Mathematical Background of the P3r2 Test

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Background of the P3r2 Test Mathematical background of the p3r2 test Niklas Hohmann∗ December 14, 2017 1 Motivation There are two pivotal principles for the construction of the test. The first one is • propability density functions (pdfs) are needed to construct certain statistical methods and to prove their optimality In the case of the p3r2 test, the statistical method used is a likelihood-ratio test. The notion of optimality for tests used here is a uniform most powerful (UMP) test. The second principle is that • a Poisson point process (PPP) can be modeled as a random measure At first sight, this complicates things. For example, the observation times y = (y1; y2; : : : ; yN ) (1) of a PPP are not taken as elements of RN , but are interpreted as a measure µy on the real numbers, which is the sum of Dirac measures: N X µy = δyj : (2) j=1 But this approach has got advantages that will become clear soon. The general goal in the next few pages is to establish a pdf for PPPs to construct a UMP test for PPPs. Ignoring more technical details, a random measure Xi is a random element with values in M(R), the set of all measures on R. Since a PPP can be ∗FAU Erlangen-Nuremberg, email: [email protected] 1 modeled as a random measure, it can be imagined as a procedure that is randomly choosing a measure similar to the one in equation (2) that can again be interpreted as observation times. Since Xi is a random element with values in M(R), the distribution Pi of Xi is a probability measure on M(R). So Pi assigns probabilities to sets of measures. Given a second random measure Xj with distribution Pj, the relationship of their distributions Pi and Pj can be examined by applying methods of measure theory. It is known from the Radon-Nikodym theorem that the existence of a pdf of a (probability) measure Pi in reference to a (probability) measure Pj is equal to absolute continuity of Pi in reference to Pj, which is written as Pi Pj. So to establish a pdf for PPPs, absolute continuity between the distributions of the relevant random measures has to be established. 2 Basic idea For simplification, look at the measures on the positive real numbers. Assume µr is a finite measure on [0; 1). Then it is uniquely determined by its Laplace transform Z Lr(t) = exp(−tx) µr(dx) : (3) If µr λM , there exists a density function fr of µr in reference to λM . So we get the alternative representation Z Lr(t) = fr(x) exp(−tx) λM (dx) (4) for the Laplace transform. Now, assume it is unknown whether or not µr λM , but it can be shown that Z Lr(t) = g(x) exp(−tx) λM (dx) (5) for all t and a given function g. So g behaves like a density in combination with the Laplace transform. If this property can be expanded and used to show that g behaves like a density in combination with all indicator functions of measurable sets, then g really is a density, which means µr λM and fr = g almost everywhwere. The same approach is used for random measures: first, a function is identified that behaves like a density in combination with the Laplace transform. This is done in section 4. Then, it is shown that this property expands and the function really is a density. This is done in section 5. 2 3 Modelling and Notation In terms of notation, I follow [2] and use the conventions ln(0) := −∞ and 1 1 exp(−∞) = 0. Choose fr 2 L (R; B(R); λ) := L (λ) satisfying 1. there is a compact, connected set M ⊂ R with supp(fr) ⊂ M for all r 2. fr(x) ≥ 0 for all x 2 R 3. R f(x)λ(dx) > 0 Here, r is an arbitrary index from an index set R and λ is the Lebesgue measure. Since everything outside the set M is irrelevant for modelling, I will use λM , the Lebesgue measure restricted to M instead of λ. The fr will serve as the rate functions of the PPPs. Define the measures Z µr(A) := fr(x) λM (dx) : (6) A 1 Then µr λM and fr is the density function of µr in reference to λM . Last, we denote the PPP with intensity measure µr with Xr and the PPP with intensity measure λM with XM . 