Comet Dust Resembles Asteroid Materials 24 January 2008
    Stardust comet dust resembles asteroid materials 24 January 2008 treasure trove of stardust from other stars and other ancient materials. But in the case of Wild 2, that simply is not the case. By comparing the Stardust samples to cometary interplanetary dust particles (CP IDPs), the team found that two silicate materials normally found in cometary IDPs, together with other primitive materials including presolar stardust grains from other stars, have not been found in the abundances that might be expected in a Kuiper Belt comet like Getting into the details: Stardust impact tracks and light Wild 2. The high-speed capture of the Stardust gas gun impacts of sulfide in aerogel both display metal particles may be partly responsible; but extra beads with sulfide rims indicating that GEMS-like objects refractory components that formed in the inner in Stardust are generated by impact mixing of comet solar nebula within a few astronomical units of the dust with silica aerogel. (left) Stardust GEMS-like sun, indicate that the Stardust material resembles material and (right) light gas gun shot GEM-like material. chondritic meteorites from the asteroid belt. GEMS in cometary IDPs do not contain sulfide-rimmed metal inclusions. [Image credit: Hope Ishii, LLNL] “The material is a lot less primitive and more altered than materials we have gathered through high altitude capture in our own stratosphere from a variety of comets,” said LLNL’s Hope Ishii, lead Contrary to expectations for a small icy body, much author of the research that appears in the Jan. 25 of the comet dust returned by the Stardust mission edition of the journal, Science.
    [Show full text]
  • The Comet's Tale
    THE COMET’S TALE Newsletter of the Comet Section of the British Astronomical Association Volume 9, No 1 (Issue 17), 2002 April JOEL HASTINGS METCALF MINISTER, HUMANITARIAN, ASTRONOMER Richard R Didick Joel Hastings Metcalf was born in The following account, taken used with either a single prism or Meadville, Pennsylvania, on from a newspaper article about a grating, both of which were January 4th, 1866, the son of him when he lived in Taunton, is provided. Lewis Herbert and Anna (Hicks) somewhat dubious since he Metcalf. Lewis was a Civil War actually bought the 7-inch In the observatory at Keesville, Veteran, a soldier who lost a leg refractor. "When but 14 years old the instrument was mounted in a at the first battle of "Bull Run" he built a telescope and ground very substantial dome, being and was held at Libby prison until out a lens with which he was able fastened to a fine cut granite base exchanged and discharged. to observe with success all the weighting about a ton. In a principal heavenly bodies. This February when Lake Champlain At the approximate age of 14, Joel was a small two-inch lens. His had frozen over, the whole outfit Metcalf borrowed Richard next attempt was a three-inch lens was loaded on sleds and started Proctor's book, Other Worlds and he later made one of three across the Lake on the ice. The Than Ours, from his Sunday and a half inches, which he ice was thick enough - but there school library which led him to an subsequently sold to Harvard are always long cracks in the interest in astronomy.
    [Show full text]
  • 19740026181.Pdf
    DYNAMIC& AND PHOTOMETRIC INVESTIGATION OF COMETARY TYPE I1 TAILS Grant NGR 09-015-159 Semiannual Progress Report No. 6 For the period March 15 to September 14, 1974 Principal Investigator Dr. Zdenek Sekanina Prepared for . .-- National Aeronautics and Space Administration ; . Washington, D.C. 20546 q, ' ';'.. ',. : , , , - , .., ,: .,M, ._I _, . ..!..' , , .. ".. .,;-'/- Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts 02138 DYNAMICAL AND PHOTOMETRIC INVESTIGATION OF COMETARY TYPE 11 TAILS Grant NGR 09-015-159 Semiannual Progress Report No. 6 For the period March 15 to September 14, 1974 Principal Investigator Dr. Zdenek Sekanina Pre-ared for National Aeronautics and Space Administration Washington, D. C. 20546 Smithsonian Institut ion Astrophysical Observatory Sambridge, Massachusetts 02138 TABLE OF CONTENTS ABSTRACT ........................... iii PART A. COMPARISON OF THE WORKING MODEL FOR THE ANTITAIL OF COMET KOHOUTEK (1973f) WITH GROUND-BASED PHOTOGRAPHIC OBSERVATIONS . 1 1. Introduction ....................... 1 11. The Cerro Tololo photographs ............... 1 111. Photographic photometry of the Cerro Tololo plates. The technique ........................ 4 IV. Photographic photometry of the Cerro Tololo plates. The results ......................... V. Calibration stars for the Cerro Tololo plates ....... VI. Preliminary physical interpretation of the observed radial profiles of the antitail ................. VII. References ....................... PART B. OTHER ACTIVITIES IN THE REPORTED PERIOD ...........
