Hélène Barcelo Gizem Karaali Rosa Orellana Editors Recent Trends in Algebraic Combinatorics Association for Women in Mathematics Series

Total Page:16

File Type:pdf, Size:1020Kb

Hélène Barcelo Gizem Karaali Rosa Orellana Editors Recent Trends in Algebraic Combinatorics Association for Women in Mathematics Series Association for Women in Mathematics Series Hélène Barcelo Gizem Karaali Rosa Orellana Editors Recent Trends in Algebraic Combinatorics Association for Women in Mathematics Series Volume 16 Series editor Kristin Lauter Microsoft Research Redmond, WA, USA Association for Women in Mathematics Series Focusing on the groundbreaking work of women in mathematics past, present, and future, Springer’s Association for Women in Mathematics Series presents the latest research and proceedings of conferences worldwide organized by the Association for Women in Mathematics (AWM). All works are peer-reviewed to meet the highest standards of scientific literature, while presenting topics at the cutting edge of pure and applied mathematics. Since its inception in 1971, The Association for Women in Mathematics has been a non-profit organization designed to help encourage women and girls to study and pursue active careers in mathematics and the mathematical sciences and to promote equal opportunity and equal treatment of women and girls in the mathematical sciences. Currently, the organization represents more than 3000 members and 200 institutions constituting a broad spectrum of the mathematical community, in the United States and around the world. More information about this series at http://www.springer.com/series/13764 Hélène Barcelo • Gizem Karaali Rosa Orellana Editors Recent Trends in Algebraic Combinatorics 123 Editors Hélène Barcelo Rosa Orellana Mathematical Sciences Research Institute Department of Mathematics Berkeley, CA, USA Dartmouth College Hanover, NH, USA Gizem Karaali Department of Mathematics Pomona College Claremont, CA, USA ISSN 2364-5733 ISSN 2364-5741 (electronic) Association for Women in Mathematics Series ISBN 978-3-030-05140-2 ISBN 978-3-030-05141-9 (eBook) https://doi.org/10.1007/978-3-030-05141-9 Library of Congress Control Number: 2018963041 Mathematics Subject Classification (2010): 05Exx, 16-xx, 20-xx © The Author(s) and the Association for Women in Mathematics 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface This book is a collection of survey articles on some of the exciting recent devel- opments in algebraic combinatorics. It also contains a tutorial on Schubert calculus, as we felt that such an article would constitute an important addition to the literature. Algebraic combinatorics is a vast area of research, and attempting to be exhaustive in our coverage would have been a mistake. Rather (after reaching out to many experts in the field for advice), we chose a small number of topics that are currently enjoying broad interest and rapid growth. And after many thoughtful discussions, we sought out the authors of this volume—several writers known for their expository skills as well as a few junior researchers with active research programs who were willing to share their knowledge. Writing a good survey is a deceptively tricky endeavor, as decisions on what to include (or not) and how to best present it lurk at the corner of every sentence! Nonetheless, our contributors did a remarkable job of introducing exciting directions of current research in algebraic combinatorics from its foundational questions to the boundaries of what is known today. More specifically, the book contains four surveys focusing on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The other five surveys address subjects at the intersection of algebra, combinatorics, and geometry: the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. The surveys are written at an introductory level that emphasizes recent developments and open problems. The tutorial on Schubert calculus is written in an interactive way and is intended as a guide for combinatorialists wishing to understand and appreciate the geometric and topological aspects of Schubert calculus, as well as for geometric-minded researchers seeking to gain familiarity with the relevant