4 Identifying a possible pdf candidate In the case of a random measure Xr, the Laplace transform is given by Z Lr(f) = E exp − f(x) Xr(dx) : (7) + + Here, f 2 Cc , where Cc is the set of positive continuous functions with compact support. If Xr is a PPP with intensity measure µr, this simplifies to Z Lr(f) = exp exp(−f(x)) − 1 µr(dx) (8) Z = exp (exp(−f(x)) − 1)fr(x) λM (dx) : (9) Here, fr is the density of µr in reference to λM . Like in section 2, we need a function dr that behaves like a density in combination with the Laplace transform, meaning Z Lr(f) = E dr(XM ) exp − f(x) XM (dx) : (10) 1it is not a probability density function 3 I will show that the function Z dr(XM ) := cr · exp ln(fr(x))XM (dx) (11) with Z cr := exp 1 − fr(x)λM (dx) (12) has got that property. First, assume the rate function fr is a simple function, so n X fr(x) = αi1Ai (x) (13) i=1 with αi > 0 and measurable sets Ai. For technical reasons, add the set n A0 = M n [i=1Ai with α0 = 0, so n X fr(x) = αi1Ai (x) : (14) i=0 + Now, take any f 2 Cc . Then for every Ai, there is a series of simple functions (~sk;i)k2N withs ~k;i(x) % f(x)1Ai (x) almost everywhere for k ! 1. Then si;k(x) = (ln(αi) − s~i;k(x))1Ai (x) & (ln(αi) − f(x))1Ai (x) (15) for k ! 1. The function n X sk(x) = si;k(x) (16) i=0 is also a simple function and has got a representation n Xk sk(x) = bj;k1Bj;k (x) (17) j=1 with measurable Bj;k. Then sk(x) & ln(fr(x)) − f(x) (18) almost everywhere for k ! 1. Further, the sets Bj;k can be chosen to be com- patible with the sets Ai, meaning that for all i, there is a Ji ⊂ f1; 2; 3; : : : ; nkg satisfying [ Bj;k = Ai : (19) j2Ji 4 So we get an alternative representation of fr: n Xk fr(x) = α~j1Bj;k (20) j=1 with αi =α ~j for all j 2 Ji. Furthermore bj;k = ln(αi) − βj;k for j 2 Ji. So X s~i;k(x) = βj;k1Bj;k (x) (21) j2Ji and n n Xk Xk s~k(x) = s~i;k(x) = βj;k1Bj;k (x) % f(x) (22) i=1 j=1 almost everywhere for k ! 1. With fr being a simple function, the equation (12) reduces to n ! Z Xk cr = exp 1 − α~j1Bj;k λM (dx) (23) j=1 n ! Xk = exp (1 − α~j)λM (Bj;k) (24) j=1 n Yk = exp ((1 − α~j)λM (Bj;k)) : (25) j=1 + Now, we start showing equation (10). First, fix any f 2 Cc and an approxi- mating sequences ~k as discussed above. Then Z E dr(XM ) exp − s~k(x) XM (dx) (26) Z = E cr · exp ln(fr(x)) − s~k(x) XM (dx) (27) Z = E cr · exp sk(x) XM (dx) (28) " n # Yk = E cr · exp (bj;kXM (Bj;k)) : (29) j=1 Now, note that for a random variable Y having a Poisson distribution with parameter p > 0 and any a > 0, it is E [exp(aY )] = exp(p(exp(a) − 1)) : (30) 5 By using the independent increments of the PPP XM and the fact that XM (B) ∼ Poi(λM (B)), continue the series of equations with n Yk eq. (29) = cr · E [exp (bj;kXM (Bj;k))] (31) j=1 n Yk = cr · exp (λM (Bj;k)(exp(bj;k) − 1)) (32) j=1 n Yk = exp (λM (Bj;k) · (1 − α~j − 1 +α ~j exp(−βj))) (33) j=1 n ! Xk = exp α~jλM (Bj;k)(exp(−βj) − 1) (34) j=1 n ! Z Xk = exp α~j1Bj;k (x)(exp(−βj) − 1)λM (dx) (35) j=1 Z = exp (exp(−s~k(x)) − 1)fr(x)λM (dx) (36) = Lr(~sk): (37) By standard approximation arguments, this also holds for any fr as defined + in section 3 and all f 2 Cc . 5 Expanding the pdf property I will first show the expansion of the density behaviour for measures on the positive real numbers (see section 2). This is just to give an idea of the principles that will be used for random measures, so the fact that [0; 1) is not compact will be ignored. The underlying idea is to essentially reverse engineer theorem 15.5 from [2]. Once the expansion has been shown to work for measures on the positive real numbers, i will show that it also works for random measures. 5.1 Measures on the positive real numbers So assume we know that Z Lr(t) = g(x) exp(−tx) λM (dx)(t ≥ 0) (38) 6 with Lr being the Laplace transform of a finite measure µr on the positive real numbers and g the assumed density.
