Linearization, Trace and Determinant MAT308 Spring 2011 Scott Sutherland, Stony Brook University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ordinary Differential Equation 2
Unit - II Linear Systems- Let us consider a system of first order differential equations of the form dx = F(,)x y dt (1) dy = G(,)x y dt Where t is an independent variable. And x & y are dependent variables. The system (1) is called a linear system if both F(x, y) and G(x, y) are linear in x and y. dx = a ()t x + b ()t y + f() t dt 1 1 1 Also system (1) can be written as (2) dy = a ()t x + b ()t y + f() t dt 2 2 2 ∀ = [ ] Where ai t)( , bi t)( and fi () t i 2,1 are continuous functions on a, b . Homogeneous and Non-Homogeneous Linear Systems- The system (2) is called a homogeneous linear system, if both f1 ( t )and f2 ( t ) are identically zero and if both f1 ( t )and f2 t)( are not equal to zero, then the system (2) is called a non-homogeneous linear system. x = x() t Solution- A pair of functions defined on [a, b]is said to be a solution of (2) if it satisfies y = y() t (2). dx = 4x − y ........ A dt Example- (3) dy = 2x + y ........ B dt dx d 2 x dx From A, y = 4x − putting in B we obtain − 5 + 6x = 0is a 2 nd order differential dt dt 2 dt x = e2t equation. The auxiliary equation is m2 − 5m + 6 = 0 ⇒ m = 3,2 so putting x = e2t in A, we x = e3t obtain y = 2e2t again putting x = e3t in A, we obtain y = e3t . -
1 Probelms on Implicit Differentiation 2 Problems on Local Linearization
Math-124 Calculus Chapter 3 Review 1 Probelms on Implicit Di®erentiation #1. A function is de¯ned implicitly by x3y ¡ 3xy3 = 3x + 4y + 5: Find y0 in terms of x and y. In problems 2-6, ¯nd the equation of the tangent line to the curve at the given point. x3 + 1 #2. + 2y2 = 1 ¡ 2x + 4y at the point (2; ¡1). y 1 #3. 4ey + 3x = + (y + 1)2 + 5x at the point (1; 0). x #4. (3x ¡ 2y)2 + x3 = y3 ¡ 2x ¡ 4 at the point (1; 2). p #5. xy + x3 = y3=2 ¡ y ¡ x at the point (1; 4). 2 #6. x sin(y ¡ 3) + 2y = 4x3 + at the point (1; 3). x #7. Find y00 for the curve xy + 2y3 = x3 ¡ 22y at the point (3; 1): #8. Find the points at which the curve x3y3 = x + y has a horizontal tangent. 2 Problems on Local Linearization #1. Let f(x) = (x + 2)ex. Find the value of f(0). Use this to approximate f(¡:2). #2. f(2) = 4 and f 0(2) = 7. Use linear approximation to approximate f(2:03). 6x4 #3. f(1) = 9 and f 0(x) = : Use a linear approximation to approximate f(1:02). x2 + 1 #4. A linear approximation is used to approximate y = f(x) at the point (3; 1). When ¢x = :06 and ¢y = :72. Find the equation of the tangent line. 3 Problems on Absolute Maxima and Minima 1 #1. For the function f(x) = x3 ¡ x2 ¡ 8x + 1, ¯nd the x-coordinates of the absolute max and 3 absolute min on the interval ² a) ¡3 · x · 5 ² b) 0 · x · 5 3 #2. -
DYNAMICAL SYSTEMS Contents 1. Introduction 1 2. Linear Systems 5 3
DYNAMICAL SYSTEMS WILLY HU Contents 1. Introduction 1 2. Linear Systems 5 3. Non-linear systems in the plane 8 3.1. The Linearization Theorem 11 3.2. Stability 11 4. Applications 13 4.1. A Model of Animal Conflict 13 4.2. Bifurcations 14 Acknowledgments 15 References 15 Abstract. This paper seeks to establish the foundation for examining dy- namical systems. Dynamical systems are, very broadly, systems that can be modelled by systems of differential equations. In this paper, we will see how to examine the qualitative structure of a system of differential equations and how to model it geometrically, and what information can be gained from such an analysis. We will see what it means for focal points to be stable and unstable, and how we can apply this to examining population growth and evolution, bifurcations, and other applications. 1. Introduction This paper is based on Arrowsmith and Place's book, Dynamical Systems.I have included corresponding references for propositions, theorems, and definitions. The images included in this paper are also from their book. Definition 1.1. (Arrowsmith and Place 1.1.1) Let X(t; x) be a real-valued function of the real variables t and x, with domain D ⊆ R2. A function x(t), with t in some open interval I ⊆ R, which satisfies dx (1.2) x0(t) = = X(t; x(t)) dt is said to be a solution satisfying x0. In other words, x(t) is only a solution if (t; x(t)) ⊆ D for each t 2 I. We take I to be the largest interval for which x(t) satisfies (1.2). -
Phase Plane Diagrams of Difference Equations