    [Show full text]
  • Richard C. Hoagland - Summary Bibliography
    Richard C. Hoagland - Summary Bibliography Search the database Advanced Search Not Logged In Log In Help Navigating Other Pages: Home Page ISFDB Wiki ISFDB FAQ Magazines Awards Recent Edits Recent Verifications Other Bibliographies For This Author: Summary Awards Alphabetical Chronological Editing Tools: Moderator Edit Author Data Make/Remove a Pseudonym Show All Titles Check for Duplicate Titles Add New Data: Add New Anthology Add New Chapterbook Add New Collection Add New Fanzine Add New Magazine Add New Nonfiction Add New Novel Add New Omnibus Policies: Disclaimer Privacy Policy Banner Art Credits License: This work is licensed under a Creative Commons License. Used These Alternate Names: Dick Hoagland Interviews: Interview: Richard Hoagland Biography: Bio:Richard C. Hoagland Bibliographic Comments: Author:Richard C. Hoagland Nonfiction The Monuments of Mars: A City on the Edge of Forever (1989) Dark Mission: The Secret History of NASA (2007) with Mike Bara Essay Series Science Fact (Analog) o Why We WON'T Find Life on Mars (1974) o Rendezvous in 1985 (1975) o Return to Mars: A Mission for the Enterprise (1977) o The Blivit in the B-Ring (Part 1 of 2) (1982) o The Blivit in the B-Ring (Part 2 of 2) (1983) o The Curious Case of the Humanoid Face ... On Mars (1986) (R)evolution o Torchships Now! (If, July-August 1974) (1974) with Robert D. Enzmann o Torchships Now! (If, September-October 1974) (1974) with Robert D. Enzmann o Following Yonder Star (1974) Essays Forum: Television: Never-Never Land and Clarke's Third Law (1974) [only as by Dick Hoagland ] The Origin of the Solar System (1977) with Ben Bova Space: The El Chichon Incident (1983) Richard C.
    [Show full text]
  • Interstellar Interlopers Two Recently Sighted Space Rocks That Came from Beyond the Solar System Have Puzzled Astronomers
    A S T R O N O MY InterstellarInterstellar Interlopers Two recently sighted space rocks that came from beyond the solar system have puzzled astronomers 42 Scientific American, October 2020 © 2020 Scientific American 1I/‘OUMUAMUA, the frst interstellar object ever observed in the solar system, passed close to Earth in 2017. InterstellarInterlopers Interlopers Two recently sighted space rocks that came from beyond the solar system have puzzled astronomers By David Jewitt and Amaya Moro-Martín Illustrations by Ron Miller October 2020, ScientificAmerican.com 43 © 2020 Scientific American David Jewitt is an astronomer at the University of California, Los Angeles, where he studies the primitive bodies of the solar system and beyond. Amaya Moro-Martín is an astronomer at the Space Telescope Science Institute in Baltimore. She investigates planetary systems and extrasolar comets. ATE IN THE EVENING OF OCTOBER 24, 2017, AN E-MAIL ARRIVED CONTAINING tantalizing news of the heavens. Astronomer Davide Farnocchia of NASA’s Jet Propulsion Laboratory was writing to one of us (Jewitt) about a new object in the sky with a very strange trajectory. Discovered six days earli- er by University of Hawaii astronomer Robert Weryk, the object, initially dubbed P10Ee5V, was traveling so fast that the sun could not keep it in orbit. Instead of its predicted path being a closed ellipse, its orbit was open, indicating that it would never return. “We still need more data,” Farnocchia wrote, “but the orbit appears to be hyperbolic.” Within a few hours, Jewitt wrote to Jane Luu, a long-time collaborator with Norwegian connections, about observing the new object with the Nordic Optical Telescope in LSpain.
    [Show full text]
  • Do Comets Have Chondrules and Cais? Evidence from the Leonid Meteors
    Meteoritics & Planetary Science 39, Nr 10, 1733–1740 (2004) Abstract available online at http://meteoritics.org Do comets have chondrules and CAIs? Evidence from the Leonid meteors Timothy D. SWINDLE1* and Humberto CAMPINS1, 2 1Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721–0092, USA 2Department of Physics and Astronomy, University of Central Florida, Orlando, Florida 32816, USA *Corresponding author. E-mail: [email protected] (Received 10 June 2003; revision accepted 3 August 2004) Abstract–Chondrules, silicate spheres typically 0.1 to 1 mm in diameter, are the most abundant constituents in the most common meteorites falling on Earth, the ordinary chondrites. In addition, many primitive meteorites have calcium-aluminum-rich inclusions (CAIs). The question of whether comets have chondrules or CAIs is relevant to understanding what the interior of a comet is like and what a cometary meteorite might be like. In addition, one prominent model for forming chondrules and CAIs, the X-wind model, predicts their presence in comets, while most other models do not. At present, the best way to search for chondrules and CAIs in comets is through meteor showers derived from comets, in particular, the Leonid meteor shower. Evidence potentially could be found in the overall mass distribution of the shower, in chemical analyses of meteors, or in light curves. There is no evidence for a chondrule abundance in the Leonid meteors similar to that found in chondritic meteorites. There is intriguing evidence for chondrule- or CAI-sized objects in a small fraction of the light curves, but further work is required to generate a definitive test.
    [Show full text]