Recommended publications
  • Integral Representation of a Linear Functional on Function Spaces
    INTEGRAL REPRESENTATION OF LINEAR FUNCTIONALS ON FUNCTION SPACES MEHDI GHASEMI Abstract. Let A be a vector space of real valued functions on a non-empty set X and L : A −! R a linear functional. Given a σ-algebra A, of subsets of X, we present a necessary condition for L to be representable as an integral with respect to a measure µ on X such that elements of A are µ-measurable. This general result then is applied to the case where X carries a topological structure and A is a family of continuous functions and naturally A is the Borel structure of X. As an application, short solutions for the full and truncated K-moment problem are presented. An analogue of Riesz{Markov{Kakutani representation theorem is given where Cc(X) is replaced with whole C(X). Then we consider the case where A only consists of bounded functions and hence is equipped with sup-norm. 1. Introduction A positive linear functional on a function space A ⊆ RX is a linear map L : A −! R which assigns a non-negative real number to every function f 2 A that is globally non-negative over X. The celebrated Riesz{Markov{Kakutani repre- sentation theorem states that every positive functional on the space of continuous compactly supported functions over a locally compact Hausdorff space X, admits an integral representation with respect to a regular Borel measure on X. In symbols R L(f) = X f dµ, for all f 2 Cc(X). Riesz's original result [12] was proved in 1909, for the unit interval [0; 1].
    [Show full text]
  • Geometric Integration Theory Contents
    Steven G. Krantz Harold R. Parks Geometric Integration Theory Contents Preface v 1 Basics 1 1.1 Smooth Functions . 1 1.2Measures.............................. 6 1.2.1 Lebesgue Measure . 11 1.3Integration............................. 14 1.3.1 Measurable Functions . 14 1.3.2 The Integral . 17 1.3.3 Lebesgue Spaces . 23 1.3.4 Product Measures and the Fubini–Tonelli Theorem . 25 1.4 The Exterior Algebra . 27 1.5 The Hausdorff Distance and Steiner Symmetrization . 30 1.6 Borel and Suslin Sets . 41 2 Carath´eodory’s Construction and Lower-Dimensional Mea- sures 53 2.1 The Basic Definition . 53 2.1.1 Hausdorff Measure and Spherical Measure . 55 2.1.2 A Measure Based on Parallelepipeds . 57 2.1.3 Projections and Convexity . 57 2.1.4 Other Geometric Measures . 59 2.1.5 Summary . 61 2.2 The Densities of a Measure . 64 2.3 A One-Dimensional Example . 66 2.4 Carath´eodory’s Construction and Mappings . 67 2.5 The Concept of Hausdorff Dimension . 70 2.6 Some Cantor Set Examples . 73 i ii CONTENTS 2.6.1 Basic Examples . 73 2.6.2 Some Generalized Cantor Sets . 76 2.6.3 Cantor Sets in Higher Dimensions . 78 3 Invariant Measures and the Construction of Haar Measure 81 3.1 The Fundamental Theorem . 82 3.2 Haar Measure for the Orthogonal Group and the Grassmanian 90 3.2.1 Remarks on the Manifold Structure of G(N,M).... 94 4 Covering Theorems and the Differentiation of Integrals 97 4.1 Wiener’s Covering Lemma and its Variants .