combinatorial tools in this area. Each article in this volume was reviewed independently by two referees, and we are simply amazed by, and deeply grateful for, the generosity of those referees. Their care in reviewing the articles and their constructive and judicious suggestions have been invaluable. The authors of this volume wish to warmly thank the referees v vi Preface for their contributions, and we three editors in turn offer our heartfelt thanks to both the authors and the referees. We are very proud to have edited such a fine book. We hope that you will enjoy reading these articles as much as we have, and (as one referee wrote) you will find that the stories flow well and are inspiring! Berkeley, USA Hélène Barcelo Claremont, USA Gizem Karaali Hanover, USA Rosa Orellana Contents Partition Algebras and the Invariant Theory of the Symmetric Group ................................................... 1 Georgia Benkart and Tom Halverson Affine Grassmannians and Hessenberg Schubert Cells .............. 43 Linda Chen and Julianna Tymoczko A Survey of the Shi Arrangement ............................. 75 Susanna Fishel Variations on a Theme of Schubert Calculus ..................... 115 Maria Gillespie Combinatorics of the Diagonal Harmonics ....................... 159 Angela Hicks On Positivity of Ehrhart Polynomials ........................... 189 Fu Liu Recent Trends in Quasisymmetric Functions ..................... 239 Sarah K. Mason On Standard Young Tableaux of Bounded Height ................. 281 M. J. Mishna A Tale of Centrally Symmetric Polytopes and Spheres ............. 305 Isabella Novik Crystal Constructions in Number Theory ....................... 333 Anna Puskás vii Partition Algebras and the Invariant Theory of the Symmetric Group Georgia Benkart and Tom Halverson Abstract The symmetric group Sn and the partition algebra Pk (n) centralize one ⊗k another in their actions on the k-fold tensor power Mn of the n-dimensional permu- tation module Mn of Sn. The duality afforded by the commuting actions determines Φ : ( ) → ( ⊗k ) an algebra homomorphism k,n Pk n EndSn Mn from the partition algebra ( ⊗k ) , ∈ Z to the centralizer algebra EndSn Mn , which is a surjection for all k n ≥1, and an isomorphism when n ≥ 2k. We present results that can be derived from the dual- ity between Sn and Pk (n), for example, (i) expressions for the multiplicities of the ⊗k irreducible Sn-summands of Mn , (ii) formulas for the dimensions of the irreducible ( ⊗k ) modules for the centralizer algebra EndSn Mn , (iii) a bijection between vacillat- ing tableaux and set-partition tableaux, (iv) identities relating Stirling numbers of the second kind and the number of fixed points of permutations, and (v) character values for the partition algebra Pk (n). When 2k > n,themapΦk,n has a nontrivial kernel which is generated as a two-sided ideal by a single idempotent. We describe the kernel and image of Φk,n in terms of the orbit basis of Pk (n) and explain how the surjection Φk,n can also be used to obtain the fundamental theorems of invariant theory for the symmetric group. Keywords Symmetric group · Partition algebra · Schur–Weyl duality Invariant theory Mathematics Subject Classification (2010) MSC 05E10 · MSC 20C30 The second author gratefully acknowledges partial support from Simons Foundation grant 283311. G. Benkart (B) University of Wisconsin - Madison, Madison, WI 53706, USA e-mail: [email protected] T. Halverson Macalester College, Saint Paul, MN 55105, USA e-mail: [email protected] © The Author(s) and the Association for Women in Mathematics 2019 1 H. Barcelo et al. (eds.), Recent Trends in Algebraic Combinatorics, Association for Women in Mathematics Series 16, https://doi.org/10.1007/978-3-030-05141-9_1 2 G. Benkart and T. Halverson 1 Introduction Throughout we assume F is a field of characteristic zero. The symmetric group Sn has a natural action on its n-dimensional permutation module Mn over F by ⊗k permuting the basis elements. The focus of this article is on tensor powers Mn of Mn, which are Sn-modules under the diagonal action (see (1.2)). For n, k ∈ Z≥1, the partition algebra Pk (n) is an associative F-algebra with basis indexed by the set partitions of {1, 2,...,2k} and with multiplication