PHASE PLANE DIAGRAMS OF DIFFERENCE EQUATIONS TANYA DEWLAND, JEROME WESTON, AND RACHEL WEYRENS Abstract. We will be determining qualitative features of a dis- crete dynamical system of homogeneous difference equations with constant coefficients. By creating phase plane diagrams of our system we can visualize these features, such as convergence, equi- librium points, and stability. 1. Introduction Continuous systems are often approximated as discrete processes, mean- ing that we look only at the solutions for positive integer inputs. Dif- ference equations are recurrence relations, and first order difference equations only depend on the previous value. Using difference equa- tions, we can model discrete dynamical systems. The observations we can determine, by analyzing phase plane diagrams of difference equa- tions, are if we are modeling decay or growth, convergence, stability, and equilibrium points. For this paper, we will only consider two dimensional systems. Suppose x(k) and y(k) are two functions of the positive integers that satisfy the following system of difference equations: x(k + 1) = ax(k) + by(k) y(k + 1) = cx(k) + dy(k): This system is more simply written in matrix from z(k + 1) = Az(k); x(k) a b where z(k) = is a column vector and A = . If z(0) = z y(k) c d 0 is the initial condition then the solution to the initial value prob- lem z(k + 1) = Az(k); z(0) = z0; 1 2 TANYA DEWLAND, JEROME WESTON, AND RACHEL WEYRENS is k z(k) = A z0: Each z(k) is represented as a point (x(k); y(k)) in the Euclidean plane. -
Linearization of Nonlinear Differential Equation by Taylor's Series
International Journal of Theoretical and Applied Science 4(1): 36-38(2011) ISSN No. (Print) : 0975-1718 International Journal of Theoretical & Applied Sciences, 1(1): 25-31(2009) ISSN No. (Online) : 2249-3247 Linearization of Nonlinear Differential Equation by Taylor’s Series Expansion and Use of Jacobian Linearization Process M. Ravi Tailor* and P.H. Bhathawala** *Department of Mathematics, Vidhyadeep Institute of Management and Technology, Anita, Kim, India **S.S. Agrawal Institute of Management and Technology, Navsari, India (Received 11 March, 2012, Accepted 12 May, 2012) ABSTRACT : In this paper, we show how to perform linearization of systems described by nonlinear differential equations. The procedure introduced is based on the Taylor's series expansion and on knowledge of Jacobian linearization process. We develop linear differential equation by a specific point, called an equilibrium point. Keywords : Nonlinear differential equation, Equilibrium Points, Jacobian Linearization, Taylor's Series Expansion. I. INTRODUCTION δx = a δ x In order to linearize general nonlinear systems, we will This linear model is valid only near the equilibrium point. use the Taylor Series expansion of functions. Consider a function f(x) of a single variable x, and suppose that x is a II. EQUILIBRIUM POINTS point such that f( x ) = 0. In this case, the point x is called Consider a nonlinear differential equation an equilibrium point of the system x = f( x ), since we have x( t )= f [ x ( t ), u ( t )] ... (1) x = 0 when x= x (i.e., the system reaches an equilibrium n m n at x ). Recall that the Taylor Series expansion of f(x) around where f:. -
Linearization Extreme Values
Math 31A Discussion Notes Week 6 November 3 and 5, 2015 This week we'll review two of last week's lecture topics in preparation for the quiz. Linearization One immediate use we have for derivatives is local linear approximation. On small neighborhoods around a point, a differentiable function behaves linearly. That is, if we zoom in enough on a point on a curve, the curve will eventually look like a straight line. We can use this fact to approximate functions by their tangent lines. You've seen all of this in lecture, so we'll jump straight to the formula for local linear approximation. If f is differentiable at x = a and x is \close" to a, then f(x) ≈ L(x) = f(a) + f 0(a)(x − a): Example. Use local linear approximation to estimate the value of sin(47◦). (Solution) We know that f(x) := sin(x) is differentiable everywhere, and we know the value of sin(45◦). Since 47◦ is reasonably close to 45◦, this problem is ripe for local linear approximation. We know that f 0(x) = π cos(x), so f 0(45◦) = πp . Then 180 180 2 1 π 90 + π sin(47◦) ≈ sin(45◦) + f 0(45◦)(47 − 45) = p + 2 p = p ≈ 0:7318: 2 180 2 90 2 For comparison, Google says that sin(47◦) = 0:7314, so our estimate is pretty good. Considering the fact that most folks now have (extremely powerful) calculators in their pockets, the above example is a very inefficient way to compute sin(47◦). Local linear approximation is no longer especially useful for estimating particular values of functions, but it can still be a very useful tool. -