    [Show full text]
  • On Stochastic Distributions and Currents
    NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI LEONARDO DA VINCI vol. 4 no. 3-4 2016 Mathematics and Mechanics of Complex Systems VINCENZO CAPASSO AND FRANCO FLANDOLI ON STOCHASTIC DISTRIBUTIONS AND CURRENTS msp MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS Vol. 4, No. 3-4, 2016 dx.doi.org/10.2140/memocs.2016.4.373 ∩ MM ON STOCHASTIC DISTRIBUTIONS AND CURRENTS VINCENZO CAPASSO AND FRANCO FLANDOLI Dedicated to Lucio Russo, on the occasion of his 70th birthday In many applications, it is of great importance to handle random closed sets of different (even though integer) Hausdorff dimensions, including local infor- mation about initial conditions and growth parameters. Following a standard approach in geometric measure theory, such sets may be described in terms of suitable measures. For a random closed set of lower dimension with respect to the environment space, the relevant measures induced by its realizations are sin- gular with respect to the Lebesgue measure, and so their usual Radon–Nikodym derivatives are zero almost everywhere. In this paper, how to cope with these difficulties has been suggested by introducing random generalized densities (dis- tributions) á la Dirac–Schwarz, for both the deterministic case and the stochastic case. For the last one, mean generalized densities are analyzed, and they have been related to densities of the expected values of the relevant measures. Ac- tually, distributions are a subclass of the larger class of currents; in the usual Euclidean space of dimension d, currents of any order k 2 f0; 1;:::; dg or k- currents may be introduced.
    [Show full text]
  • Invariant Radon Measures on Measured Lamination Space
    INVARIANT RADON MEASURES ON MEASURED LAMINATION SPACE URSULA HAMENSTADT¨ Abstract. Let S be an oriented surface of genus g ≥ 0 with m ≥ 0 punctures and 3g − 3+ m ≥ 2. We classify all Radon measures on the space of measured geodesic laminations which are invariant under the action of the mapping class group of S. 1. Introduction Let S be an oriented surface of finite type, i.e. S is a closed surface of genus g 0 from which m 0 points, so-called punctures, have been deleted. We assume that≥ 3g 3 + m 1,≥ i.e. that S is not a sphere with at most 3 punctures or a torus without− puncture.≥ In particular, the Euler characteristic of S is negative. Then the Teichm¨uller space (S) of S is the quotient of the space of all complete hyperbolic metrics of finite volumeT on S under the action of the group of diffeomorphisms of S which are isotopic to the identity. The mapping class group MCG(S) of all isotopy classes of orientation preserving diffeomorphisms of S acts properly discontinuously on (S) with quotient the moduli space Mod(S). T A geodesic lamination for a fixed choice of a complete hyperbolic metric of finite volume on S is a compact subset of S foliated into simple geodesics. A measured geodesic lamination is a geodesic lamination together with a transverse translation invariant measure. The space of all measured geodesic laminations on S, equipped with the weak∗-topology,ML is homeomorphic to S6g−7+2m (0, ) where S6g−7+2m is the 6g 7+2m-dimensional sphere.
    [Show full text]
  • Weak Convergence of Measures
    Mathematical Surveys and Monographs Volume 234 Weak Convergence of Measures Vladimir I. Bogachev Weak Convergence of Measures Mathematical Surveys and Monographs Volume 234 Weak Convergence of Measures Vladimir I. Bogachev EDITORIAL COMMITTEE Walter Craig Natasa Sesum Robert Guralnick, Chair Benjamin Sudakov Constantin Teleman 2010 Mathematics Subject Classification. Primary 60B10, 28C15, 46G12, 60B05, 60B11, 60B12, 60B15, 60E05, 60F05, 54A20. For additional information and updates on this book, visit www.ams.org/bookpages/surv-234 Library of Congress Cataloging-in-Publication Data Names: Bogachev, V. I. (Vladimir Igorevich), 1961- author. Title: Weak convergence of measures / Vladimir I. Bogachev. Description: Providence, Rhode Island : American Mathematical Society, [2018] | Series: Mathe- matical surveys and monographs ; volume 234 | Includes bibliographical references and index. Identifiers: LCCN 2018024621 | ISBN 9781470447380 (alk. paper) Subjects: LCSH: Probabilities. | Measure theory. | Convergence. Classification: LCC QA273.43 .B64 2018 | DDC 519.2/3–dc23 LC record available at https://lccn.loc.gov/2018024621 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions. Send requests for translation rights and licensed reprints to [email protected].