Recommended publications
  • Geometry of Generalized Permutohedra
    Geometry of Generalized Permutohedra by Jeffrey Samuel Doker A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Federico Ardila, Co-chair Lior Pachter, Co-chair Matthias Beck Bernd Sturmfels Lauren Williams Satish Rao Fall 2011 Geometry of Generalized Permutohedra Copyright 2011 by Jeffrey Samuel Doker 1 Abstract Geometry of Generalized Permutohedra by Jeffrey Samuel Doker Doctor of Philosophy in Mathematics University of California, Berkeley Federico Ardila and Lior Pachter, Co-chairs We study generalized permutohedra and some of the geometric properties they exhibit. We decompose matroid polytopes (and several related polytopes) into signed Minkowski sums of simplices and compute their volumes. We define the associahedron and multiplihe- dron in terms of trees and show them to be generalized permutohedra. We also generalize the multiplihedron to a broader class of generalized permutohedra, and describe their face lattices, vertices, and volumes. A family of interesting polynomials that we call composition polynomials arises from the study of multiplihedra, and we analyze several of their surprising properties. Finally, we look at generalized permutohedra of different root systems and study the Minkowski sums of faces of the crosspolytope. i To Joe and Sue ii Contents List of Figures iii 1 Introduction 1 2 Matroid polytopes and their volumes 3 2.1 Introduction . .3 2.2 Matroid polytopes are generalized permutohedra . .4 2.3 The volume of a matroid polytope . .8 2.4 Independent set polytopes . 11 2.5 Truncation flag matroids . 14 3 Geometry and generalizations of multiplihedra 18 3.1 Introduction .
    [Show full text]
  • The Topology of Bendless Orthogonal Three-Dimensional Graph Drawing
    The Topology of Bendless Orthogonal Three-Dimensional Graph Drawing David Eppstein Computer Science Dept. Univ. of California, Irvine What’s in this talk? Unexpected equivalence between a style of graph drawing and a type of topological embedding 3d grid drawings in which each vertex has three perpendicular edges 2d surface embeddings in which the faces meet nicely and may be 3-colored ...and its algorithmic consequences xyz graphs Let S be a set of points in three dimensions such that each axis-aligned line contains zero or two points of S Draw an edge between any two points on an axis-aligned line Three xyz graphs within a 3 x 3 x 3 grid Note that edges are allowed to cross Crossings differ visually from vertices as vertices never have two parallel edges The permutohedron Convex hull of all permutations of (1,2,3,4) in 3-space x+y+z+w=10 Forms a truncated octahedron (4,1,2,3) (3,1,2,4) (4,2,1,3) (3,2,1,4) (4,1,3,2) (2,1,3,4) (4,3,1,2) (2,3,1,4) (3,1,4,2) (4,2,3,1) (2,1,4,3) (4,3,2,1) (1,2,3,4) (3,4,1,2) (1,3,2,4) (2,4,1,3) (3,2,4,1) (1,2,4,3) (3,4,2,1) (1,4,2,3) (2,3,4,1) (1,3,4,2) (2,4,3,1) (1,4,3,2) Inverting the permutohedron Move each permutation vertex to its inverse permutation affine transform so that the edges are axis-aligned A polyhedron for the inverse permutohedron Rearrange face planes to form nonconvex topological sphere A different xyz graph on 4-element permutations Project (x,y,z,w) to (x,y,z) xyz graphs with many vertices in a small bounding box In n x n x n box, place points such that x+y+z = 0 or 1 mod n n = 4, the
    [Show full text]
  • Günther's Negation Cycles and Morphic Palidromes Applications of Morphic Palindromes to the Study of Günther’S Negative Language
    Summer-Edition 2017 — vordenker-archive — Rudolf Kaehr (1942-2016) Title Günther's Negation Cycles and Morphic Palidromes Applications of morphic palindromes to the study of Günther’s negative language Archive-Number / Categories 3_35 / K01, K08, K09, K10 Publication Date 2014 Keywords / Topics o GÜNTHER’S NEGATIVE LANGUAGE : Cycles as palindromes, Palindromes as Cycles, Morphic even palin- dromes, o COMBINATORIAL ASPECTS OF GÜNTHER’S NEGATIVE LANGUAGES : Günther’s approaches to permuta- tions, Hamilton paths vs. Heideggerian journeys, Combinatorial knots and braids Disciplines Computer Science, Logic and Foundations of Mathematics, Cybernetics, Theory of