COSEWIC Special Report

Total Page:16

File Type:pdf, Size:1020Kb

COSEWIC Special Report 1 COSEWIC Special Report 2 3 Designatable units at an appropriate scale for 4 the Lake Whitefish (Coregonus clupeaformis) 5 in Canada 6 prepared for 7 COMMITTEE ON THE STATUS OF ENDANGERED WILDLIFE IN 8 CANADA 9 By 10 11 12 Sean M. Rogers 13 Department of Zoology 14 University of British Columbia 15 16 Funding provided by Environment Canada 17 18 19 20 Final Report Submitted November 3, 2008 i 21 Table of Contents 22 Executive Summary ................................................................................................................1 23 I. General Introduction............................................................................................................1 24 Description and biology of Lake Whitefish........................................................................3 25 Distribution of Lake Whitefish ...........................................................................................4 26 Taxonomy of Lake Whitefish .............................................................................................4 27 II. Key for establishing designatable units for COSEWIC .....................................................6 28 1. The putative designatable unit (PDU) is a distinct taxonomic entity or qualifies as a 29 distinct biological species? .................................................................................................6 30 1.1. Taxonomic entities in the Lake Whitefish species complex........................................6 31 1.1.1 Coregonus lavaretus and Coregonus pidschian .....................................................7 32 1.1.2 Coregonus nelsonii.................................................................................................8 33 1.1.3 Coregonus huntsmani.............................................................................................8 34 1.2. Are these taxonomic groups distinct biological species? ............................................9 35 1.2.1 Limnetic and benthic Lake Whitefish....................................................................9 36 1.2.2 Distribution and characteristics of limnetic and benthic pairs in Canada............10 37 1.2.2.1 Squanga Lake, Yukon Territory........................................................................11 38 1.2.2.2 Little Teslin Lake, Yukon .................................................................................12 39 1.2.2.3 Dezadeash Lake, Yukon ...................................................................................13 40 1.2.2.4 Teenah Lake, Yukon.........................................................................................13 41 1.2.2.5 Hanson Lake, Yukon.........................................................................................13 42 1.2.2.6 Dragon Lake, British Columbia........................................................................14 43 1.2.2.7 Great Slave Lake, NWT....................................................................................14 44 1.2.2.8 Lake Athabasca, NWT......................................................................................15 45 1.2.2.9 Lake Opeongo, Ontario.....................................................................................15 46 1.2.2.10 Como Lake, Ontario........................................................................................16 47 1.2.2.11 Lake Superior, Ontario....................................................................................16 48 1.2.2.12 Lake Simcoe, Ontario .....................................................................................17 49 1.2.2.13 Témiscouata Lake, Quebec.............................................................................17 50 1.2.2.14 East Lake, Quebec...........................................................................................18 51 1.2.2.15 Caniapiscau Lake, Quebec..............................................................................18 52 1.2.2.16 Lac Outardes II, Quebec .................................................................................19 53 1.2.2.17 Lac Manicouagan V, Quebec..........................................................................19 54 1.2.3 Hybridization of C. clupeaformis with other Coregonineae................................20 55 1.2.4 Species status of Coregonus clupeaformis...........................................................20 56 1.3. Summary....................................................................................................................21 57 2. The PDU represents a major phylogenetic grouping separate from other groupings 58 within the taxon in question? ............................................................................................22 59 2.1. Glacial History of Canada and Postglacial dispersal of Lake Whitefish...................22 60 2.2. Phylogeography of the Lake Whitefish species complex..........................................23 61 2.2.1 Beringian Glacial Race: .......................................................................................24 62 2.2.2 Nahanni Glacial Race: .........................................................................................25 63 2.2.3 Mississippian Glacial Race:.................................................................................26 64 2.2.4 Atlantic Glacial Lineage: .....................................................................................27 65 2.2.5 Acadian Glacial Race:..........................................................................................28 66 2.3. Population Subdivision within Glacial Races:...........................................................28 ii 67 2.5. Summary....................................................................................................................29 68 3. The PDU has distinctive traits that (1) represent local adaptation and (2) identifies the 69 PDU as not ecologically interchangeable with other known PDUs within the species, or 70 (3) identifies the PDU as an irreplaceable component of Canada’s biodiversity? ...........30 71 3.1. Evidence of distinctive traits that represent local adaptation in the species pairs .....30 72 3.1.1 Distinctive Traits:.................................................................................................30 73 3.1.1.1 Morphology.......................................................................................................30 