    [Show full text]
  • Nonlinear Structures Determined by Measures on Banach Spaces Mémoires De La S
    MÉMOIRES DE LA S. M. F. K. DAVID ELWORTHY Nonlinear structures determined by measures on Banach spaces Mémoires de la S. M. F., tome 46 (1976), p. 121-130 <http://www.numdam.org/item?id=MSMF_1976__46__121_0> © Mémoires de la S. M. F., 1976, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Journees Geom. dimens. infinie [1975 - LYON ] 121 Bull. Soc. math. France, Memoire 46, 1976, p. 121 - 130. NONLINEAR STRUCTURES DETERMINED BY MEASURES ON BANACH SPACES By K. David ELWORTHY 0. INTRODUCTION. A. A Gaussian measure y on a separable Banach space E, together with the topolcT- gical vector space structure of E, determines a continuous linear injection i : H -> E, of a Hilbert space H, such that y is induced by the canonical cylinder set measure of H. Although the image of H has measure zero, nevertheless H plays a dominant role in both linear and nonlinear analysis involving y, [ 8] , [9], [10] . The most direct approach to obtaining measures on a Banach manifold M, related to its differential structure, requires a lot of extra structure on the manifold : for example a linear map i : H -> T M for each x in M, and even a subset M-^ of M which has the structure of a Hilbert manifold, [6] , [7].
    [Show full text]
  • Continuous Wavelet Transformation on Homogeneous Spaces
    Continuous Wavelet Transformation on Homogeneous Spaces Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universität zu Göttingen im Promotionsprogramm “Mathematical Sciences (Ph.D)” der Georg-August University School of Science (GAUSS) vorgelegt von Burkhard Blobel aus Freiberg/Sa. Göttingen, 2020 Betreuungsausschuss: Prof. Dr. Dorothea Bahns, Mathematisches Institut, Universität Göttingen Prof. Dr. Thomas Schick, Mathematisches Institut, Universität Göttingen Mitglieder der Prüfungskommission: Referent: Prof. Dr. Dorothea Bahns, Mathematisches Institut, Universität Göttingen Korreferent: Prof. Dr. Thomas Schick, Mathematisches Institut, Universität Göttingen Weitere Mitglieder der Prüfungskommission: Jun.-Prof. Dr. Madeleine Jotz Lean Mathematisches Institut, Universität Göttingen Prof. Dr. Ralf Meyer, Mathematisches Institut, Universität Göttingen Prof. Dr. Gerlind Plonka-Hoch, Institut für Numerische und Angewandte Mathematik, Universität Göttingen Prof. Dr. Dominic Schuhmacher Institut für Mathematische Stochastik, Universität Göttingen Tag der mündlichen Prüfung: 11.12.2020 Contents Notation and convention v 1 Introduction 1 2 Basics 7 2.1 Locally compact groups . .7 2.1.1 Topological groups . .7 2.1.2 Homogeneous spaces of locally compact groups . .9 2.1.3 Measures on locally compact spaces . 10 2.1.4 Haar measure . 13 2.1.5 Function spaces . 15 2.1.6 Quasi-invariant measures on the quotient space . 17 2.1.7 Standard Borel spaces . 22 2.2 Representation theory . 27 2.2.1 Unitary representation . 27 2.2.2 Induced representations . 30 2.2.3 Properties of induced representations . 34 2.3 The dual and the quasi-dual of a locally compact group . 35 2.3.1 Von Neumann algebras . 35 2.3.2 Direct integral of Hilbert spaces .