Science, Memristive Systems Abstract Günther’s concept of technology is based on a ‘melting’ of number and notion, Begriff und Zahl, in a polycontextural setting. A key to its study is established by the negation-cycles of polycontextural (meontic) logics that are establishing a negative language. It is proposed that a morphogrammatic understanding of technology is uncovering a level deeper than polycontexturality and is connecting numbers and concepts not just with the will and its praxeological actions but with ‘labour’ (Arbeit) in the sense of Marx’s Grundrisse ("Arbeit als absolute Armut”.) Palin- dromic cycles are offering a deeper access for the definition of negative languages than the meontic cycles. Morphogrammatics is opening up languages, i.e. writting systems of creativity and labour. For a interactive reading, download the CDF reader for free: http://www.wolfram.com/cdf-player/
    [Show full text]
  • Faces of Generalized Permutohedra
    Documenta Math. 207 Faces of Generalized Permutohedra Alex Postnikov 1, Victor Reiner 2, Lauren Williams 3 Received: May 5, 2007 Revised: June 16, 2008 Communicated by G¨unter Ziegler Abstract. The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f-, h- and γ- vectors. These polytopes include permutohedra, associahedra, graph- associahedra, simple graphic zonotopes, nestohedra, and other inter- esting polytopes. We give several explicit formulas for h-vectors and γ-vectors involv- ing descent statistics. This includes a combinatorial interpretation for γ-vectors of a large class of generalized permutohedra which are flag simple polytopes, and confirms for them Gal’s conjecture on the nonnegativity of γ-vectors. We calculate explicit generating functions and formulae for h- polynomials of various families of graph-associahedra, including those corresponding to all Dynkin diagrams of finite and affine types. We also discuss relations with Narayana numbers and with Simon New- comb’s problem. We give (and conjecture) upper and lower bounds for f-, h-, and γ-vectors within several classes of generalized permutohedra. An appendix discusses the equivalence of various notions of deforma- tions of simple polytopes. 2000 Mathematics Subject Classification: Primary 05Axx. Keywords and Phrases: polytopes, face numbers, permutohedra. 1supported in part by NSF CAREER Award DMS-0504629 2supported in part by NSF Grant DMS-0601010 3supported in part by an NSF Postdoctoral Fellowship Documenta Mathematica 13 (2008)
    [Show full text]
  • Affine Partitions and Affine Grassmannians
    AFFINE PARTITIONS AND AFFINE GRASSMANNIANS SARA C. BILLEY AND STEPHEN A. MITCHELL Abstract. We give a bijection between certain colored partitions and the elements in the quotient of an affine Weyl group modulo its Weyl group. By Bott’s formula these colored partitions give rise to some partition identities. In certain types, these identities have previously appeared in the work of Bousquet-Melou-Eriksson, Eriksson-Eriksson and Reiner. In other types the identities appear to be new. For type An, the affine colored partitions form another family of combinatorial objects in bijection with n + 1-core parti- tions and n-bounded partitions. Our main application is to characterize the rationally smooth Schubert varieties in the affine Grassmannians in terms of affine partitions and a generalization of Young’s lattice which refines weak order and is a subposet of Bruhat order. Several of the proofs are computer assisted. 1. Introduction Let W be a finite irreducible Weyl group associated to a simple connected compact Lie Group G, and let Wf be its associated affine Weyl group. In analogy with the Grassmannian manifolds in classical type A, the quotient Wf /W is the indexing set for the Schubert varieties in the affine Grassmannians LG. Let WfS be the minimal length coset representatives for Wf /W . Much of the geometry and topology for the affine Grassmannians can be studied from the combinatorics of WfS and vice versa. For example, Bott [6] showed that the Poincar´eseries for the cohomology ring for the affine Grassmannian is equal to the length generating function for WfS, and this series can be written in terms of the exponents e1, e2, .