74 3.1.1.2 Behaviour..........................................................................................................32 75 3.1.1.3 Physiology and performance.............................................................................32 76 3.1.1.4 Gene expression differences .............................................................................33 77 3.1.2 Evidence for local adaptation:..............................................................................33 78 3.2. Identification of the limnetic and benthic species pairs as not ecologically 79 interchangeable with other known PDUs within the species............................................35 80 3.2.1 Independent origins of the species pairs ..............................................................35 81 3.2.2 Evidence of reproductive isolation ......................................................................37 82 3.3. Are limnetic and benthic species pairs an irreplaceable components of Canadian 83 biodiversity?......................................................................................................................37 84 3.3. Consideration of the Mira River population ..............................................................38 85 3.5. Summary....................................................................................................................39 86 4. The PDU represents a major range disjunction?...........................................................39 87 4.1. Summary....................................................................................................................39 88 5. The PDU inhabits a different biogeographic zones? ....................................................40 89 5. 1 Summary....................................................................................................................40 90 6. Concluding Summary ...................................................................................................41 91 Acknowledgements...........................................................................................................42 92 Literature Cited .................................................................................................................43 93 Table 1. .............................................................................................................................66 94 List of Figures...................................................................................................................69 95 Figure 1. ............................................................................................................................70 96 Figure 2 .............................................................................................................................71 97 Figure 3 .............................................................................................................................72 98 Figure 4 .............................................................................................................................73 99 Figure 5 .............................................................................................................................74
Recommended publications
  • Burbot Management Plan
    BURBOT MANAGEMENT PLAN DEPARTMENT OF INLAND FISHERIES AND WILDLIFE DIVISION OF FISHERIES AND HATCHERIES PREPARED BY SCOTT A. ROY ASSISTANT REGIONAL FISHERIES BIOLOGIST REGION E MARCH 2001 BURBOT LIFE HISTORY The burbot, Lota lota (Linnaeus), is a unique member of the cod family. It is the only species in the family, which spends its entire life in fresh water. However, the burbot is similar to its marine relatives in that its distribution is circumpolar. It can be found in cool, fresh waters throughout northern Europe, Asia and North America. In North America its range extends as far south as the northern tier of States across the United States. In Maine, the burbot is commonly known as the cusk, although in other areas it is also called the ling, eelpout, loche and lawyer. Unlike the salmonids and Maine’s other coldwater species, the burbot is not noted for its grace and beauty. The body is elongate, almost eel-shaped, with long, soft-rayed dorsal and anal fins that meet a rounded tail. Although it is smooth and slimy to the touch, the skin is embedded with very small, cycloid scales. The head of the burbot is broad and somewhat flattened. It has a large mouth containing several rows of small teeth on the jaws. A single, whisker-like barbell protrudes from the tip of the chin. There are no obvious external differences between males and females. In general, adults are olive brown to dark brown on the back and sides. This background is overlaid with distinctive patterns of dark brown or black markings and spots.
    [Show full text]
  • Sport-Fish-Identification.Pdf
    Walleye Walleye have two distinct fins on their back, the first with large spines. Lake Sturgeon They have a yellow-olive back, brassy, silvery sides with yellow spots, a white underside, and white on the lower lobe of the tail. Dusky vertical Lake Sturgeon are a Threatened Species due to population size and bars are often found on the body as well. concerns with viability. Lake Sturgeon have a large brown or grey body covered with tough, leather- like tissue and five rows of bony plates. They have a shark-like, upturned tail and a pointed snout with four barbels. Sauger Lake Whitefish are olive-green to blue on the back, with silvery sides.They Sauger are a Threatened Species due to hybridization, habitat Lakehave a small Whitefish mouth below a rounded snout, and a deeply forked tail. degradation and overharvest. Sauger are golden olive on the back with silver-yellow sides and a white underside. They also have a large spiny dorsal fin, distinct rows of spots on the dorsal fins and three or four dusky vertical bars on the body. Mountain Whitefish have large scales, no spots and small mouths with no Burbot Mountainteeth. Their general Whitefish body colour is a bronze-white or greenish white. Burbot have a slim, brownish black body with smooth skin, a flattened head, and a fin that stretches along the back half of the body. Distinctive barbels hang from the lower jaw and nostrils. Goldeye Northern Pike Goldeye have prominent eyes with bright yellow pupils, a blunt head, and Northern Pike are a long, slender fish with duck-like jaws and a long, flat a deep, compressed body.