    [Show full text]
  • A Theory of Radon Measures on Locally Compact Spaces
    A THEORY OF RADON MEASURES ON LOCALLY COMPACT SPACES. By R. E. EDWARDS. 1. Introduction. In functional analysis one is often presented with the following situation: a locally compact space X is given, and along with it a certain topological vector space • of real functions defined on X; it is of importance to know the form of the most general continuous linear functional on ~. In many important cases, s is a superspace of the vector space ~ of all reul, continuous functions on X which vanish outside compact subsets of X, and the topology of s is such that if a sequence (]n) tends uniformly to zero and the ]n collectively vanish outside a fixed compact subset of X, then (/~) is convergent to zero in the sense of E. In this case the restriction to ~ of any continuous linear functional # on s has the property that #(/~)~0 whenever the se- quence (/~) converges to zero in the manner just described. It is therefore an important advance to determine all the linear functionals on (~ which are continuous in this eense. It is customary in some circles (the Bourbaki group, for example) to term such a functional # on ~ a "Radon measure on X". Any such functional can be written in many ways as the difference of two similar functionals, euch having the additional property of being positive in the sense that they assign a number >_ 0 to any function / satisfying ] (x) > 0 for all x E X. These latter functionals are termed "positive Radon measures on X", and it is to these that we may confine our attention.
    [Show full text]
  • Some Special Results of Measure Theory
    Some Special Results of Measure Theory By L. Le Cam1 U.C. Berkeley 1. Introduction The purpose of the present report is to record in writing some results of measure theory that are known to many people but do not seem to be in print, or at least seem to be difficult to find in the printed literature. The first result, originally proved by a consortium including R.M. Dudley, J. Feldman, D. Fremlin, C.C. Moore and R. Solovay in 1970 says something like this: Let X be compact with a Radon measure µ.Letf be a map from X to a metric space Y such that for every open set S ⊂ Y the inverse image, f −1(S) is Radon measurable. Then, if the cardinality of f(X)isnot outlandishly large, there is a subset X0 ⊂ X such that µ(X\X0)=0and f(X0) is separable. Precise definition of what outlandishly large means will be given below. The theorem may not appear very useful. However, after seeing it, one usually looks at empirical measures and processes in a different light. The theorem could be stated briefly as follows: A measurable image of a Radon measure in a complete metric space is Radon. Section 6 Theorem 7 gives an extension of the result where maps are replaced by Markov kernels. Sec- tion 8, Theorem 9, gives an extension to the case where the range space is paracompact instead of metric. The second part of the paper is an elaboration on certain classes of mea- sures that are limits in a suitable sense of “molecular” ones, that is measures carried by finite sets.
    [Show full text]
  • Radon Measures
    MAT 533, SPRING 2021, Stony Brook University REAL ANALYSIS II FOLLAND'S REAL ANALYSIS: CHAPTER 7 RADON MEASURES Christopher Bishop 1. Chapter 7: Radon Measures Chapter 7: Radon Measures 7.1 Positive linear functionals on Cc(X) 7.2 Regularity and approximation theorems 7.3 The dual of C0(X) 7.4* Products of Radon measures 7.5 Notes and References Chapter 7.1: Positive linear functionals X = locally compact Hausdorff space (LCH space) . Cc(X) = continuous functionals with compact support. Defn: A linear functional I on C0(X) is positive if I(f) ≥ 0 whenever f ≥ 0, Example: I(f) = f(x0) (point evaluation) Example: I(f) = R fdµ, where µ gives every compact set finite measure. We will show these are only examples. Prop. 7.1; If I is a positive linear functional on Cc(X), for each compact K ⊂ X there is a constant CK such that jI(f)j ≤ CLkfku for all f 2 Cc(X) such that supp(f) ⊂ K. Proof. It suffices to consider real-valued I. Given a compact K, choose φ 2 Cc(X; [0; 1]) such that φ = 1 on K (Urysohn's lemma). Then if supp(f) ⊂ K, jfj ≤ kfkuφ, or kfkφ − f > 0;; kfkφ + f > 0; so kfkuI(φ) − I)f) ≥ 0; kfkuI(φ) + I)f) ≥ 0: Thus jI(f)j ≤ I(φ)kfku: Defn: let µ be a Borel measure on X and E a Borel subset of X. µ is called outer regular on E if µ(E) = inffµ(U): U ⊃ E; U open g; and is inner regular on E if µ(E) = supfµ(K): K ⊂ E; K open g: Defn: if µ is outer and inner regular on all Borel sets, then it is called regular.