    [Show full text]
  • Representation Theory
    Representation Theory Andrew Kobin Fall 2014 Contents Contents Contents 1 Introduction 1 1.1 Group Theory Review . .1 1.2 Partitions . .2 2 Group Representations 4 2.1 Representations . .4 2.2 G-homomorphisms . .9 2.3 Schur's Lemma . 12 2.4 The Commutant and Endomorphism Algebras . 13 2.5 Characters . 17 2.6 Tensor Products . 24 2.7 Restricted and Induced Characters . 25 3 Representations of Sn 28 3.1 Young Subgroups of Sn .............................. 28 3.2 Specht Modules . 33 3.3 The Decomposition of M µ ............................ 44 3.4 The Hook Length Formula . 48 3.5 Application: The RSK Algorithm . 49 4 Symmetric Functions 52 4.1 Generating Functions . 52 4.2 Symmetric Functions . 53 4.3 Schur Functions . 57 4.4 Symmetric Functions and Character Representations . 60 i 1 Introduction 1 Introduction The following are notes from a course in representation theory taught by Dr. Frank Moore at Wake Forest University in the fall of 2014. The main topics covered are: group repre- sentations, characters, the representation theory of Sn, Young tableaux and tabloids, Specht modules, the RSK algorithm and some further applications to combinatorics. 1.1 Group Theory Review Definition. A group is a nonempty set G with a binary operation \·00 : G×G ! G satisfying (1) (Associativity) a(bc) = (ab)c for all a; b; c 2 G. (2) (Identity) There exists an identity element e 2 G such that for every a 2 G, ae = ea = a. (3) (Inverses) For every a 2 G there is some b 2 G such that ab = ba = e.
    [Show full text]
  • Simplex and Polygon Equations
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 11 (2015), 042, 49 pages Simplex and Polygon Equations Aristophanes DIMAKIS y and Folkert MULLER-HOISSEN¨ z y Department of Financial and Management Engineering, University of the Aegean, 82100 Chios, Greece E-mail: [email protected] z Max Planck Institute for Dynamics and Self-Organization, 37077 G¨ottingen,Germany E-mail: [email protected] Received October 23, 2014, in final form May 26, 2015; Published online June 05, 2015 http://dx.doi.org/10.3842/SIGMA.2015.042 Abstract. It is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a \mixed order". We describe simplex equations (including the Yang{Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a family of \polygon equations" realizes higher Tamari orders. They generalize the well-known pentagon equation. The structure of simplex and polygon equations is visualized in terms of deformations of maximal chains in posets forming 1-ske- letons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the N-simplex equation to the (N + 1)-gon equation, its dual, and a compatibility equation. Key words: higher Bruhat order; higher Tamari order; pentagon equation; simplex equation 2010 Mathematics Subject Classification: 06A06; 06A07; 52Bxx; 82B23 1 Introduction The famous (quantum) Yang{Baxter equation is R^12R^13R^23 = R^23R^13R^12; where R^ 2 End(V ⊗ V ), for a vector space V , and boldface indices specify the two factors of a threefold tensor product on which R^ acts.