    [Show full text]
  • (Coregonus Lavaretus (L.)) Caused by Competitor Invasion
    Speciation Reversal in European Whitefish (Coregonus lavaretus (L.)) Caused by Competitor Invasion Shripathi Bhat1*, Per-Arne Amundsen1, Rune Knudsen1, Karl Øystein Gjelland3, Svein-Erik Fevolden1, Louis Bernatchez2, Kim Præbel1 1 Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway, 2 Institut de Biologie Inte´grative et des Syste`mes (IBIS), Universite´ Laval, Que´bec, Canada, 3 Norwegian Institute for Nature Research, Tromsø, Norway Abstract Invasion of exotic species has caused the loss of biodiversity and imparts evolutionary and ecological changes in the introduced systems. In northern Fennoscandia, European whitefish (Coregonus lavaretus (L.)) is a highly polymorphic species displaying adaptive radiations into partially reproductively isolated and thus genetically differentiated sympatric morphs utilizing the planktivorous and benthivorous food niche in many lakes. In 1993, Lake Skrukkebukta was invaded by vendace (Coregonus albula (L.)) which is a zooplanktivorous specialist. The vendace displaced the densely rakered whitefish from its preferred pelagic niche to the benthic habitat harbouring the large sparsely rakered whitefish. In this study, we investigate the potential influence of the vendace invasion on the breakdown of reproductive isolation between the two whitefish morphs. We inferred the genotypic and phenotypic differentiation between the two morphs collected at the arrival (1993) and 15 years after (2008) the vendace invasion using 16 microsatellite loci and gill raker numbers, the most distinctive adaptive phenotypic trait between them. The comparison of gill raker number distributions revealed two modes growing closer over 15 years following the invasion. Bayesian analyses of genotypes revealed that the two genetically distinct whitefish morphs that existed in 1993 had collapsed into a single population in 2008.
    [Show full text]
  • First Record of a Coregonid Fish Species, Coregenus Albula (Linnaeus, 1758) (Salmoniformes: Salmonidae) in Aktaş Lake Shared Between Turkey and Georgia
    J. Black Sea/Mediterranean Environment Vol. 25, No. 3: 325-332 (2019) SHORT COMMUNICATION First record of a coregonid fish species, Coregenus albula (Linnaeus, 1758) (Salmoniformes: Salmonidae) in Aktaş Lake shared between Turkey and Georgia Sedat V. Yerli Department of Biology, Hacettepe University, SAL, Beytepe, Ankara, TURKEY Corresponding author: [email protected] Abstract The genus Coregenus (Salmoniformes: Salmonidae) was recently considered not to be represented in Turkey. European cisco or vendace, Coregonus albula (Linnaeus, 1758) was reported for the first time for Turkey in this article with fifteen samples in Aktaş Lake, Ardahan. This species should be added to the checklist of Turkish fish fauna. Turkish name is proposed as “Akbalık” for this species. Keywords: Coregonus albula, first record, Aktaş Lake, Kartsakhi, alkaline lake, Georgia, Turkey Received: 30.10.2019, Accepted: 26.11.2019 Vendace or European cisco Coregonus albula (Linnaeus, 1758) is a native species for northern Europe. Berg (1948) reported the distribution of this species its morphological measurements in the former USSR and adjacent countries. Froese and Pauly (2019) summarized the natural distribution of vendace as Baltic basin, several lakes of upper Volga drainage; some lakes of White Sea basin and North Sea basin east of Elbe drainage; anadromous in Gulf of Finland and marine in northernmost freshened part of Gulf of Bothnia between Finland and Sweden; in Lake Inari, northern Finland; lower Rhine (now extirpated). The vendace was introduced, intentionally in some countries in Europe and United States of America. Vendace was introduced in 1959, 1982-1987 in the Irtysh River Basin and in 1960-61 in Lake Balkhash in Kazakhstan (Mitrofanov and Petr 1999).