Phase Plane Methods
Chapter 10 Phase Plane Methods Contents 10.1 Planar Autonomous Systems . 680 10.2 Planar Constant Linear Systems . 694 10.3 Planar Almost Linear Systems . 705 10.4 Biological Models . 715 10.5 Mechanical Models . 730 Studied here are planar autonomous systems of differential equations. The topics: Planar Autonomous Systems: Phase Portraits, Stability. Planar Constant Linear Systems: Classification of isolated equilib- ria, Phase portraits. Planar Almost Linear Systems: Phase portraits, Nonlinear classi- fications of equilibria. Biological Models: Predator-prey models, Competition models, Survival of one species, Co-existence, Alligators, doomsday and extinction. Mechanical Models: Nonlinear spring-mass system, Soft and hard springs, Energy conservation, Phase plane and scenes. 680 Phase Plane Methods 10.1 Planar Autonomous Systems A set of two scalar differential equations of the form x0(t) = f(x(t); y(t)); (1) y0(t) = g(x(t); y(t)): is called a planar autonomous system. The term autonomous means self-governing, justified by the absence of the time variable t in the functions f(x; y), g(x; y). ! ! x(t) f(x; y) To obtain the vector form, let ~u(t) = , F~ (x; y) = y(t) g(x; y) and write (1) as the first order vector-matrix system d (2) ~u(t) = F~ (~u(t)): dt It is assumed that f, g are continuously differentiable in some region D in the xy-plane. This assumption makes F~ continuously differentiable in D and guarantees that Picard's existence-uniqueness theorem for initial d ~ value problems applies to the initial value problem dt ~u(t) = F (~u(t)), ~u(0) = ~u0. -
Calculus and Differential Equations II
Calculus and Differential Equations II MATH 250 B Linear systems of differential equations Linear systems of differential equations Calculus and Differential Equations II Second order autonomous linear systems We are mostly interested with2 × 2 first order autonomous systems of the form x0 = a x + b y y 0 = c x + d y where x and y are functions of t and a, b, c, and d are real constants. Such a system may be re-written in matrix form as d x x a b = M ; M = : dt y y c d The purpose of this section is to classify the dynamics of the solutions of the above system, in terms of the properties of the matrix M. Linear systems of differential equations Calculus and Differential Equations II Existence and uniqueness (general statement) Consider a linear system of the form dY = M(t)Y + F (t); dt where Y and F (t) are n × 1 column vectors, and M(t) is an n × n matrix whose entries may depend on t. Existence and uniqueness theorem: If the entries of the matrix M(t) and of the vector F (t) are continuous on some open interval I containing t0, then the initial value problem dY = M(t)Y + F (t); Y (t ) = Y dt 0 0 has a unique solution on I . In particular, this means that trajectories in the phase space do not cross. Linear systems of differential equations Calculus and Differential Equations II General solution The general solution to Y 0 = M(t)Y + F (t) reads Y (t) = C1 Y1(t) + C2 Y2(t) + ··· + Cn Yn(t) + Yp(t); = U(t) C + Yp(t); where 0 Yp(t) is a particular solution to Y = M(t)Y + F (t). -
Linearization Via the Lie Derivative ∗
Electron. J. Diff. Eqns., Monograph 02, 2000 http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp) Linearization via the Lie Derivative ∗ Carmen Chicone & Richard Swanson Abstract The standard proof of the Grobman–Hartman linearization theorem for a flow at a hyperbolic rest point proceeds by first establishing the analogous result for hyperbolic fixed points of local diffeomorphisms. In this exposition we present a simple direct proof that avoids the discrete case altogether. We give new proofs for Hartman’s smoothness results: A 2 flow is 1 linearizable at a hyperbolic sink, and a 2 flow in the C C C plane is 1 linearizable at a hyperbolic rest point. Also, we formulate C and prove some new results on smooth linearization for special classes of quasi-linear vector fields where either the nonlinear part is restricted or additional conditions on the spectrum of the linear part (not related to resonance conditions) are imposed. Contents 1 Introduction 2 2 Continuous Conjugacy 4 3 Smooth Conjugacy 7 3.1 Hyperbolic Sinks . 10 3.1.1 Smooth Linearization on the Line . 32 3.2 Hyperbolic Saddles . 34 4 Linearization of Special Vector Fields 45 4.1 Special Vector Fields . 46 4.2 Saddles . 50 4.3 Infinitesimal Conjugacy and Fiber Contractions . 50 4.4 Sources and Sinks . 51 ∗Mathematics Subject Classifications: 34-02, 34C20, 37D05, 37G10. Key words: Smooth linearization, Lie derivative, Hartman, Grobman, hyperbolic rest point, fiber contraction, Dorroh smoothing. c 2000 Southwest Texas State University. Submitted November 14, 2000. -