    [Show full text]
  • Monopole Floer Homology, Link Surgery, and Odd Khovanov Homology
    Monopole Floer Homology, Link Surgery, and Odd Khovanov Homology Jonathan Michael Bloom Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2011 c 2011 Jonathan Michael Bloom All Rights Reserved ABSTRACT Monopole Floer Homology, Link Surgery, and Odd Khovanov Homology Jonathan Michael Bloom We construct a link surgery spectral sequence for all versions of monopole Floer homology with mod 2 coefficients, generalizing the exact triangle. The spectral sequence begins with the monopole Floer homology of a hypercube of surgeries on a 3-manifold Y , and converges to the monopole Floer homology of Y itself. This allows one to realize the latter group as the homology of a complex over a combinatorial set of generators. Our construction relates the topology of link surgeries to the combinatorics of graph associahedra, leading to new inductive realizations of the latter. As an application, given a link L in the 3-sphere, we prove that the monopole Floer homology of the branched double-cover arises via a filtered perturbation of the differential on the reduced Khovanov complex of a diagram of L. The associated spectral sequence carries a filtration grading, as well as a mod 2 grading which interpolates between the delta grading on Khovanov homology and the mod 2 grading on Floer homology. Furthermore, the bigraded isomorphism class of the higher pages depends only on the Conway-mutation equivalence class of L. We constrain the existence of an integer bigrading by considering versions of the spectral sequence with non-trivial Uy action, and determine all monopole Floer groups of branched double-covers of links with thin Khovanov homology.
    [Show full text]
  • Diagrams of Affine Permutations and Their Labellings Taedong
    Diagrams of Affine Permutations and Their Labellings by Taedong Yun Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2013 c Taedong Yun, MMXIII. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Author.............................................................. Department of Mathematics April 29, 2013 Certified by. Richard P. Stanley Professor of Applied Mathematics Thesis Supervisor Accepted by . Paul Seidel Chairman, Department Committee on Graduate Theses 2 Diagrams of Affine Permutations and Their Labellings by Taedong Yun Submitted to the Department of Mathematics on April 29, 2013, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We study affine permutation diagrams and their labellings with positive integers. Bal- anced labellings of a Rothe diagram of a finite permutation were defined by Fomin- Greene-Reiner-Shimozono, and we extend this notion to affine permutations. The balanced labellings give a natural encoding of the reduced decompositions of affine permutations. We show that the sum of weight monomials of the column-strict bal- anced labellings is the affine Stanley symmetric function which plays an important role in the geometry of the affine Grassmannian. Furthermore, we define set-valued balanced labellings in which the labels are sets of positive integers, and we investi- gate the relations between set-valued balanced labellings and nilHecke words in the nilHecke algebra. A signed generating function of column-strict set-valued balanced labellings is shown to coincide with the affine stable Grothendieck polynomial which is related to the K-theory of the affine Grassmannian.
    [Show full text]
  • Random Plane Partitions and Corner Distributions Volume 4, Issue 4 (2021), P
    ALGEBRAIC COMBINATORICS Damir Yeliussizov Random plane partitions and corner distributions Volume 4, issue 4 (2021), p. 599-617. <http://alco.centre-mersenne.org/item/ALCO_2021__4_4_599_0> © The journal and the authors, 2021. Some rights reserved. This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/ Access to articles published by the journal Algebraic Combinatorics on the website http://alco.centre-mersenne.org/ implies agreement with the Terms of Use (http://alco.centre-mersenne.org/legal/). Algebraic Combinatorics is member of the Centre Mersenne for Open Scientific Publishing www.centre-mersenne.org Algebraic Combinatorics Volume 4, issue 4 (2021), p. 599–617 https://doi.org/10.5802/alco.171 Random plane partitions and corner distributions Damir Yeliussizov Abstract We explore some probabilistic applications arising in connections with K-theoretic symmetric functions. For instance, we determine certain corner distributions of random lozenge tilings and plane partitions. We also introduce some distributions that are naturally related to the corner growth model. Our main tools are dual symmetric Grothendieck polynomials and normalized Schur functions. 1. Introduction Combinatorics arising in connection with K-theoretic Schubert calculus is quite rich. Accompanied by certain families of symmetric functions, it usually presents some in- homogeneous deformations of objects beyond classical Schur (or Schubert) case. While the subject is intensively studied from combinatorial, algebraic and geometric aspects, see [20,7,8, 34, 19, 13, 35] and many references therein, much less is known about probabilistic connections (unlike interactions between probability and representation theory). Some work in this direction was done in [32, 22] and related problems were addressed in [38].(1) In this paper, we give several probabilistic applications obtained with tools from combinatorial K-theory.