    [Show full text]
  • Spawning and Early Life History of Mountain Whitefish in The
    SPAWNING AND EARLY LIFE HISTORY OF MOUNTAIN WHITEFISH IN THE MADISON RIVER, MONTANA by Jan Katherine Boyer A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Fish and Wildlife Management MONTANA STATE UNIVERSITY Bozeman, Montana January 2016 © COPYRIGHT by Jan Katherine Boyer 2016 All Rights Reserved ii ACKNOWLEDGMENTS First, I thank my advisor, Dr. Christopher Guy, for challenging me and providing advice throughout every stage of this project. I also thank my committee members, Dr. Molly Webb and Dr. Tom McMahon, for guidance and suggestions which greatly improved this research. My field technicians Jordan Rowe, Greg Hill, and Patrick Luckenbill worked hard through fair weather and snowstorms to help me collect the data presented here. I also thank Travis Horton, Pat Clancey, Travis Lohrenz, Tim Weiss, Kevin Hughes, Rick Smaniatto, and Nick Pederson of Montana Fish, Wildlife and Parks for field assistance and advice. Mariah Talbott, Leif Halvorson, and Eli Cureton of the U. S. Fish and Wildlife Service assisted with field and lab work. Richard Lessner and Dave Brickner at the Madison River Foundation helped to secure funding for this project and conduct outreach in the Madison Valley. The Channels Ranch, Valley Garden Ranch, Sun West Ranch, and Galloup’s Slide Inn provided crucial land and river access. I also thank my fellow graduate students both for advice on project and class work and for being excellent people to spend time with. Ann Marie Reinhold, Mariah Mayfield, David Ritter, and Peter Brown were especially helpful during the early stages of this project.
    [Show full text]
  • Westslope Cutthroat Trout
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; Chapter 1 however, some errors may remain. Westslope Cutthroat Trout John D. IVIclntyre and Bruce E. Rieman, USDA Forest Service, Intermountain Research Station, 316 E. iViyrtle Street, Boise, Idaho 83702 Introduction Westslope cutthroat trout begin to mature at age 3 but usually spawn first at age 4 or 5 (table 2). Sexu­ The westslope cutthroat trout inhabits streams on ally maturing adfluvial fish move into the vicinity of both sides of the Continental Divide. On the east side tributaries in fall and winter where they remain un­ of the divide, they are distributed mostly in Mon­ til they begin to migrate upstream in the spring tana but also occur in some headwaters in Wyoming (Liknes 1984). They spawn from March to July at and southern Alberta (Behnke 1992). They are in the water temperatures near 10°C (Roscoe 1974; Liknes Missouri Basin downstream to about 60 km below 1984; Shepard et al. 1984). A population of adult fish Great Falls and in the headwaters of the Judith, Milk, in the St. Joe River, Idaho, included 1.6 females for and Marias rivers. On the west side of the Continen­ each male (Thurow and Bjornn 1978). Average length tal Divide the subspecies occurs in the upper was 334 mm for females and 366 mm for males. A Kootenai River; the Clark Fork drainage in Montana similar population in Big Creek, Montana, included and Idaho downstream to the falls on the Fend Oreille 4.1 females for each male (Huston et al.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Traceability Study in Shark Products
    Traceability study in shark products Dr Heiner Lehr (Photo: © Francisco Blaha, 2015) Report commissioned by the CITES Secretariat This publication was funded by the European Union, through the CITES capacity-building project on aquatic species Contents 1 Summary.................................................................................................................................. 7 1.1 Structure of the remaining document ............................................................................. 9 1.2 Acknowledgements ....................................................................................................... 10 2 The market chain ................................................................................................................... 11 2.1 Shark Products ............................................................................................................... 11 2.1.1 Shark fins ............................................................................................................... 12 2.1.2 Shark meat ............................................................................................................. 12 2.1.3 Shark liver oil ......................................................................................................... 13 2.1.4 Shark cartilage ....................................................................................................... 13 2.1.5 Shark skin ..............................................................................................................