    [Show full text]
  • Representation of the Dirac Delta Function in C(R)
    Representation of the Dirac delta function in C(R∞) in terms of infinite-dimensional Lebesgue measures Gogi Pantsulaia∗ and Givi Giorgadze I.Vekua Institute of Applied Mathematics, Tbilisi - 0143, Georgian Republic e-mail: [email protected] Georgian Technical University, Tbilisi - 0175, Georgian Republic g.giorgadze Abstract: A representation of the Dirac delta function in C(R∞) in terms of infinite-dimensional Lebesgue measures in R∞ is obtained and some it’s properties are studied in this paper. MSC 2010 subject classifications: Primary 28xx; Secondary 28C10. Keywords and phrases: The Dirac delta function, infinite-dimensional Lebesgue measure. 1. Introduction The Dirac delta function(δ-function) was introduced by Paul Dirac at the end of the 1920s in an effort to create the mathematical tools for the development of quantum field theory. He referred to it as an improper functional in Dirac (1930). Later, in 1947, Laurent Schwartz gave it a more rigorous mathematical definition as a spatial linear functional on the space of test functions D (the set of all real-valued infinitely differentiable functions with compact support). Since the delta function is not really a function in the classical sense, one should not consider the value of the delta function at x. Hence, the domain of the delta function is D and its value for f ∈ D is f(0). Khuri (2004) studied some interesting applications of the delta function in statistics. The purpose of the present paper is an introduction of a concept of the Dirac delta function in the class of all continuous functions defined in the infinite- dimensional topological vector space of all real valued sequences R∞ equipped arXiv:1605.02723v2 [math.CA] 14 May 2016 with Tychonoff topology and a representation of this functional in terms of infinite-dimensional Lebesgue measures in R∞.
    [Show full text]
  • The Gap Between Gromov-Vague and Gromov-Hausdorff-Vague Topology
    THE GAP BETWEEN GROMOV-VAGUE AND GROMOV-HAUSDORFF-VAGUE TOPOLOGY SIVA ATHREYA, WOLFGANG LOHR,¨ AND ANITA WINTER Abstract. In [ALW15] an invariance principle is stated for a class of strong Markov processes on tree-like metric measure spaces. It is shown that if the underlying spaces converge Gromov vaguely, then the processes converge in the sense of finite dimensional distributions. Further, if the underly- ing spaces converge Gromov-Hausdorff vaguely, then the processes converge weakly in path space. In this paper we systematically introduce and study the Gromov-vague and the Gromov-Hausdorff-vague topology on the space of equivalence classes of metric boundedly finite measure spaces. The latter topology is closely related to the Gromov-Hausdorff-Prohorov metric which is defined on different equivalence classes of metric measure spaces. We explain the necessity of these two topologies via several examples, and close the gap between them. That is, we show that convergence in Gromov- vague topology implies convergence in Gromov-Hausdorff-vague topology if and only if the so-called lower mass-bound property is satisfied. Further- more, we prove and disprove Polishness of several spaces of metric measure spaces in the topologies mentioned above (summarized in Figure 1). As an application, we consider the Galton-Watson tree with critical off- spring distribution of finite variance conditioned to not get extinct, and construct the so-called Kallenberg-Kesten tree as the weak limit in Gromov- Hausdorff-vague topology when the edge length are scaled down to go to zero. Contents 1. Introduction 1 2. The Gromov-vague topology 6 3.
    [Show full text]