    [Show full text]
  • Affine Permutations and Rational Slope Parking Functions
    AFFINE PERMUTATIONS AND RATIONAL SLOPE PARKING FUNCTIONS EUGENE GORSKY, MIKHAIL MAZIN, AND MONICA VAZIRANI ABSTRACT. We introduce a new approach to the enumeration of rational slope parking functions with respect to the area and a generalized dinv statistics, and relate the combinatorics of parking functions to that of affine permutations. We relate our construction to two previously known combinatorial constructions: Haglund’s bijection ζ exchanging the pairs of statistics (area, dinv) and (bounce, area) on Dyck paths, and the Pak-Stanley labeling of the regions of k-Shi hyperplane arrangements by k-parking functions. Essentially, our approach can be viewed as a generalization and a unification of these two constructions. We also relate our combinatorial constructions to representation theory. We derive new formulas for the Poincar´epolynomials of certain affine Springer fibers and describe a connection to the theory of finite dimensional representations of DAHA and nonsymmetric Macdonald polynomials. 1. INTRODUCTION Parking functions are ubiquitous in the modern combinatorics. There is a natural action of the symmetric group on parking functions, and the orbits are labeled by the non-decreasing parking functions which correspond natu- rally to the Dyck paths. This provides a link between parking functions and various combinatorial objects counted by Catalan numbers. In a series of papers Garsia, Haglund, Haiman, et al. [18, 19], related the combinatorics of Catalan numbers and parking functions to the space of diagonal harmonics. There are also deep connections to the geometry of the Hilbert scheme. Since the works of Pak and Stanley [29], Athanasiadis and Linusson [5] , it became clear that parking functions are tightly related to the combinatorics of the affine symmetric group.
    [Show full text]
  • On the Complexity of Computing Kostka Numbers and Littlewood-Richardson Coefficients
    Formal Power Series and Algebraic Combinatorics S´eries Formelles et Combinatoire Alg´ebrique San Diego, California 2006 . On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients Hariharan Narayanan Abstract. Kostka numbers and Littlewood-Richardson coefficients appear in combina- torics and representation theory. Interest in their computation stems from the fact that they are present in quantum mechanical computations since Wigner ([17]). In recent times, there have been a number of algorithms proposed to perform this task ([1], [13], [14], [2], [3]). The issue of their computational complexity was explicitly asked by E. Rassart ([13]). We prove that the computation of either quantity is #P -complete. This, implies that unless P = NP , which is widely disbelieved, there do not exist efficient algorithms that compute these numbers. Resum´ e.´ Les nombres de Kostka et les coefficients de Littlewood-Richardson apparaissent en combinatoire et en th´eorie de la repr´esentation. Il est int´eressant de les calculer car ils ap- paraissent dans certains calculs en m´ecanique quantique depuis Wigner ([17]). R´ecemment, plusieurs algorithmes ont ´et´epropos´espour les calculer ([1], [13], [14], [2], [3]). Le probl`eme de la complexit´ede ce calcul a ´et´epos´epar E. Rassart ([13]). Nous d´emontrons que le calcul des nombres de Kotska et des coefficients de Littlewood-Richardson est #P-complet. Cela implique que, `amoins que P=NP, il n’existe pas d’algorithme efficace pour calculer ces nombres. 1. Introduction Let N = {1, 2,...} be the set of positive integers and Z≥0 = N ∪ {0}. Let λ =(λ1,...,λs) ∈ Ns Zt Zu , λ1 ≥ λ2 ≥ ··· ≥ λs ≥ 1, µ = (µ1,...,µt) ∈ ≥0, ν = (ν1,...,νu) ∈ ≥0 and v α = (α1,...,αv) ∈ N , α1 ≥···≥ αv ≥ 1.
    [Show full text]