    [Show full text]
  • Coregonus Lavaretus Complex 1.4 Alternative Species Scientific Name 1.5 Common Name (In National Language) Whitefish 2
    European Community Directive on the Conservation of Natural Habitats and of Wild Fauna and Flora (92/43/EEC) Fourth Report by the United Kingdom under Article 17 on the implementation of the Directive from January 2013 to December 2018 Supporting documentation for the conservation status assessment for the species: S6353 ‐ WhitefishCoregonus ( lavaretus) SCOTLAND IMPORTANT NOTE ‐ PLEASE READ • The information in this document is a country‐level contribution to the UK Reporton the conservation status of this species, submitted to the European Commission aspart of the 2019 UK Reporting under Article 17 of the EU Habitats Directive. • The 2019 Article 17 UK Approach document provides details on how this supporting information was used to produce the UK Report. • The UK Report on the conservation status of this species is provided in a separate doc‐ ument. • The reporting fields and options used are aligned to those set out in the European Com‐ mission guidance. • Explanatory notes (where provided) by the country are included at the end. These pro‐ vide an audit trail of relevant supporting information. • Some of the reporting fields have been left blank because either: (i) there was insuffi‐ cient information to complete the field; (ii) completion of the field was not obligatory; (iii) the field was not relevant to this species (section 12 Natura 2000 coverage forAnnex II species) and/or (iv) the field was only relevant at UK‐level (sections 9 Future prospects and 10 Conclusions). • For technical reasons, the country‐level future trends for Range, Population and Habitat for the species are only available in a separate spreadsheet that contains all the country‐ level supporting information.
    [Show full text]
  • Coregonus Maraena) Ecological Risk Screening Summary
    Maraena Whitefish (Coregonus maraena) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, September 2014 and June 2017 Web Version, 09/14/2017 Image: E. Östman. Public domain. Available: http://eol.org/data_objects/26779416. (June 2017). 1 Native Range, and Status in the United States Native Range From Froese and Pauly (2017): “Europe: In the Baltic Sea: Swedish coast (including Bothnian Gulf, not in Gotland); in southern Baltic, extending from the Schlei to Gulf of Finland. Southeast North Sea Basin: Ems, Weser and Elbe drainages 1 and small rivers of Schleswig-Holstein and Denmark. Landlocked in several lakes in Poland, Sweden, and Russia.” Status in the United States From Neilson (2017): “Failed introduction.” “A shipment of 409 individuals from Lake Miedwie (formerly Madue Lake), Poland was stocked in Garnder Lake, Michigan in 1877 (Baird 1879; Todd 1983).” Means of Introductions in the United States From Neilson (2017): “Coregonus maraena, along with other species of Coregonus, was intentionally stocked as a food fish by the U.S. Fish Commission (Todd 1983). According to Baird (1879), 1,000 eggs of C. maraena were shipped from Poland to Michigan in 1877 and hatched in captivity at the State Hatching House in Detroit. A total of 409 of the young fish were stocked in Gardner Lake (Baird 1879; Todd 1983). Baird (1879) considered the stocking an experimental introduction of a European food fish.” Remarks From Neilson (2017): “There is much confusion regarding the identity of whitefish imported from Germany in the late 1800s by the U.S. Fish Commission, primarily due to the uncertain taxonomy and systematics of Coregonus (Kottelat and Freyhof 2007).
    [Show full text]
  • XIV. Appendices
    Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS.
    [Show full text]
  • Summary Report No
    Canadian Manuscript Report of Fisheries and Aquatic Sciences 2614 2002 Life History Characteristics Of Freshwater Fishes Occurring in the Northwest Territories and Nunavut, With Major Emphasis on Riverine Habitat Requirements by C.L. Evans1, J.D. Reist1 and C.K. Minns2 1. Department of Fisheries and Oceans, Arctic Fish Ecology and Assessment Research, Central and Arctic Division, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 Canada 2. Department of Fisheries and Oceans, Great Lakes Laboratory of Fisheries and Aquatic Sciences, Bayfield Institute, 867 Lakeshore Road, P.O. Box 5050, Burlington, Ontario, L7R 4A6 Canada. Her Majesty the Queen in Right of Canada, 2002 Cat. No. Fs 97-4/2614E ISSN 0706-6473 Correct citation of this publication: Evans, C.E., J.D. Reist and C.K. Minns. 2002. Life history characteristics of freshwater fishes occurring in the Northwest Territories and Nunavut, with major emphasis on riverine habitat requirements. Can. MS Rep. Fish. Aquat. Sci. 2614: xiii + 169 p. ii TABLE OF CONTENTS LIST OF FIGURES .......................................................................................................... v LIST OF TABLES............................................................................................................ v ABSTRACT ...................................................................................................................viii RÉSUMÉ ........................................................................................................................viii INTRODUCTION............................................................................................................
    [Show full text]