Linearization and Stability Analysis of Nonlinear Problems
Rose-Hulman Undergraduate Mathematics Journal Volume 16 Issue 2 Article 5 Linearization and Stability Analysis of Nonlinear Problems Robert Morgan Wayne State University Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Morgan, Robert (2015) "Linearization and Stability Analysis of Nonlinear Problems," Rose-Hulman Undergraduate Mathematics Journal: Vol. 16 : Iss. 2 , Article 5. Available at: https://scholar.rose-hulman.edu/rhumj/vol16/iss2/5 Rose- Hulman Undergraduate Mathematics Journal Linearization and Stability Analysis of Nonlinear Problems Robert Morgana Volume 16, No. 2, Fall 2015 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN 47803 Email: [email protected] a http://www.rose-hulman.edu/mathjournal Wayne State University, Detroit, MI Rose-Hulman Undergraduate Mathematics Journal Volume 16, No. 2, Fall 2015 Linearization and Stability Analysis of Nonlinear Problems Robert Morgan Abstract. The focus of this paper is on the use of linearization techniques and lin- ear differential equation theory to analyze nonlinear differential equations. Often, mathematical models of real-world phenomena are formulated in terms of systems of nonlinear differential equations, which can be difficult to solve explicitly. To overcome this barrier, we take a qualitative approach to the analysis of solutions to nonlinear systems by making phase portraits and using stability analysis. We demonstrate these techniques in the analysis of two systems of nonlinear differential equations. Both of these models are originally motivated by population models in biology when solutions are required to be non-negative, but the ODEs can be un- derstood outside of this traditional scope of population models. -
1 Introduction 2 Linearization
I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying Q(λ)x = 0, (1.1) where Q(λ)= λ2M + λD + K, M, D and K are given n × n matrices. Sometimes, we are also interested in finding the left eigenvectors y: yH Q(λ) = 0. Note that Q(λ) has 2n eigenvalues λ. They are the roots of det[Q(λ)] = 0. 2 Linearization A common way to solve the QEP is to first linearize it to a linear eigenvalue problem. For example, let λu z = , u Then the QEP (1.1) is equivalent to the generalized eigenvalue problem Lc(λ)z = 0 (2.2) where M 0 D K L (λ)= λ + ≡ λG + C. c 0 I −I 0 Lc(λ) is called a companion form or a linearization of Q(λ). Definition 2.1. A matrix pencil L(λ)= λG + C is called a linearization of Q(λ) if Q(λ) 0 E(λ)L(λ)F (λ)= (2.3) 0 I for some unimodular matrices E(λ) and F (λ).1 For the pencil Lc(λ) in (2.2), the identity (2.3) holds with I λM + D λI I E(λ)= , F (λ)= . 0 −I I 0 There are various ways to linearize a quadratic eigenvalue problem. Some are preferred than others. For example if M, D and K are symmetric and K is nonsingular, then we can preserve the symmetry property and use the following linearization: M 0 D K L (λ)= λ + . -
TWO DIMENSIONAL FLOWS Lecture 4: Linear and Nonlinear Systems
TWO DIMENSIONAL FLOWS Lecture 4: Linear and Nonlinear Systems 4. Linear and Nonlinear Systems in 2D In higher dimensions, trajectories have more room to manoeuvre, and hence a wider range of behaviour is possible. 4.1 Linear systems: definitions and examples A 2-dimensional linear system has the form x˙ = ax + by y˙ = cx + dy where a, b, c, d are parameters. Equivalently, in vector notation x˙ = Ax (1) where a b x A = and x = (2) c d ! y ! The Linear property means that if x1 and x2 are solutions, then so is c1x1 + c2x2 for any c1 and c2. The solutions ofx ˙ = Ax can be visualized as trajectories moving on the (x,y) plane, or phase plane. 1 Example 4.1.1 mx¨ + kx = 0 i.e. the simple harmonic oscillator Fig. 4.1.1 The state of the system is characterized by x and v =x ˙ x˙ = v k v˙ = x −m i.e. for each (x,v) we obtain a vector (˙x, v˙) ⇒ vector field on the phase plane. 2 As for a 1-dimensional system, we imagine a fluid flowing steadily on the phase plane with a local velocity given by (˙x, v˙) = (v, ω2x). − Fig. 4.1.2 Trajectory is found by placing an imag- • inary particle or phase point at (x0,v0) and watching how it moves. (x,v) = (0, 0) is a fixed point: • static equilibrium! Trajectories form closed orbits around (0, 0): • oscillations! 3 The phase portrait looks like... Fig. 4.1.3 NB ω2x2 + v2 is constant on each ellipse.